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Abstract | Nowadays, two technological trends, Federated Learning (FL) and Edge Com-
puting (EC), are increasingly important and influential. FL is a decentralized
machine learning strategy that allows learning on distributed data. It primar-
ily allows performing learning operations close to the user, where the data is
gathered. This approach belongs to the EC domain, where the main goal is to
move computation closer to the end user (e.g., from the centralized cloud). In
our work, we apply the FL and EC in the context of network flow classification.
We achieved an accuracy of 0.957 with the FL model, compared to 0.924 for the
best local model. We achieved these results thanks to the federated averaging
performed on neural network layers. To verify our approach, we executed all
our experiments on a virtualized environment that emulates existing mid-scale
EC network infrastructure, including limitations related to resource constraints
on edge nodes.
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1. Introduction

We increasingly rely on a variety of connected devices, from standard desktops and
mobile devices to [oT devices. We also rely heavily on Internet services. It is especially
true in the post-pandemic period, when many activities have shifted to remote do-
mains, including, but not limited to, remote work and teaching. The increase in usage
puts significant pressure on infrastructure as demand for high-quality networks grows.

From a networking perspective, one of the crucial factors is proper network traffic
classification, as it enables us to understand the types of traffic that flow through
a network and how the network is utilized. Next, we can utilize these insights to
optimize network performance, enhance security, and ensure that critical applications
and services receive priority and appropriate quality of service. There are several
essential use cases where network traffic classification is crucial.

First, network traffic classification can help us identify and block malicious traffic.
By understanding the types of traffic flowing through a network, we can identify
patterns and behaviors indicative of attacks or malware. Based on that, we can
develop appropriate security measures and block malicious traffic before it causes
harm. Network data analysis is crucial for intrusion detection systems [35].

Second, different types of traffic have their specific performance requirements.
For example, interactive video and voice traffic requires low latency, low jitter, and
high throughput, while file transfers and email traffic are less delay-sensitive. By
classifying traffic, we can prioritize different types of traffic based on their performance
needs, ensuring that critical applications and services receive the resources they need
to function correctly.

Third, network traffic classification can help us optimize network performance.
By understanding which types of traffic consume the majority of available bandwidth,
we can identify potential bottlenecks, reduce congestion, and improve performance.
The analysis of network usage (services, flow types, upload / download) facilitates
both the introduction of optimizations and the establishment of baselines, which serve
as a basis for detecting anomalies in network traffic [2].

Fourth, network traffic classification can inform network capacity and resource
allocation decisions. By understanding the types of traffic flowing through a network,
we can better predict future demand and plan for capacity upgrades and resource
allocation accordingly.

Typically, a dedicated central monitoring infrastructure performs network traffic
analysis. All traffic information collected by network devices is sent to central units
for analysis. The scenario often requires specialized software and equipment, leading
to a vendor lock-in. Access to all the data in place is a great benefit of centralization,
as it allows us to use machine learning on big data sets. However, this raises questions
related to data privacy and concerns about the efficiency of the utilization of network
resources [29]. To address those issues, we propose FL on the network edge to solve
problems related to: (1) data distribution on the network edge devices, (2) resource



FL-MEC: federated learning for network traffic classification. .. 183

limitations of the network edge devices, and (3) protection of data and privacy when
analyzing network traffic.

In the following sections, we introduce the design and implementation of our
real-time data acquisition system in the existing network. We also describe a scalable
federated environment, which we created, that could be used for any federated learn-
ing task. Finally, we characterize a federated learning neural network solution that
we built and measured its performance, runtimes, and data usage. Our results are
promising - the federated model performs better than several local models trained on
varying amounts of data.

2. Related work

FL is a decentralized machine learning technique that allows training on a massive
corpus of data distributed across many devices [7,25]. It exemplifies the broader
strategy of “taking the code to the data” instead of “taking the data to the code”,
which tackles data ownership, privacy, and locality issues at their core.

