COMPUTER SCIENCE e 26(4) 2025 https: //doi.org/10.7494 /csci.2025.26.4.6822

KAMIL JURCZYK
PAwWEL ToPA
LLUKASZ FABER

TOWARD RAM FORENSICS SUPPORTED
BY MACHINE-LEARNING METHODS

Abstract | In this article, we propose an enhancement to the computer forensics technique
of using Machine-Learning tools to analyze the contents of RAM in order to
extract information that is potentially useful during an investigation. In the
specific case presented, the use of the extracted information to generate more-
optimal dictionaries for dictionary cryptanalysis is considered. Increasing user
awareness is making cryptanalysis of passwords increasingly difficult for law en-
forcement. Long and complex passwords are impossible to crack — even when
high-performance computing platforms are available. A sensible method of op-
timization is to look for hints to use a dictionary that contains text phrases
more likely to be used in the specific case under attack. Such a hint could be
an analysis of RAM taken from a suspect computer. Machine-learning methods
can significantly facilitate this task. In this article, we also explore the effec-
tiveness of such an approach and its usefulness in practical applications. We
also consider applications of the proposed approach for other purposes, such
as OSINT.

Keywords | forensic, dictionary attacks, machine learning

Citation | Computer Science 26(4) 2025: 77-103

Copyright | © 2025 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

7

https://doi.org/10.7494/csci.2025.26.4.6822
https://creativecommons.org/licenses/by/4.0/

78 Kamil Jurczyk, Pawet Topa, Lukasz Faber

1. Introduction

As one of the sub-fields of Computer Science, computer forensics [11] is a key element
used by law enforcement agencies as well as others who are involved in the detection of
digital breaches or data recovery. According to current trends, the amounts of fraud
and numbers of computer crimes are increasing every year [4]. Computer forensics
involves the application of investigative techniques to analyze and recover potential
evidence from electronic devices [20]. This process includes identifying, preserving,
analyzing, and presenting digital evidence that can be used in legal proceedings.
Computer forensics extends beyond just computers to encompass a wide range of
devices like smartphones, cameras, IoT devices, and network devices. The significance
of computer forensics lies in its ability to collect and examine data crucial for proving
cybercrimes, aiding law enforcement in bringing criminals to justice.

Sometimes the investigation of violations of the law requires access to encrypted
material that is, in practice, the breaking of security measures, such as a password
for a device, file, or website. To facilitate this process, various types of tools are
available to enable the analysis or to overcome the security necessary to continue the
investigation. Depending on the type of action, specific methods, tools, and scope can
be chosen. In each case, the desired outcome will be to correctly analyze the evidence
gathered and prove or deny the allegation of a computer crime.

Some of the tested materials may have the aforementioned safeguards that pre-
vent efficient analysis. Based on the collected information, one of the most common
results of acquiring data from evidence is encrypted files consisting of an unknown
number of characters. These files are most often the result of encrypting users of
a given workstation, which contains information sensitive to the perpetrator but cru-
cial for the entire criminal process.

Since modern ciphers such as AES are practically unbreakable by using analytical
methods, the only way of getting access to encrypted data is by finding (guessing)
cryptographic keys. These keys, used for encrypting files (or, more generally speaking,
data containers), are produced by using functions called KDFs (Key Derivation Func-
tions). The KDF functions take input passphrases and produce cryptographic keys
having desired parameters (especially length) or hashes that hide original passphrases.
In practice, the KDF functions use one-way digest functions (i.e., SHA-2 or SHA-3
digest functions) or more-specialized functions that have components additionally
increasing their security [2,15].

As in any war in which there is a race between methods of attack and means
of defense, so too in the case of attacks on hashed passwords, the use of powerful
computing platforms and highly efficient implementations is countered by algorithms
with a high cost of attack. On the one hand, the defense of privacy is a human right,
and on the other hand, the security of society can only be guaranteed by legitimate
violations of this privacy — against suspected criminals.

The aforementioned strengthening of password security by increasing the cost
of attacks can be offset by optimizing the attacks themselves. Strengthening the

Toward RAM forensics supported by machine-learning methods 79

computational power involved is effective to a limited extent — as a password length
increases, the computational effort required increases exponentially. Optimizing the
attack is relatively difficult if the suspect has followed the recommended password
usage rules: use a password manager, and use long random passwords. To improve
their chances of success, the investigator should use any technique that could hint at
the form of the password.

In order to compete with cyber criminals, computer forensics must use every
possible piece of information to gain an advantage. As noted in [9], the size of oper-
ational memory is becoming so large that it can contain valuable information from
a computer forensics point of view. Among other things, the authors of this publica-
tion list processor information, open files and registry handles, files currently in use,
network traffic information, passwords and cryptographic keys, decrypted data, and
other data. Also, there are many ways (software and hardware) to retrieve and save
a memory image. The importance of computer forensics focused on RAM analysis
has also been proven by publications; i.e., [12,16,18].

In this article, we propose a method for gaining hints about passwords in the
situation of accessing a memory image (RAM in particular) obtained from a suspect.
We propose an enhancement to the computer-forensics technique of using Machine-
Learning tools to analyze the contents of RAM in order to extract information po-
tentially useful during an investigation. In the specific case presented, the use of
extracted information to generate more optimal dictionaries for dictionary cryptanal-
ysis is considered. The increasing awareness of users makes cryptanalysis of passwords
increasingly difficult for law enforcement. Long and complex passwords are impossible
to crack — even when high-performance computing platforms are available. A sensible
method of optimization is to look for hints to use a dictionary that contains text
phrases more likely to be used in the specific case under attack. Such a hint could
be an analysis of RAM taken from a suspect’s computer. Machine-learning methods
can significantly facilitate this task. In this article, we also explore the effectiveness
of such an approach and its usefulness in practical applications. We also consider
applications of the proposed approach for other purposes, such as OSINT.

The organization of the article is as follows: the next section briefly discusses
the issues of attacks against hashed passwords in a more detailed way. Section 4
provides an overview of forensics tools useful in analyzing memory dumps. Section 6
presents the authors’ proposed scheme for memory image analysis. The article ends
with concluding remarks summarizing the results and observations.

2. Challenges related to cryptanalysis of hashed passwords

Passwords are one of the oldest methods of controlling access to IT resources. Despite
their shortcomings and the development of other methods such as biometrics, we are
not abandoning this method. Its main disadvantage stems from the frailty of the
human mind, which cannot cope with memorizing randomly structured data. In

80 Kamil Jurczyk, Pawet Topa, Lukasz Faber

order to remember a phrase that acts as a password, we choose words or groups of
words that are easy to remember.

Passwords are stored in the computer system in hashed form; i.e., a so-called
hash is calculated for a given text phrase. This can be the result of a cryptographic
hash function (e.g., SHA-2 or SHA-3) or a dedicated KDF (Key Derivation Function)
(e.g., scrypt [15]).

An investigator wants to access unclassified passwords by having their hashes.
The basic and simplest method of breaking through the security of an established
password is a brute-force attack that involves checking all possible characters, num-
bers, words, or keys in the hope of hitting the right combination that will allow access
to the selected file, system, or device. Such attacks are usually performed automati-
cally and are characterized by the long time required to achieve the required effect.
Due to several factors, determining the exact time to obtain the right password varies
depending on parameters such as the length of the password itself; the longer the
password, the harder it is to find the right combination of characters. In addition,
the special characters often found in passwords make it more difficult and expand
the area that needs to be checked. Keep in mind that, depending on one’s hardware
resources, the time for a successful brute-force attack can vary significantly.

It is practically impossible to recover a hashed password from its hash because
the hash functions and KDFs used today are one-way and we are not aware of effective
methods of attacking this property. The only practically applicable method is dic-
tionary cryptanalysis. It is a variant of a brute-force attack where, instead of testing
the entire input space, only phrases that could potentially be passwords are checked.
A dictionary attack therefore needs a hint in the form of a list of plaintext passwords
for which the attacker will check the resulting hashes and compare with the attacked
hash. Success is achieved if the hashes are the same — the result is a phrase from
the dictionary. The leading programs designed for such attacks are Hashcat https:
/ /hashcat.net /hashcat/ or JohnTheRipper https://www.openwall.com/john/.

To succeed in a dictionary attack, hundreds of millions of phrases or more need
to be checked, which is a computationally intensive task. Currently, the main com-
ponent that allows efficient password breaking is the computer’s GPU. These types
of processors are designed to process in parallel huge amounts of data. Such a type
of processing is required in computer graphics. Luckily, many other problems can be
efficiently solved using this way of processing. Brute-force cryptoanalysis is among
them. The GPUs allow us to test in parallel a huge number of potential passphrases.

2.1. Preventing attacks on hashed passwords

Another important issue related to dictionary attacks against KDF functions is a tech-
nique for strengthening these functions. Functions such as scrypt and Argon2 have
properties called memory hardness — such that the function (algorithms) are called
memory-hard [3]. It refers to the property of the KDF function that requires a signifi-
cant amount of memory to compute, which significantly increases the cost of carrying

https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://www.openwall.com/john/

Toward RAM forensics supported by machine-learning methods 81

out a brute-force attack — even if parallel computing (in particular, GPU computing)
is used. This property makes brute-force attacks unprofitable, while honest users still
perform authentication in a reasonable amount of time. Bear in mind that an ad-
versary wants to quickly test several million potential passwords, while a legitimate
user only checks one password. Key derivation functions without this feature are not
considered to provide a sufficient level of security against dictionary attacks [1].

The concept of memory hardness is a combination of time complexity and mem-
ory units consumed [17]. An adversary can make modifications to the function’s
algorithm to speed up the calculation, but only at the expense of increasing the mem-
ory complexity of the algorithm. Similarly, a reduction in the memory requirements
of the algorithm can only come at the cost of an increase in computational effort.

2.2. Improving efficiency of dictionary attacks

Dictionary attacks are a kind of optimization of brute-force attacks. Instead of testing
an entire input message space, we test only possible input data. Primarily, this means
all text phrases can be used as user passwords (for authentication) or cryptographic
keys (i.e., for container encryption). This significantly reduces the input message
space; if the password is long enough, however, the adversary has to test a huge
number of candidates. For example, a 15-character password with numbers and upper-
and lower-case letters will be broken after several million years.

The effectiveness of a dictionary attack depends on the quality of the passwords
used by the user. Long randomly generated passwords are almost impossible to crack;
however, they are very difficult to remember. Users often use typical and easy-to-
remember text phrases, e.g., '123456,” ’admin,’ 'qwerty’ (https://en.wikipedia.org/
wiki/List_of the most common passwords). More aware users use passwords
based on combinations of easy-to-remember character strings from their social en-
vironment; e.g., names of loved ones, literature, and films. The most advanced users
use password managers.

Dictionaries for dictionary attacks are available on the Internet for free use. They
contain passwords from various leakages that happened in the past. The rockyou.txt
file is one of the well-known examples of a dictionary: https://github.com /
brannondorsey /naive- hashcat /releases /download /data /rockyou.txt). Dictionaries
are usually very large files, so software designed to perform dictionary attacks has
alternative mechanisms for generating potential passwords; e.g., using rules.

Recently, artificial-intelligence methods have been applied to generate customized
vocabularies based on evidence [10,13,14,19]. Models based on deep learning require
some data to train. After a successful learning phase, the model generates potential
passwords that may be more similar to those used by the attacker. Thus, the quality
of the training material is crucial for success in breaking passwords.

Success in cracking passwords can therefore be achieved by obtaining additional
information from various sources to personalize the dictionary and test only the most
likely phrases. The source of this data can be any analysis relating to the target

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt

82 Kamil Jurczyk, Pawet Topa, Lukasz Faber

of the attack (open-source intelligence) as well as collected evidence (if the target is
encrypted, evidence of a crime).

3. Challenges related to RAM analysis

Seemingly, the biggest challenge is getting an image of the RAM, which should be
wiped out when the power is cut. Indeed, this poses a problem, although various meth-
ods of recovering data from memory after a power cut have been proposed; e.g., [7,8].
In this article, however, we skip over the issues of memory-image acquisition, focusing
instead on analyzing what we manage to acquire by various means.

The main factor responsible for selecting the right analysis tool is the data
that needs to be properly processed, handled, and presented. The vast majority
of this comes from the binary copies of media created for an investigation. However,
this process is insufficient and leaves a large field that can be filled in by information
from a device’s RAM. Currently, there are not many tools on the market that enable
RAM analysis [6]. Among the most popular, we can include Volatility Framework
and Bulk Extractor. These tools allow for a basic analysis of data coming from RAM.
This data includes, for example, active processes, credit card numbers, or passwords
for login or user access authorization. The passwords themselves can be of great value
in the acquisition of digital evidence, as they are able to allow access to protected
resources such as files, devices, sites, password managers, or other key areas for the in-
vestigator. The aforementioned solutions from the operational memory area are based
on simple signatures that, once the correct binary sequences are recognized, are able
to display the information associated with the password (provided the software has
the correct signature to search for). This process is rudimentary and insufficient to
work effectively with a variety of data.

4. Overview of existing forensic tools used for RAM analysis

Sources of hints for possible passwords include all kinds of information found in dig-
ital media. Forensics analysts test various objects such as external storage media,
computer disks, RAM, and information from other devices. Depending on the object
under investigation, relevant information from the installed operating system can be
revealed. Most operating systems have implemented logs that store data from the
system operation, startup, shutdown, and error occurrences. Additionally, programs
installed within the system may also have application logs that contain specific in-
formation about the application, such as changes made by the user. Each file that
is installed or transferred to a device contains metadata, which includes information
related to the last startup, creation, modification, and the user who made the in-
teractions. Some files also include information related to the version or compilation
date. Based on the file type and extension, we can infer the data it contains. Spe-
cific database files located in fixed locations can be associated with web browsing
history, session-related information, or mail archives. During an investigation, it may

Toward RAM forensics supported by machine-learning methods 83

be necessary to analyze all available data to find artifacts that could impact the in-
vestigation. Analysts can use different types of tools to analyze selected objects and
extract the most relevant information effectively. Individual profiled analysis tools
can be used for this purpose. For example, here are some well-known and commonly
used tools:

e Volatility is a powerful tool widely used for RAM analysis (in the form of
memory dump files). It is a command-line tool and it is published as open
source (also, the source code is available).

r) - [~/Desktop]
s vol.py memdump . mem pstree
Volatility Foundation Volatility Framework 2.6.1

Time

Oxffffel8775c0al40:csrss.exe 2021-11-03 19:58:43 UTC+0000
oxffffel8775ch4080:wininit.exe 2021-11-03 44 UTC+0000
. Oxffffel877679e240: fontdrvhost.ex 2021-11-03 45 UTC+0000
. Oxffffel8775f59180:services.exe 2021-11-03 44 UTC+0000
.. Oxffffel8777e03080:svchost.exe 2021-11-05 07 UTC+0000
.. Oxffffel8777085080:vmtoolsd.exe 2021-11-03 46 UTC+0000
.. Oxffffel87779750c0:svchost. 2021-11-03 34 UTC+0000
.. Oxffffel8776e99080:svchost. 2021-11-03 46 UTC+0000
.. 0xffffel877e9eb080:svchost. 2021-11-03 49 UTC+0000
.. 0xffffel8776a450c0:svchost. 2021-11-03 45 UTC+0000
.. 0xffffel8776eald80:svchost. 2021-11-03 46 UTC+0000
.. Oxffffel8776933080:svchost. 2021-11-03 45 UTC+0000
.. Oxffffel877c699080:svchost. 2021-11-05 07 UTC+0000
.. Oxffffel8776c960c0:svchost. 2021-11-03 45 UTC+0000
. Oxffffel8777105340:vm3dservice.ex 2021-11-03 19:58:46 UTC+0000

e Hex editors are a large group of tools for reading, manipulating, and writing
binary data. This class of tools does not offer any special forensic functions; but,
like any editor, it offers many tools for experienced users.

e WireShark is another powerful tool for analyzing and tracking network flows.