Classic FL architectures are mainly based on a central server to aggregate model
updates. In contrast, decentralized or peer-to-peer FL approaches eliminate this de-
pendency by exchanging updates among nodes directly. In that way, the nodes par-
ticipating in the FL learning process demonstrate that global models can be trained
across multiple clients without data centralization. In addition, the nodes often op-
erate on resource-constrained devices, such as IoT devices or mobile phones, with
limited computational and communication capacity [1,3,16].

Decentralized Federated Averaging (DFedAvg) [39] and earlier decentralized SGD
formulations [21] show that under realistic network topologies, decentralized learning
can achieve convergence rates comparable to server-based FL. Recent surveys [4,11,28§|
and communication-efficient FL frameworks [8,27,33] further explore different tech-
niques of compression, sparsification, and quantization to improve communication
and reduce bandwidth overhead. These findings are particularly relevant to our use
case, where resource-constrained Raspberry Pi nodes and edge network device nodes
exchange neural network weights over local networks, leading to significant communi-
cation costs. However, they do not consider constrained memory and computational
capabilities of FL nodes.

Network Traffic Classification remains an essential element in network manage-
ment and traffic analysis. Recent surveys [5,34] emphasize the growing importance of
encrypted traffic analysis, where statistical and temporal flow features replace payload
inspection. Deep neural networks have shown strong performance in these tasks, yet
their deployment is often centralized and requires significant data volumes. In con-
trast, federated and edge-based learning approaches enable privacy-preserving analy-
sis of local traffic traces.

Some recent network traffic studies have focused on the classification problem on
the network edge [32,36,37]. Recent work also reviews several supervised learning
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algorithms: naUve Bayes classifier, C5.0 decision tree, neural network based on radial
base function, Bayesian network [26]. Surprisingly, despite its complex implementa-
tion, the Bayesian network allowed for satisfying results.

One of the most interesting trends we have observed recently is the increased
attention paid to integrating FL with the network traffic classification domain. Com-
prehensive reviews [10, 13, 18] demonstrate that FL can effectively aggregate secu-
rity insights from distributed nodes while preserving privacy and without revealing
sensitive user data. However, most existing approaches still depend on a central-
ized node that serves as a coordinator or utilize cloud infrastructure. In contrast,
FL-MEC adopts a fully peer-to-peer architecture, performing federated averaging di-
rectly among nodes and evaluating performance under realistic network constraints.

To conclude, prior work has separately addressed federated and decentralized
learning, communication efficiency, and traffic classification. To the best of our knowl-
edge, no prior study has evaluated a fully peer-to-peer FL setup performing network
traffic classification directly on the network edge, using real-world medium-scale edu-
cational infrastructure and resource-constrained hardware. FL-MEC fills this gap by
combining decentralized model averaging, real network data, and runtime communi-
cation analysis across approximately one hundred nodes.

3. Experimental environment

In this section, we present our system designed for experiments with federated learn-
ing, and the real-life environment from which we gathered our dataset. Because of
the name of the original environment (Malopolska Educational Cloud, MEC), we call
the experimental system FL-MEC.

To understand the architecture of the presented solution, let’s start with the pro-
tocol we use in the learning process. All operations are executed close to the net-
work users, on edge devices (see 1 in Figure 1). In our setup, we preconfigured
network devices (Ethernet switches) to mirror all users’ traffic to specific ports. We
attached our edge processing units (Raspberry Pis) directly to the mirroring ports.
The devices analyze all the traffic and participate in the learning protocol. Such ap-
proach allows us to program and reconfigure all needed system components flexibly,
because although we cannot program network devices directly, we still have full con-
trol over the data processing. Moreover, the processing scheme is repeatable — it is
very easy to reuse it with network devices from different vendors, i.e., heterogeneous
networking environments. It also allows us to update the software and data used in
experiments dynamically without disturbing the network users, and gives us access
to all necessary libraries.

Once the processing unit finishes booting up, it starts participating in the learning
process. First, it trains the local model, and later redistributes the model parameters
(see Section 4) to all other nodes (see 3 in Figure 1), and also accepts updates from
them. Once a device receives the updates from all nodes, it computes the average of
weights following the federated averaging algorithm (see Section 4.1). That concludes
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a single iteration of the algorithm. Details regarding data processing are presented in
Section 3.2.