M Ethemeto - o b3
Pk Edywj Widok Idf Preschwyty A Staystyki Telfonia Bezprzewodowe Nersgdzia Pomoc

Am 0 ARBRe= ==QQaaf

] od -+

No. Time Source Destnation Protocol Length Info =
85 1.423436 172.16.17.128 172.16.17.129 —

87 1.423900 172.16.17.128 172.16.17.129
88 1.424555 172.16.17.128 172.16.17.129 Pva

10-3619) [Reasseabled in #93]
, 10:3619) [Reassembled in #93]

8 1426555 1721617128 172.16.17.129 IPve 60 Fragaented IP protocol (protosTCP 6, offe16, 10-3619) [Reassenbled in £93] =
90 1425121 172.16.17.128 172.16.17.129 IPve 60 Fragrented IP protocol (protosTCP 6, off=24, 10-3619) [Reassenbled in £93] =
91 1.425180 172.16.17.128 172.16.17.129 Ipva 6@ Fragmented IP protocol (proto=TCP 6, off=32, 10=3619) [Reassembled in #93]
52 1.425180 172.16.17.128 172.16.17.129 IPvé 60 Frageented IP protocol (proto=TCP 6, off=40, 10-3619) [Reassenbled in #93]
93 1.425232 172.16.17.129 SMUX. 60 =

54 199 » 39279 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

95 1.425340 172.16.17.129 Tpve 60 Fragnented 1P protocol (proto=TCP 6, off=9, 1D=929b) [Reassembled in #101]

96 1.425340 172.16.17.129 Pva 60 Fragnented IP protocol (proto=TCP 6, off=8, ID=929b) [Reassembled in #101]
57 1.425340 172.16.17.129 Pva 66 Fragnented IP protocol (proto=TCP 6, off D=929b) [Reassembled in #101] =
58 1.425404 172.16.17.129 TPva 60 Fragnented 1P protocol (proto=TCP 6, off D-929b) [Reassembled in #101]
99 1.426569 172.16.17.129 Tpva 60 Fragnented 1P protocol (proto=TCP 6, off=32, ID=929b) [Reassembled in #101]
100 1.426621 172.16.17.129 pva 60 Fragnented 1P protocol (proto=TCP 6, off=40, ID=929b) [Reassembled in #101] =

60 39279 + 8080 [SYN] Seq=0 Win=1024 Len=32 Ms5=1460 [TCP segment of a reassembled POU]
172.16.17.128 Tcp 54 8080 -~ 39279 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

172.16.17.128 172.16.17.129 Tpva 60 Fragnented 1P protocol (proto= =0, ID=cedd) [Reassembled in #109)
172.16.17.128 172.16.17.129 Pva 60 Fragnented IP protocol (proto=TCP 6, off=8, ID=edd) [Reassembled in #109]

172.16.17.128 172.16.17.129 P 60 Fragnented 1P protocol (proto=TCP 6, off=16, ID=ce44) [Reassembled in ¥109) =
106 1.426943 172.16.17.128 172.16.17.129 Pva 60 Fragnented 1P protocol (proto=TCP 6, off-24, ID=cedd) [Reassembled in ¥109] o

Frame 86: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface \Device\NPF_{B69674F6-89BE-457-9389-858D80387AC8)}, id © -
Ethernet II, Src: VMware_df:35:10 (00:0c:29:df:35:10), Dst: Viare_ec:8a:14 (80:0c:29:ec:8a:14)
Internet Protocol Version 4, Src: 172.16.17.129, Dst: 172.16.17.128
v Transmission Control Protocol, Src Port: 554, Dst Port: 39279, Seq: 1, Ack: 1, Len: @
Source Port: 554
Destination Port: 39279

84 Kamil Jurczyk, Pawet Topa, Lukasz Faber

e RegRipper is a tool specifically designed for advanced analysis of Windows
registers. It is also open-source software and provides two modes of work: GLU,
and CLI.

81 RegRipper, v.3.0 - m} X [modyfikagji

File Help igizwzf

. 10:03

§ Hve Fie: [c:\software Browse 2019 10:03
-

.2022 16:59

Report File: [C:\Users\Kamil\Desktop'\RegRipper_SOFTWARE, Browse 2022 16:59

B 2020 17:10

thispcpolicy...Done ~ 2020 09:34
ltracing...Done. 2019 10:03
uac...Done
uacbypass...Done. .2019 10:03
uninstall...Done.
valinfocache... Done: 2022.21:40,
wab...Done.
watp...Done
wbem...Done.
winver...Done.
wow64...Done
wsh_settings._.Done
0 plugins completed with emors.

v

Close

Done

e The Sleuth Kit is a collection of command lines tools used to inspect and
recovery data from multiple file systems (NTFS, FAT, exFAT, HFS+, and
Ext2/Ext3/Ext4).

On the other hand, it is becoming increasingly popular among analysts to use a
tool that has multiple modules built in for various analyses. Such a model streamlines
the analysis process and gives the possibility of the additional linking of some facts
resulting from the analysis. Among such tools, we can include the following:

1. EnCase Forensic [5] is believed to be one of the most powerful and com-
prehensive digital forensics software suite developed by OpenText (https://
www.opentext.com/products/forensic).

2. AccessData Forensic Toolkit (FTK) is another widely recognized and court-
cited digital forensics software suite https://www.exterro.com/digital-forensics-
software /forensic-toolkit.

3. Magnet AXIOM https://www.magnetforensics.com/ is a comprehensive and in-
tegrated digital forensics platform developed by Magnet Forensics. It is designed
to help forensic examiners acquire, analyze, and report on digital evidence from
a wide variety of sources, including mobile devices and IoT devices.

5. Traditional approach for RAM forensics

This paper aims to prove that analysis using a machine-learning model based on
fastText solutions is a far more effective method than the traditional tools used to
analyze memory to look for words that are likely to be passwords belonging to the
user of that system. The aim of the study is to perform effective forensic analysis to
extract valuable data sources.

https://www.opentext.com/products/forensic
https://www.opentext.com/products/forensic
https://www.exterro.com/digital-forensics-software/forensic-toolkit
https://www.exterro.com/digital-forensics-software/forensic-toolkit
https://www.magnetforensics.com/

Toward RAM forensics supported by machine-learning methods 85

5.1. RAM analysis for digital forensic

RAM is an essential component of many devices; it is used to store data and in-
structions that the computer can access at any given time. This memory consists of
a number of cells, each with a unique address. Data exchange involves the processor
pointing to the appropriate cell for modification. Modification includes (but is not
limited to) operations such as addition, subtraction, division, and multiplication as
well as logical operations (AND, OR, NOT, XOR). Note that all information stored
in RAM is in binary form (see Fig. 1).