(1) © terationi

iterationi+1

Edge

Figure 1. Edge devices in FL-MEC include an edge network device and an edge processing
unit (1). The learning process consists of iterations (2). Each iteration (save the initial
one) contains three phases: averaging of the received weights (blue boxes), model training
(green boxes), and sending model weights. Communication to nodes occurs at the end of an
iteration (3). In our case, we send the data to all nodes using a fully peer-to-peer approach

3.1. Data source: Matopolska Educational Cloud (MEC)

In our setup, we utilize Malopolska Educational Cloud (MEC)! infrastructure [12,43].
The project was developed in 2014-2021 to interconnect the Malopolska region high
schools and universities. The infrastructure, which was installed in more than 120
schools, 20 university departments, and about 20 other supporting institutions, pro-
vided a basis for multiple cooperation scenarios [42]. Most often, high schools in
the region use the infrastructure to conduct remote courses organized by universities.
Such courses typically include one or two remote classes a week, and their typical du-
ration is one or two semesters. There are a few (typically five) schools participating
in the same course, each of them represented by about 20-25 students. In addition to
the video sessions, the courses can be supported by additional topic-specific services,
hosted in the private cloud, which was also implemented by the project.

MEC infrastructure also provides Internet access for participating schools in a
unified way. The schools’ infrastructures consist of several (typically 11) access points,
a switch that is a central point of the whole network, and a boundary security de-
vice, which integrates the functionalities of a router, VPN termination point, and L7

IMEC https://e-chmura.malopolska.pl/
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firewall and content filter. The primary provider of infrastructure devices (i.e., both
networking and multimedia equipment) is Cisco.
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Figure 2. MEC coverage of Malopolska region. The integers indicate the number of devices
installed in respective locations

Because the devices installed in respective schools are monitored and managed
in a unified and centralized manner and are interconnected by a single device (the
switch), the MEC infrastructure provides an opportunity to conduct synchronized
experiments in many geographically dispersed locations. The schools are sources of
many diversified data flows (towards the Internet) and a few periodic priority flows,
which include video and data flows towards the MEC cloud. It is noteworthy that in
most cases the development of MEC infrastructure was accompanied by upgrades in
Internet connections; the goodput both towards the MEC and Meraki? clouds reaches
100 Mbps, and the values of latency and jitter are relatively low (see Figure 3).

2Cisco Meraki (meraki.cisco.com), the cloud-based management platform used in MEC


meraki.cisco.com

FL-MEC: federated learning for network traffic classification. .. 187

Goodput [Mbit/s] 10.37 [N |00.00

55.44
35 o,
[ ]
30
[ ]
25 4
2} °
IEI20
815 0 . o ®
35 g % .
°
10 e .
[ ]
5%
0

0 1 2 3 4 5 6 7
Jitter [ms]

Figure 3. Distribution of most important network metrics

3.2. Data aggregation, detection of flows

The first step in processing that occurs on the edge is the aggregation of individual
packets that arrive from the mirroring interface into meaningful flows. It was also
essential to identify the source (host in MEC network) and destination (external
address) addresses to determine the destination of the flow — whether it was inside or
outside MEC infrastructure. For that, we consulted the MEC IP address management
system.

We utilize Tshark® TCP stream indexer to deal with packet flows. Regarding
feature engineering, we calculated additional features that could be helpful in both
machine learning and further data analysis (see Table 1).

Thanks to those aggregations, we reduced the data volume significantly (from
about 1GB of filtered packet data per batch to about 1MB of aggregated flows). It
was essential due to the limited resources of our edge processing nodes.

Finally, we ended up with over 3 million data samples ready for further processing,
collected for the duration of over one year.

3TShark https://tshark.dev/capture/capture _filters/
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Table 1

Aggregated flows data columns description and example entries

Column name

Description

Example entry

tcp_stream index

TCP stream index provided by Tshark

5

Source IP address in packet

K3k skckk ksk skkk

ip_src

ip_dst Destination IP address in packet A ok Rk K

src_comp Host IP address in MEC ok Ak Aok oK

dst_srv Service IP address AR ok ok K

tcp_src_port _comp | Host port 5060

tcp_dst_port_srv Service port 54404

tcp__port Thsark concatenation of source & des- | 54404,5060

tination port

up_len Upload length (from host in MEC) 263424

up_ size Upload size (from host in MEC) 52836736

down_len Download length (to host in MEC) 265961

down_size Download size (to host in MEC) 70529848

flow start Flow start time 2024-05-01
00:00:30.679705-+02:00

flow_end Flow end time 2024-05-01
07:55:01.121280+02:00

flow time Flow duration 28470

total data Total data exchanged 123366584

up_size by time

Upload size by flow time (from host in
MEC)

1855.874113

down _size by time

Download size by flow time (to host in
MEC)

2477.339234

3.3. Flows segmentation

As we wanted the dataset to be practical, we decided to create a simple segmentation
scheme based on flow times and upload /download data sizes, and ended up with nine
categories (see Table 2).
Table 2
Flow segmentation based on established thresholds

No. Time Upload Download | Share
1 Short Low Low 37.5%
2 Long Low Low 17.6%
3 Long High High 11.8%
4 Short High High | 11.4%
5 Short Low High 8.4%
6 Long Low High 8.2%
7 Short High Low 2.8%
8 Long High Low 1.2%
9 Irrevelant | Irrevelant | Irrevelant | 0.9%
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Next, we adjusted the threshold parameters to have appropriate class sizes. We
did not want to have very unbalanced data, but we also did not want to have a per-
fectly balanced dataset that never appears in real problems. We established different
thresholds for the sizes of the data uploaded and downloaded. Flows shorter than
5 seconds were marked as Irrelevant, flows between 5 and 100 seconds as Short, and
flows longer than 100 seconds as Long. For both download and upload data sizes, we
used 2MB as the splitting point. Short flows with low upload and download values
that represent HT'TP traffic appeared to be the most common class.

From this point, we focus on an algorithm that predicts the category of flow.

3.4. Service names resolution

We resolved the DNS names from the gathered addresses to better understand the
traffic patterns in terms of external services contacted. We did it once a day due to
changes in the domain name system for dynamic addresses. Unfortunately, still about
40% of the addresses were unresolved and therefore not categorized. Nonetheless, we
were able to identify critical (most important) services for users. The services were
located both inside and outside MEC architecture, and of course included those related
to MEC multimedia infrastructure.

akamaitechnologies AMAazZonaws o akamaitechnologies
23.6% T cloudfront 18% 17.5%
dataspace google 11.1%
14.9%
facebook
7.1%
[) avast 9.7% MEC multimedia
other 27.1% eria 7.4 ‘other 40.3% 6%
interia 7.
(a) ’ (b)
kamaitechnologi
aamariee nozggzlf/s akamaitechnologies
amazonaws 22%
0,
cloudfront25'9A’
0,
18% cloudfront
other 7.5%
25.7% facebook
7.3%
) . google 12% open-telekom-cloud
MEC  multimedia facebook 9.7%  other 31.6% 5.7%

9.4% (c) (d)

Figure 4. Top 6 services in long flows within MEC based on segmentation. (a) Long flows

with high upload and high download; (b) Long flows with high upload and low download;

(¢) Long flows with low upload and high download; (d) Long flows with low upload and low
download
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We analyzed them further as they were essential in our use case. Network traffic
hitting the servers of MEC multimedia systems differs from the usual one. Almost
every flow is long, and over 50% of them have a high upload and download ratio,
which could indicate intense activity of teachers and students who were presenting and
therefore sending multimedia in both directions. Another considerable part (around
40%) consists of long flows with a high download ratio that could indicate either
non-interactive (e.g., file downloads) or less interactive sessions (e.g., with a single,
unidirectional video stream).