.2ip@NULETXNULDC2NU ULNULo~ETXSUBGSOHNULNUL4 STX:9\8a.c5dDC3eCANg1i, 16Sm3n20+p' r!s7tBELUBAETXSUB®
ULNULNULNULN documents and settings\administrator\application

.2ip@NULETXNULDC2NULNULNULNULNULG~ETXSUBGSOHNULNUL4 STX:9\8a.c5dDC3eCANg1i, 16Sm3n20+p' r!s7tBELUG
IRtfdropNULSTXNULNULNUL ' % (SONULNUL$66. } 168ACKUHU7CcETX88SOSTXDLENULNULS?ETX8U 6) pNULNUL486S0H®)
P1|{=:8 6c:\users\@STXBS\appdata\local\temp\pluginfurdocumentviewer"oFF
.exe@STXENQmz@! 1! thisprogramcannotberunindosmode@NUL® ! Nokoag.A!dhaNULBehavior:Win32/Gatak. E!dhNUL!

<$DCT , $3ETXG<Owho®3§$0 G$6SOHSBSASOHGCAN* G"FF[' FrETX
STXXNULNULs = Promise.all([LSOHDLE @NULh"olve(40),@NULSISOH36WHz6SOFWEOTUSOH

nG*prgDC4BEL @x, y@BSxBBSy_BSQ< NUL+3BELaBENQYFS761ETXg(VEOTBGOFFGU" ='w(TBVTLLR(O : A veMax(tw(5,

05BEL 9DC4 @([TrSUB8®9gs® P
yS0ar@FhS00%s [start]t

@ GETBETXcom@dwibr °
toUSTXimmediateleACK!

last arguNULNULNULNUL]

SOHNUL*PNULrott1gNULCANNUL Lfunction. Subsequent calls @SOH_SOH) reSOHSTXSTXBSturn@STXresult of@NUL

Figure 1. Example of raw RAM content

As RAM is a so-called volatile memory, the data stored on it is automatically
erased as soon as power is removed, which can cause significant difficulties for in-
vestigations. In addition, RAM is dynamically managed by the installed operating
system, which entails constant operations of modifying, writing, and deleting data.

Figure 2 shows the process of obtaining a snapshot from the computer’s RAM.
The process starts with the user running a RAM data-acquisition program. The tool,
through proper interaction with the computer’s operating system and drivers, man-
ages access to the memory and hardware. The USB memory stick is the component
that allows communication with the device to capture and store data in binary form.
Most tools for this type of task interact with the operating system at a low level to ac-
cess the memory. The captured data is then transferred to a USB stick to a specially
prepared analysis station and subjected to inspection.

Currently, one of the most popular RAM-analysis tools is Volatility, which allows
processes or system libraries to be extracted from a RAM dump for further analysis
(e.g., for malware infection). Table 1 presents sample information retrieved from
a RAM dump using Volatility.

86 Kamil Jurczyk, Pawet Topa, Lukasz Faber

Forensic Tool

[Operating System (drivers)

[Low-LeveI System] { USB Driver }

RAM Memory

{ Application Data (variables, structures, stacks, heaps)] [System Data] [Buffers and Cache]

[Page Tables (virtual to phisical memory mapping) J [Processes and their Address Spaces]

Memory Dump

Figure 2. Workflow for dumping RAM from computer

Table 1
Output from Volatility tool — sample information retrieved from RAM dump

Offset(P) Name PID | PPID | Thds | Hnds | Sess | Wow64 | Start Exit
0x1BA488040 System 4 0 193 0 0 0 2024-
03-03
19:58:41
UTC+0000
0x1BA50C080 Registry 140 4 4 0 0 0 2024-
03-03
19:58:46
UTC+0000
0x00000001842b7040 smss.exe 424 4 2 0 0 0 2024-
03-03
19:58:41
UTC-+0000
0x190A A1400 csrss.exe 540 540 14 0 0 0 2024~
03-03
19:58:43
UTC-+0000
0x0000000191b04800 | wininit.exe | 632 540 3 0 0 0 2024-
03-03
19:58:44
UTC-+0000
0x0000000191421200 csrss.exe 640 620 17 0 1 0 2024~
03-03
19:58:44
UTC+0000
0x0000000194519800 | services.exe | 712 632 14 0 0 0 2024~
03-03
19:58:46
UTC+0000

Toward RAM forensics supported by machine-learning methods 87

Table 1 cont.

Offset(P) Name PID | PPID | Thds | Hnds | Sess | Wow64 | Start Exit
0x00000001945a0800 Isass.exe 732 632 13 0 0 0 2024-
03-03
19:58:46
UTC+0000
0x000000019419f080 | winlogon.exe | 784 620 7 0 1 0 2024-
03-03
19:58:44
UTC+0000

5.2. Testbed environment

The environment prepared for testing was created on a virtual machine (VMware
platform) with Windows 10 installed (see Fig. 3). With this approach, it is possible
to simulate a production environment on a physical host. A password-protected .rar
file was created on the installed system (the file password was Passw!DTrue) with
secret content. This article aims to summarize and compare the available analysis
options, giving the chances of accessing the file based on a RAM (.mem) dump alone.

MacOS - native

Windows 10

Virtualizer - VMware

Figure 3. Testbed environment configuration — components can be easily replaced depending
on target and available tools

At the moment, Windows 10 is still Microsoft’s most popular operating system,
holding 53% of the market as of March 2025; this is compared to 42.69% for Win-
dows 11 (see Figure 4).

Furthermore, the analysis carried out does not focus solely on the system itself,
as it is possible to further adapt the memory structure of Windows 11 at any time,
optimizing it against Windows 10. Nevertheless, the proposed analysis approach does
not limit the analyst to a single solution, as it is possible to analyze both Windows
and Linux (no tests with macOS). This is due to the writing of data to the memory
itself, a significant portion represented by the ASCII standard.

88 Kamil Jurczyk, Pawet Topa, Lukasz Faber

StatCounter Global Stats
Desktop Windows Version Market Sha idwide from Jan 2022 - Mar 2025

> Wint1 Win7 < Win81 O Win8 -<O-WinXP — Other (dotted)

Figure 4. Windows 10 worldwide popularity according to Statcounter cite StatCounter2025

5.3. Application of standard/popular tools
for retrieving password-related data

The use of Volatility showed that the tool could not locate or verify the necessary
boot key (Hbootkey), which was used to decrypt the SAM database where Windows

passwords are stored (see Figure 5).

—) - [~/Desktop/volatility3/volatility3]
—$ python3 vol.py ~/Desktop/Winl@ memdump.mem windows.hashdump

Volatility 3 Framework 2.7.2
Progress: 100.00 PDB scanning finished

User rid lmhash nthash
WARNING volatility3.plugins.windows.hashdump: Hbootkey is not valid

—) - [~/Desktop/volatility3/volatility3]

—$ python3 vol.py ~/Desktop/Winl@® memdump.mem windows.lsadump

Volatility 3 Framework 2.7.2
Progress: 100.00

Key Secret Hex
WARNING volatility3.plugins.windows.lsadump: Unable to find lsa key

PDB scanning finished

Figure 5. Output from Volatility analyzing memory dumps
in search for Hbootkey and LSA key

Toward RAM forensics supported by machine-learning methods 89

The memory dump may not have contained the required data for the program
itself. The version of Windows or the state of the system at the time the dump was
created may have affected the ability to obtain the Hbootkey. In addition, Volatility
could not locate the LSA (Local Security Authority) key. The LSA key is essential for
decrypting LSA secrets, which contain domain password caches and other sensitive
information. As with the hashdump, the required data was not present in the memory
dump. The information may have also suggested that the file was corrupt or there were
compatibility issues with the Windows version. Each of these pieces of information
proved how inflexible the above-mentioned tool was in analyzing RAM memory.