Within long flows, we can observe that global CDN services play a significant
role in the segment (see Figure 4a). For this particular segment, we can see Avast
(an antivirus system) in addition to popular local services. It is interesting to see it
within this segment - it could indicate that antivirus software updates impact end-
device network performance.

We recognized similar shares for CDN services within other segments (see Fig-
ure 4c and Figure 4d) except for the segment with high upload and low download
rates (see Figure 4b).

There were two major flow segments for MEC multimedia systems servers (see
Figure 4), and here we can point out that only for those flow segments, traffic to MEC
multimedia systems servers is a significant part of the whole traffic.

3.5. Mirroring MEC in an emulated environment

We prepared an emulated environment that mirrors the existing MEC infrastructure
to evaluate our FL approach. We utilized the Containernet* platform to build our
network environment [31]. It allowed us to specify the existing networking constraints
among the nodes. Separate Docker containers emulated respective edge processing
nodes of FL-MEC. We set specific resource constraints® reflecting the capabilities of
the processing unit (we used Raspberry Pi 4 as our reference hardware). In addition,
we had full access to the Linux OS on the nodes as well as to the real network stack,
so the emulated environment closely mirrored system aspects of the real environment.
Before executing FL evaluation, we had been gathering data from five real locations
for more than one year.

4. FL-MEC learning model

In our research, we wanted to perform classification using a machine learning model.
We did not want to provide a complete machine learning model for real-life applica-
tions, but to evaluate the opportunities and limitations of federated learning usage.
For the dataset, we used simple threshold-based segmentation of flows described in
Section 3.3 to check the feasibility of FL in a distributed environment. We wanted to

4Containernet https://github.com/containernet/containernet
5Docker: Runtime options with Memory, CPUs, and GPUs https://docs.docker.com /config/
containers/resource _constraints/
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base our implementation on the Decentralized Federated Averaging due to promising
results reported in an original work [39]. The algorithm uses a new decentralization
approach, consisting of multiple training steps (epochs) between each communica-
tion round.

4.1. Federated averaging

In this section, we present our implementation concept of federated learning based
on Decentralized Federated Averaging [39]. In iteration 0, we initialize the models
on each node and train the models on local data. Then we send parameters to other
nodes and perform averaging. The next iteration trains the models on new local data
and performs averaging. Training is performed incrementally.

Algorithm 1 Federated learning on a single node

Parameters E,N,] € Z*
Initialization: Initialize model
fori={1,2,...,D} do
Train model on local data for FE epochs
Send parameters to other N nodes

Receive parameters from N other nodes
Perform averaging
end for

Algorithm 1 presents the described steps for a single node. It is also important
that the training is continuous, due to changes in network flows characteristics. It
is worth mentioning that we do not want to use a centralized server for averaging;
rather, each node acts both as a client and as a server. During the evaluation, we
also modified the algorithm by using weighted averaging based on data amount and
by decreasing communication intensity.

4.2. Neural network model

The classification algorithm selection was restricted because it had to be applicable to
online training and the provide opportunity for averaging. Neural networks were the
first choice as they meet these two requirements. Considering the limited resources,
we ended up with a moderate-size neural network (see Figure 5).

We also decided to skip advanced reprocessing or dimension reduction methods
like PCA [15] or UMAP [24] because we wanted to evaluate federated averaging,
and advanced preprocessing techniques could impact the reliability of our results.
The only preprocessing technique we applied was scaling the data using a standard
scaler tool provided by the Python Sklearn library. In our case, we wanted to use
online learning, which allows to perform incremental training [14], beneficial in FL
approach [9].
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Dense Layer (512)  Dense Layer (256) Dense Layer (128) Dense Layer (64) Dense Layer (9)
Activation: ReLu Activation: ReLu Activation: ReLu Activation: ReLu Activation:
Dropout: 0.1 Dropout: 0.1 Dropout: 0.1 Dropout: 0.1 Softmax

Figure 5. Architecture of a neural network used in flows classification

4.3. Model evaluation

For evaluation, we used accuracy and logarithmic loss metrics. We utilized built-in
TensorFlow categorical accuracy, which is just the sum of total correct predictions
divided by the sum of test entries. We decided to use logarithmic loss due to its wide
application among many works related to machine learning and because of information
on prediction certainty.