Another popular program that is used for analysis is Bulk Extractor; despite
finding quite a lot of interesting data for the investigation, this was also unable to
retrieve the password for the .rar (see Figure 6).

K ok 3% ok 3 3 3K 3K oK ok o oF 3k 3K 3K 3K oK oK ok o o 3 K oK K ok ok ok ok ok R ok K K
bulk extractor is probably CPU bound.
Run on a computer with more cores
to get better performance.

* 8k kR R o o ok ok o
MD5 of Disk Image: f75793d00d107f7f17888e6cd33091c4
Phase 2. Shutting down scanners
Phase 3. Creating Histograms
Elapsed time: 69.2553 sec.
Total MB processed: 2147
Overall performance: 31.0082 MBytes/sec (5.16804 MBytes/sec/thread)
Total email features found: 646

—) - [~/Desktop/output_directory]
L—$ cat rar.txt

) - [~/Desktop/output_directory]

Figure 6. Output from bulk_extractor memory analyzing dumps in search for lsa key

6. RAM Forensics supported by machine-learning methods

In computer forensics, one of the important elements to be analyzed is a computer’s
RAM (Random Access Memory). Due to its technical characteristics, it is possi-
ble to extract various types of data from it, such as information about the oper-
ation of the system and active programs at the time when the so-called “memory
dump" was created. This information unambiguously states what was happening
on the analyzed station before it was switched off or in another way disconnected
from the power source.

Since a typical user’s activity is related to web-browsing, one of the basic pieces
of information available for analysis today is data from a web page search history
and the ability to retrieve image files from it; e.g., from the browser cache memory.
Other elements include temporary files, which are not ultimately saved on the disk
of the analyzed station; this data may prove extremely interesting and relevant to
an ongoing investigation. User activity can be easily verified on the basis of open
processes and information on the time at which a particular program was started and

90 Kamil Jurczyk, Pawet Topa, Lukasz Faber

closed. The most important aspect from the point of view of analysis is the unique
property of being able to retrieve a profiled password database; therefore, the main
objective of this article is to present a methodology designed for the acquisition of
some data from the dumped operating memory of a computer station under study. We
assume that any retrieved data will be used for generating dictionaries for dictionary
cryptanalysis (e.g., using Hashcat). Due to the type of information stored in the
memory, there is a certain probability of finding the correct password or passwords
to access various files, devices, or services. The retrieved data can be also used as
a hint for potential passwords — they can be used to produce a dictionary expanded
from this data.

While many of the steps involved in analyzing memory dumps can be done with
the tools presented in the earlier chapter, we developed our own tools in the Python
language in this case. This maintains a high degree of flexibility for extracting and
analyzing data found in RAM.

6.1. Preparing materials for analysis

A memory dump (see Figure 7) is a binary file that, when opened with basic editing
tools, is unreadable by the user. If one does not intend to use specialized computer
forensic tools, at least advanced knowledge of programming and data processing is
required.

Iali@kal: ~/Desktop

File Actions Edit View Help

Figure 7. Example of string of characters located in memory dump

6.2. Cleaning materials before analysis

Prior to the analysis using the Machine-Learning model, the snapshot of the RAM
must be cleaned. The memory dump contains a lot of information that is not useful
for the operation of the models described. In order to prepare relevant data for analy-
sis, it is crucial to extract readable and potentially relevant textual information from
the raw memory data. The data consists of both textual and binary data. In addi-
tion, redundant information must be removed, although minimizing the modification
of relevant information.The prepared file must be modified accordingly due to the
format itself and the type of information stored. Here, we assume that only standard

Toward RAM forensics supported by machine-learning methods 91

ASCII characters are interesting — see Listing 1 (allowed_characters). Further de-
velopment of the tool assumes that an increasing range of information in the memory
dump file will be used in the analysis.

Listing 1. Python code for cleaning memory dump

with open(input file path, ’rb’) as file:
data = file .read ().decode(’encoding’, errors=’ignore’)
filtered data = ’’.join(c for c in data if c in allowed characters)

processed lines = []

for line in filtered data:
words = line.split ()
new_words = [word for word in words if min_ length
<= len(word) <= max length and not has repetitions(word)]
if new_ words:
.’ .join(new_words) + ’'\n’
processed lines.append(new line)

new line =

Removing non-ASCII characters from the memory dump file may not give a sig-
nificant gain in memory savings and computation effort. In order to increase the
efficiency of the analysis, filtering was applied to words of fewer than 7 characters
and those exceeding 24 characters (min_length and max_length in Listing 1). This
approach helps to focus on character strings that could potentially represent pass-
words while eliminating less likely character sets. In addition, the filtering function
removes repeated words and those containing sequences of duplicate characters ‘in
a row,” which can often be the result of errors in the memory or irrelevant data.
The imposed modifiable filtering rules minimize the amount of data needed for anal-
ysis, making it much easier to search patterns or undergo manual evaluation. The
cleaned and reduced data provides a more useful form of information that can be used
more effectively in the analysis process. Adjusting specific parameters can generate
a larger or smaller database for analysis. The saved data should be in a format that
can be used without too much trouble in the most popular tools — the purpose of
which will be to use individual records from the plugged-in data set for a targeted
designated attack.

The process of cleaning the data from the prepared memory dump is an important
limiting element of the analysis process itself. Depending on the origin of the raw
file from the RAM dump, the results can vary within a few, several, or dozens of
megabytes, while raw files are up to 10 GB (see Figure 8).

Subsequent attempts on different files produced specific results. When analyzing
a 1 GB RAM file, the cleaning program reduced its volume to 4.87 MB, which was
only 0.0476% of the original file. The analysis of a 2.15 GB file looked similar; its
cleaned version was only 5.62 MB, which was 0.0054% of the original file. Even in the

92 Kamil Jurczyk, Pawet Topa, Lukasz Faber

case of an almost-three-times-larger raw file of 6 GB, we instead obtained 29.5 MB of
cleaned data, which represented 0.049% of the original file. It was noted that, each
time larger files were analyzed, the output files did not increase dramatically.

File size of 'Winl10_memdump.mem' before processing: 2048.00 MB

File size of 'cleared_Windows_10_2.15_GB.txt' after processing: 5.60 MB

Process finished with exit code 0

Figure 8. Cleansing memory dump file from unusable data.

Data Cleaning Speed for Different File Sizes

= Cleaning Time

Cleaning Time (min}
@

56 MB

2GB
File Sizes

Figure 9. Cleaning computational efficiency — time needed to remove unusable data from
memory dump

After cleaning the memory dump, usable text data must be extracted. Our
method extracts data and expands into a dictionary of potential passwords. The
dictionary was even larger than the memory dump (approximately by 70% — in ex-
periments, the analysis of a 1.88 GB memory dump gave 3.21 GB dictionary files).
The algorithm repeatedly writes a similar string of passwords that differ by one slid-
ing character. Only such a way of generating single keys provides maximum efliciency
and makes it possible to extract many potential passwords of a certain length. Unfor-
tunately, this method has the significant disadvantage of low memory optimization,
since potential passwords that have a low probability of occurrence in the analyzed
area are also saved. There is a sure recipe for this in the form of limiting the number
of occurrences of specific strings based on, for example, the currently used operating
system (see Figure 10). Such an action would successfully minimize the size of the
database itself by a fair amount.