We distributed our data unevenly to represent the real-world environment, in
which some sites are more active, i.e., they participate in more flows than others, and
therefore some sensing nodes could access more training data samples than others.
Unsurprisingly, the accuracy of local models depended on the volumes of the training
data (see Figure 6).

We proposed three versions of federated averaging:

e simple — simple averaging of all neural network’s layer;

e weighted — weighted averaging of all neural network’s layers based on training
data volume;

e two-step — same as above, with restricted synchronization intensity to one com-
munication round per second — to check if communication costs could be reduced.

After the first iteration of all federated models, accuracy drops drastically com-
pared to the values depicted in Figure 6 due to weight averaging (see Figure 7). In
this initial stage, models could search for local minima, and the averaging of weights
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could cause those weights to become meaningless. However, from this stage, all mod-
els seem to learn in the correct directions, and averaging weights seems justified and

reasonable.

Accuracy score

Accuracy score
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Figure 6. Learning curves for local models (N represents batch size)
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Figure 7. Learning curves for federated models
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Compared to local models, the simple federated model was not very successful,
but the weighted model outperformed them significantly (see Table 3). In addition,
it was even better than the local model N=7000, indicating that federated learning
could work similarly to regularization.

We also proposed a weighted model restricted with regard to the communication
— only one round was allowed every second. Our goal was to check whether commu-
nication could be limited without a significant performance drop, and it turned out
that it was feasible.

Table 3
Final accuracy scores and logarithmic losses for models
with different training data batch sizes and for federated model

Accuracy Logarithmic Loss
Local model N=500 0.803 0.840
Local model N=2000 0.878 0.389
Local model N=7000 0.924 0.175
Federated model 0.867 0.321
Weighted federated model 0.957 0.117
Two step federated model 0.934 0.149

We presented accuracy scores and logarithmic losses for all models used in our
experiment (see Table 3). Analysis of logarithmic losses for models is very similar to
the analysis of accuracy we presented above, so we decided to skip that part.

5. Runtime analysis

In our experiment, we also measured the times for both local and federated training
methods and compared them. We wanted to check if the durations of iterations (we
included the time of loading the dataset from the file to the iteration duration) are
the same, and how long averaging would take (we have waiting time for other nodes’
weights).

When we compare the results obtained for the federated model with the local
models, we can observe that the total duration measured for the federated models is
significantly longer than for the local ones (see Table 4).

Table 4
Iterations duration for local models and federated model on representative nodes

Local model FL — training FL — averaging
node 1 N=500 84s 8.3 s 9 min 27 s
node 2 N=2000 47.3 s 48.2 s 8 min 42 s
node 3 N=7000 71.2s 70.6 s 7 min 27 s
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The main reason is the costly averaging process, which has a negative impact,
especially for smaller local models. Our experiment was conducted with about 100
emulated nodes with emulated connection parameters modeled on the MEC environ-
ment. The averaging overhead is caused by a long waiting time for weights from other
nodes, especially larger ones. To sum up, federated learning takes significantly longer
than local training. However, based on the scale and available resources in the EC,
we believe that it is still acceptable.

The amount of data exchanged during federated learning depends on model size.
In our case, the neural network weights size was 867 KB, and during each iteration of
Algorithm 1, one node sent its own weights file to the other 100 nodes. Multiplying
the weights file size by the number of nodes and the number of iterations (15), we
calculated that the total data exchanged in the network during federated learning is
about 130 GB (see Table 5). It is quite a considerable network load, and sometimes it
causes problems with communication, but appropriate software modifications address
it. For example, in a real-world scenario, the training data can be exchanged in
periods of low user activity (in MEC, that would be late afternoons and nights).