Toward RAM forensics supported by machine-learning methods 93

8 characters

RAM data
— (wrong)
%d%!pass.0 d%!pass. %!pass.0
L 5
+ char 8 characters

(correct)

Figure 10. RAM data-sliding diagram

6.3. Machine-learning model for memory-dump analysis

The proposed model using machine-learning acting on the knowledge gained during
the training analyzes a set of text phrases extracted from a memory dump and assesses
their suitability as passwords (see processing flow in Figure 11).

EXTRACT INPUT
TRAINING
ATA TEXT —~— CDL:_?:’ ~— Dpump

CALCULATE
ENTROPY

CALCULATE
SCORE

OUTPUT
PASSWORD<—
FILES

Figure 11. Workflow diagram for proposed tool

Here, we use the open-source tool fastText (https://fasttext.cc/) to analyze data
acquired from a RAM dump. fastText, developed by Facebook AI Research, is a
library designed for natural language processing (NLP). The model uses n-grams and
subwords to increase robustness against rare words and spelling errors, which is par-
ticularly useful for inflected languages such as Polish. In contrast to deep machine
learning, fastText enables effective training on large data sets with limited hardware
resources. The Negative Sampling technique used in the model speeds up the training
process by calculating gradients for only a small number of unrelated words, which sig-
nificantly reduces the number of operations performed and shortens the time required
for training.

The model was trained using lists available on the internet of passwords, such
as the rockyou.txt file. At this stage of the work, such data was convenient to use
because it allowed us to verify the validity of the method’s assumptions: whether

https://fasttext.cc/

94 Kamil Jurczyk, Pawet Topa, Lukasz Faber

the designed tool was able to find text phrases similar to the most frequently used
passwords in the memory.

The model is capable of analyzing possible passwords for their similarity to those
that are well-known most frequently chosen by users. The model effectively searches
for similarity to learned vectors, determining the degree of similarity of a given pass-
word to those learned based on actual training data. The results of the study demon-
strated the effectiveness and efficiency of using the model fastText in the analysis
of secured RAM data, which may have important implications in computer forensics
and for information security and data protection.

The most important part of the process was the preparation of the relevant
training data and the subsequent correction of the relevant password factors in the
calculate_score function (see Listing 2). Their incorrect selection could have re-
sulted in an insufficient quality of the overall solution. Prior to the clean-up program,
the most popular string for Windows 10 was the word ‘Microsoft’, which was directly
or indirectly invoked more than 12,000 times (see Figure 12).

Listing 2. General structure of model

import fastText
clearData ()
model = initialize ()
model.get word vector(word)
for i in range(0,N):
model. calculate score ()

Top 10 Words in win7.mem

00000000vk

char_traits

UVWATAUAVAWH

system32

WATAUAVAWH

ThreadingModel

Description

ZjzzwSo

Directul

Microsoft

o 2000 4000 6000 8000 10000 12000
Frequency

Figure 12. Top-10 phrases observed in memory dumps from Windows 10

Toward RAM forensics supported by machine-learning methods 95

Because the model is based on text data that has been prepared specifically for
this task, the training database used (as a template) contains millions of records with
sample passwords and provides a kind of sample of how users create their unique
security features.

The next step in the processing workflow is a process that generates a word vector
for each password using the model.get_word_vector(word) method. Next, fastText
compares the word vectors with vectors of known passwords to assess how similar the
word is to those already known. The fastText score (similarity of vectors) is used as
part of the calculation of the final score for each password in the calculate_score()
function. The proposed approach provides the possibility to assess the complexity
of a password not only by its superficial features (such as length or use of special
characters) but also by its semantic similarity to the training password base.

6.3.1. Evaluation of proposed solution

Having the dictionary, the dictionary attack can be performed; e.g., using Hash-
cat. This tool is intentionally optimized for high throughput processing using GPU
(Graphic Processing Units). This type of computing platform is suitable for this type
of attack since the GPU core units are able to calculate hundreds of hashes (digests)
at the same time. Despite the fact that the computational power of GPUs grows very
fast, the simplest form of attack — the brute-force attack — may fail when passwords
are long enough (and use more types of characters than only letters and numbers).
The only way to do this is to use various clues such as extracted text phrases from
RAM. We will compare our method with a standard brute-force attack.

Using a trained and prepared model based on the fastText framework, it was
noted that it can increase the efficiency of searching and profiling words that may
have been used by a user as the correct password for a protected resource. This
is done by processing single words into n-gram vectors and comparing them with
vectors of known passwords using cosine similarity. Thus, the sum of these vectors
can represent the correct word.

In order to estimate the effectiveness of the proposed solution, the same RAM
dump file from a pre-prepared environment (Windows 10) was used. Due to the total
lack of effectiveness of the popular programs used for RAM analysis (Volatility and
Bulk Extractor), the file was used as an input to three tools (see Fig. 13):

e ‘ML RAM’: machine-learning model based on fastText;
e ‘ram’: analysis of cleaned memory dump file;
e ‘brute force’: classical brute-force attack using publicly available dictionaries.

Using the machine-learning model (fastText) ‘ML _RAM’ was able to access the
protected file 10.8-times faster than when using a database based on filtered-only in-
memory data. In the case of a brute-force attack, it was not possible to access the file
in a reasonable amount of time. In order to be able to have a close look at how the
model works on a smaller data set, a small data set of a dozen words was prepared
(one of which was used to encrypt the file, with the rest coming from raw RAM data).

96 Kamil Jurczyk, Pawet Topa, Lukasz Faber

Password Cracking Comparison
Success Aborted

40

w
8

Time (seconds)

I
S

Success

mi_ram ram brute force

Figure 13. Performance of cracking passwords with Hashcat using dictionary provided by
ML RAM model, pure list of words found in RAM after cleaning, and direct brute-force
attack; brute-force attack aborted after 46 minutes of computation

Using an advanced scoring algorithm based on machine learning, it was possible
to obtain satisfactory results. Figure 14 shows the score for a few words found in the
dumped RAM (after cleaning).

_\ebk!*0-67<EBKTHQZW

*%l|aNNHP#N-p/

98/,52:DAJGPYMV

OH'XXA(>0@

&8 &88&844pSBPAX 8B?

WIN-QF3FERCC3PR\R0018&&

2
S
H
?
?
©
a

SolutionsAgence

HizmetleriAgencia

&
H

Elektronik

Certificacio

Certification 2226

Top password: PasswiDTrue
PasswiDTrue

2422

o
°
o
o
o
o

20 25

Score

Figure 14. Scoring results for small sample set of words; highest score was assigned to text
phrase 'Passw!DTrue,” which was intentionally selected and used as password

The range of scores oscillated between 0.46 and 2.43. These results sug-
gested a significant difference in the approach to the quality of the possible words.

Toward RAM forensics supported by machine-learning methods 97

The highest-scoring words were semantically meaningful, meaning that the algo-
rithm definitely favored actual words (e.g., +NofMicrosoft) and its variants (e.g.,
Passw!DTrue). On the other hand, the lowest-scoring passwords were associ-
ated with a chaotic mixture of characters, special characters, and digits (e.g., ‘_-
\ebk*’0.67<EBKTHOZW’).

This behavior was expected due to the material on the basis of which the fast-
Text model was trained. A collection such as rockyou.txt contains relatively easy
passwords based on natural language. The model therefore favors those words that
are extracted from memory that resemble popular passwords.