Table 5
Summary table of transferred data volumes

Weights file size Data sent per Data sent per Data exchanged
node per iteration node (total) (total)
0.867 MB 86.7 MB 1.3 GB 130 GB

6. Future work and security considerations

Our research provided interesting insights regarding designing and implementing EC-
based FL applications and systems. First, developing a robust acquisition system is
challenging. Thorough stress testing of EC capabilities within production environ-
ment settings is essential. Issues such as communication interruptions and faulty de-
vices (both measuring appliances and network equipment) were predominant sources
of problems encountered in our setup. One interesting approach to further improve
the system’s fault tolerance and availability is to use a network protocol designed for
data exchange under such volatile conditions as the OMG Data Distribution Service
(DDS) [19,30].

Second, FL significantly enhances privacy because there is no central server that
stores raw data; measuring nodes only share model updates, such as gradients or
weight adjustments. Our approach employed a peer-to-peer system where edge nodes
directly communicate model updates with each other. However, this introduces addi-
tional challenges regarding protecting against data integrity and security attacks.
For example, poisoning attacks on data and models have been studied and ana-
lyzed [38,40]. We can partially address the issue by utilizing blockchain technology
in our FL process. In our case, it will provide a decentralized and tamper-resistant
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tracking layer for model updates. In addition, it can enhance data integrity and trust
among nodes participating in the FL process. However, integrating blockchain into EC
systems also presents challenges. The primary concern involves resource constraints,
as devices typically have limited computing power, storage, and energy resources.
Blockchain (particularly in proof-of-work configurations) requires additional compu-
tational and energy resources, which may be infeasible for constrained EC devices.
Furthermore, blockchain implementations can introduce latency and scalability issues
due to the time-consuming consensus mechanisms required to validate transactions
across nodes in the FL process. We can use lightweight consensus algorithms or deploy
hybrid blockchain solutions explicitly tailored for resource-constrained environments
to address this issue [17,22,41].

Third, data preprocessing is critical for effectively handling data streams on EC
devices. Due to limited memory capacity, all aggregation and filtering processes
should occur directly on the EC site. One interesting approach to further improve
FL-MEC runtime efficiency and resource usage is to leverage event-driven serverless
computing and offload resource-intensive computations to other nodes [20]. Addition-
ally, data compression techniques and adaptive sampling methods can be employed
to minimize the data volume required for processing (and for transmission).

Finally, correctly selecting an appropriate machine learning algorithm for FL
presents another challenge. Only a limited subset of algorithms can efficiently utilize
federated learning methodologies. While neural networks are typically the preferred
choice due to their flexibility, other algorithms, which support online training, might
also be interesting [43]. Moreover, the flexibility of neural networks is an obvious
advantage, but it could also be challenging to pick up an appropriate architecture
for a task, especially for more advanced problems. Additionally, lightweight releases
of popular machine learning frameworks (TensorFlow Lite, PyTorch Mobile [23] or
Flower [6]) can be particularly advantageous for EC devices because they are tailored
for devices with limited resource capabilities.

7. Conclusions

Our work evaluated a few federated weight averaging techniques, demonstrating their
feasibility and significant benefits in a simulated environment. Using a standard
neural network architecture for a classification task as a consistent testbed, we showed
that federated approaches offer substantial improvements over traditional, isolated
training models.

The results highlight the core advantages of federated learning. Our Weighted
Federated Model not only outperformed the local models trained on small (N=500)
and average (N=2000) datasets, but it also achieved a final accuracy of 0.957, which
is significantly higher than the local model trained on the largest dataset (N=7000,
accuracy 0.924). This compellingly demonstrates that federated learning serves two
critical functions. Firstly, it allows clients with limited data to benefit from the
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collective knowledge of the network, achieving performance far beyond what would
be possible with their local data alone.

Secondly, the superior performance of the federated model suggests a strong
regularization effect. By averaging models trained on diverse data distributions, the
global model becomes more robust and less prone to overfitting on the specifics of any
single client’s dataset, leading to better generalization.

Finally, the verification of our approach in a simulated environment with realistic
constraints proved that even simple communication protocols based on IP and HTTP
are effective for establishing federated networks. In summary, our findings confirm
that federated learning is not just a viable approach, but a powerful one that can lead
to models that are more accurate and robust than even well-trained isolated models.
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