As intended, our tool favored text phrases that were entirely or partly natural
language words. It was clearly visible that passwords containing words or phrases
that were understandable to humans (e.g., ‘Passwd!DTrue,” ‘ServicedllnShield,’
‘ServiceMicrosoft’) generally received higher ratings than strings of characters
that appeared to be random. In addition, there was no direct difference between
the length of a password and its final rating. An example is the relatively short
password ‘0H;xXAr*0@Q’ (1.386), which received a higher rating than the longer ‘_-
\ebk*’0.67<EBKTHOZW’ (0.46). Another important observation was that the presence
of special characters did not guarantee a high score, as can be seen from the password
‘h%R"0if#S”’ (0.8). Despite its complexity, it did not achieve the highest score. In
order to test the method on more data, a set of 138 words was prepared that could
be passwords.

2.50

pass"""d @M‘C"’S“"] Password ChesspGLq#
225 o —
Rank: 3 Rank: 54
Password: 003q7\25vch k: 50 Password: setup_database.py
Sto Password places salite.Ink Score: 1,63
24 cen s :
(/ Rank: 53

200 *f~\ e

(Rank: 51 S
Password: U001880039C17F548W
Score: 1.83

1.75 B
Password: HizmetleriAgencia

[Fassword oNoichrosonJ Passwcrd Passw'DTrue

Strength Score
/

e Rank: 114
~£8| Password: %J61B*D2DLDA
Score: 0.81

Rank ng]
Passworc I%R'O150@ @@@
Score’0.60

Xy

Rank: 116)
0.75 Password: %3;(0,23,6):0,23,6)shd
Score:

Total passwords: 118

Average score: 1.75

Median score: 1.82
0.50 Score range: 0.46 - 2.43

(Rank: 117)
Password: SMBDIR~1.5YS0x\
Score: 0.72

Rank: 118
Password: _\ebkI"0-67<EBKTHQZW
Score: 0.46
0 20 40 60 80 100 120
Password Rank

Figure 15. Strengths of ranked passwords

98 Kamil Jurczyk, Pawet Topa, Lukasz Faber

In summary, the analysis showed that the model used to assess passwords prob-
ably took into account not only character complexity but also factors such as word
recognition, potential linguistic entropy, and possible semantic patterns. This mea-
sure may have reflected very sophisticated methods for assessing the correctness of
passwords, going beyond traditional measures based solely on character length and
variety. Ultimately, the best-scoring password for both the small and larger scales
was ‘Passw!DTrue,” which was used as a password just before taking a snapshot.

6.4. More case studies

In this chapter, we will present two more examples of analyzing a memory dump for
passwords that should probably reside in the dump.

6.4.1. Keepass XC serving passwords for Gmail service

Keepass XC is a password manager; i.e., a tool for securely storing many different
passwords for various services on a computer system. It helps when logging in to
web services by transferring the password from its database to a form on a web page.
A trace of the password’s use remains in the computer’s memory. The real password
used in the Gmail account login method using the KeepassXC password manager was
the word 'MailTest@lqwerty.’

kamil@®MacBook-Pro-Kamil Program RAM v8.1 podob kosinusowe OK v2
% wc -w winl@_keepass.mem
37908961 winl@_keepass.mem

Raw RAM dump
contained 37,908,961
words

MailTest@lgwerty' winl1@_keepass.mem
210600601000000<00000000000000000000L900000000VV 1776600009800 00000800000 06000
oofob000ohNoeTo000Pe

Password was located
in memory dump on
line 2,160,254

2009ePul | voeeekg | Iweeexeoeee9FMsC Y
2940¢ ?!FeeeeHtb9esee8sb9eeee8shoeseeel/eveel/eeeeel/eeopel/seell/oeeeel/eeeesbIeseeesh
9e90005b9000005b90eesesbIeses sboeseestbIeseen

feeTest@lgwertyeeeseoldPasswordFieldeeedismissedPr
ompteseestriggeredByFillitedesssepossibleValuess 00590

evomailtestl2leeemailtestlosemailtest1121221@wp.pleemailtddd21221

@wp.plesemailtest@wp.plesemailtest2025@wp.plesemailtestebXlese oT:ee00_2323@wp.ples]

emalltest2323@wp.plee ©90paASSWOrdseeses prees

Cleaning program $ grep -n "MailTest@lgwerty"
reduced size of dump,
and password was

moved to position

cleared Windows 10 keepass.txt

586,141
L 254 253,C ,0. 1
After processing by . B = :
model, password 256 25508 DzD 0. 1
was classified as 256 257|256 maiesto1qwertyo:] |
. 258 257,QaAmD? 93Q,0. 1
among most likely
259 258,R?Q: 98¢8,0. 1
passwords 260 250,ARPA. 3

261 260,TmoFBT: 1,0. 1

Toward RAM forensics supported by machine-learning methods 99

Password was among
text phrases classified
as being able to act
as top-ranking pass-
words; as a result,
potential attack could
involve testing only

a few hundred words
instead of hundreds of
millions

Password Score Ranking

Full Ranking of All Passwords (N = 1319554)

4 Real password (rank=256)

T
?\ 20iGsIYqejmQCF@V
(0.11250)
0.10 I MailTest@lqwerty
! (0.10625)
0.08 ‘
2 0.06
]
3
3
0.04
0.02
0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Rank le6

256

1000 CoinMinerlatob2 (0.10017)
10000 AcpiDsdStorageD3 (0.05937)
100000 ITwithackg (0.04555)

200000
300000 31d9b367d63533027 (0.03221)

hasVisibleScrollbars (0.03866)

Rank (position in global list)

400000 1#AGGREGATOR:Exploit:HTM (0.00000)
500000 #ATTR_0000e78e (0.00000)

1319554 AAR|fIG- (0.00000)

0.00 0.02 0.04 0.06 0.08 0.10
Score Total words in RAM: 37,908,961
Reduced to: 1,056,425 candidates
Scoring: ALPHA = 0.05, BETA = 0.95 (fastText)

6.4.2. Dropbox password stored by browser

Another example of retrieving a password from a memory dump was the case when
the Dropbox password was automatically applied by a browser; the password was

"#we2Btmk+z5j .
Original memory kamil@MacBook-Pro—-Kamil Program RAM v8.1 podob kosinusowe OK v2
. % wc -w winl@_dropbox_save.mem
dump file contained 46723393 winl@_dropbox_save.mem

46,723,393 words

Password was found
in 2,775,408th posi-
tion inside raw mem-
ory dump

kamil@MacBook-Pro—Kamil Program RAM v8.1 podob kosinusowe OK v2
% grep —a -n '#we2Btmk+z5j' winl@_dropbox_save.mem

?? 2??20hL??8JA??8JA??8JA??8JA?? index?00\r???
?_ 5'L?722229%?222 ?_M??°? t?
J?P?; 7?72?27 ?7_0?0 2?79

?<??? ?_?HRN?

100

Kamil Jurczyk, Pawet Topa, Lukasz Faber

After cleaning:
tion 178,995

posi-

[kamil@MacBook-Pro-Kamil USB % grep -n '#we2Btmk+z5j' cleared_Windows_10_dropbox.txt

178995 : #we2Btmk+z53

Model classified pass-
word at position 647 in
list of text phrases sus-
pected to be password

644,1d=12345678P,0.10212406251802891
645,!myPCsearch0,0.10212406251802891
646,#ToBase645tQ,0.10212406251802891
ki47,#weZBtmk+15j,0. 10212406251802891
648,$2!=pySherif,0.10212406251802891
649,$StORPurchas,0.10212406251802891
650,$ac893057-PD,0.10212406251802891

During classification
using fastText model,
real password obtained
high rank, qualifying
with high certainty for
set of text phrases to
be checked

Rank (position in global list)

Password Score Ranking

Full Ranking of All Passwords (N = 1828491)

@ Real password (rank=647)

—
i #WitchSyndromOPA
(0.11250)
0.10 f\
! #we2Btmk+25]
(0.10212)
0.08
!
2 0.06
]
8
@
0.04
0.02
0.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175
Rank 1e6

1
100
200
647

1000

10000
100000
200000
300000
400000
500000

mk +25 (0.10212)

9lc!microsoft- (0.10054)
D$SHDIpOu (0.08125)
UserModelldN$ (0.04732)
ciCapabilitiesgtee (0.04243)
7295653547526 (0.03848)
bBad66¢c212 (0.03555)
dnMhligss (0.03064)

1828491 A1iE,x,qz (0.00000)

0.00 0.02 0.04 0.06 0.08 0.10
Score Total words in RAM: 46,723,303
Reduced to: 1,828,491 candidates
Scoring: ALPHA = 0.05, BETA = 0.95 (fastText)

7. Conclusions

The process outlined in this paper is possible only to a certain extent. Note that RAM
is ephemeral memory and stores its full data only when the station itself is running
(continuous access to power). After switching off power, extracting data from volatile

Toward RAM forensics supported by machine-learning methods 101

RAM is impossible (or at least very difficult [7]). However, in digital forensics, any
data retrieved from a computer system may be useful and may give insight into hidden
information.

This article answers the question of whether it is possible to optimize dictionary
attacks using data extracted from RAM. The research showed that a created database
from memory had a high probability of having the correct password (or at least part
of it). The tool used for generating a dictionary from RAM can be extended with
an additional algorithm to expand the resource with random characters at the front,
inside, and behind the extracted passwords.

This process will certainly greatly expand the available base; at the same time,
it will increase the probability of obtaining the correct password value.

Compared to the types of attack studied, it can be unequivocally stated that it
has many advantages such as the fact that the logging user of the analyzed station
can repeatedly attempt to log in to various types of Internet services and password-
protected files during the operation of the system. In addition, it should be noted that
some users may use a single password in multiple places, which significantly increases
the probability resulting from finding the right stack in the operating memory.

The described solution is effective but requires a certain amount of time. De-
pending on the parameter set during encryption, the time may not be within the
acceptable framework of an investigation. Therefore, an additional solution that can
improve the process of finding the correct password is the use of special dictionar-
ies called rainbow arrays. Their use optimizes the process of indicating the correct
constant necessary to decode the object under investigation.

The results are valuable for cybersecurity practices. In particular, they touch
upon the security policies of companies and the approach to passwords of users them-
selves. It seems necessary to provide training and spread knowledge related to good
practices and the possibilities of machine learning in the context of breaking simple se-
curity features chosen by users themselves. The analysis suggests the need for further
in-depth research into the characteristics of data analysis, which could lead to the de-
velopment of more-sophisticated algorithms for generating and evaluating passwords;
this could be another tool in the hands of officers and cybercrime specialists.

The proposed method will be developed to create a generalized tool for computer
forensics that will use machine-learning methods and contextual information when
analyzing data (digital evidence); e.g., knowledge of a suspect’s habits, or current
usage guidelines/policies for specific resources (e.g., password policy). The target
tool should support law enforcement by supplementing human reasoning prior to
extracting valuable information from available data. The trained model of our tool
will organize the relevant data, indicating to the human the priorities in the analysis.

Acknowledgements

We gratefully acknowledge Polish high-performance computing infrastructure PLGrid
(HPC Center: ACK Cyfronet AGH) for providing computer facilities and support

102 Kamil Jurczyk, Pawet Topa, Lukasz Faber

within computational grant No. PLG/2024/017896. The research presented in this
paper was partially financed using funds of the Polish Ministry of Science and Higher
Education assigned to AGH University of Krakow.

References

[1] Ameri M.H., Blocki J., Zhou S.: Computationally data-independent memory hard
functions, arXiv preprint arXiv:191106790, 2019.

[2] Biryukov A., Dinu D., Khovratovich D., Josefsson S.: Argon2 Memory-Hard
Function for Password Hashing and Proof-of-Work Applications, RFC 9106, 2021.
doi: 10.17487/RFC9106.

[3] Chen B.: Memory-Hard Functions: When Theory Meets Practice, Ph.D. thesis,
UC Santa Barbara, 2019.

[4] Fleck A.: Cybercrime Expected To Skyrocket in Coming Years, 2024. https:
//www .statista.com/chart /28878 /expected-cost-of-cybercrime-until-2027/.

[5] Garber L.: Encase: A case study in computer-forensic technology, IEEE Com-
puter Magazine January, 2001.

[6] Gaur S., Chhikara R.: Memory forensics: tools and techniques, Indian J Sci
Technol, vol. 9(48), pp. 1-12, 2016. doi: 10.17485/ijst /2016 /v9i48 /105851.

[7] Gupta K., Nisbet A.: Memory forensic data recovery utilising ram cooling meth-
ods, 2016.

[8] Halderman J.A., Schoen S.D., Heninger N., Clarkson W., Paul W., Calandrino
J.A., Feldman A.J., Appelbaum J., Felten E.W.: Lest we remember: cold-boot
attacks on encryption keys, Communications of the ACM, vol. 52(5), pp. 91-98,
2009. doi: 10.1145/1506409.1506429.

[9] Hausknecht K., Foit D., Buri¢ J.: RAM data significance in digital forensics. In:
2015 38th International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pp. 1372-1375, IEEE, 2015.
doi: 10.1109/mipro.2015.7160488.

[10] Hitaj B., Gasti P., Ateniese G., Perez-Cruz F.: PassGAN: A Deep Learning
Approach for Password Guessing, 2019. doi: 10.1007/978-3-030-21568-2 11.
[11] Kavrestad J.: Fundamentals of digital forensics, Springer, 2020. doi: 10.1007/

978-3-030-38954-3.

[12] Leimich P., Harrison J., Buchanan W.J.: A RAM triage methodology for Hadoop
HDFS forensics, Digital Investigation, vol. 18, pp. 96-109, 2016. doi: 10.1016/
j.diin.2016.07.003.

[13] Pasquini D., Cianfriglia M., Ateniese G., Bernaschi M.: Reducing Bias in
Modeling Real-world Password Strength via Deep Learning and Dynamic
Dictionaries. In: 30th USENIX Security Symposium (USENIX Security 21),
pp. 821-838, USENIX Association, 2021. https://www.usenix.org/conference/
usenixsecurity21/presentation /pasquini.

https://www.rfc-editor.org/info/rfc9106
https://www.rfc-editor.org/info/rfc9106
https://doi.org/10.17487/RFC9106
https://www.statista.com/chart/28878/expected-cost-of-cybercrime-until-2027/
https://www.statista.com/chart/28878/expected-cost-of-cybercrime-until-2027/
https://doi.org/10.17485/ijst/2016/v9i48/105851
https://doi.org/10.17485/ijst/2016/v9i48/105851
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/mipro.2015.7160488
https://doi.org/10.1109/mipro.2015.7160488
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/978-3-030-21568-2_11
https://doi.org/10.1007/978-3-030-38954-3
https://doi.org/10.1007/978-3-030-38954-3
https://doi.org/10.1016/j.diin.2016.07.003
https://doi.org/10.1016/j.diin.2016.07.003
https://doi.org/10.1016/j.diin.2016.07.003
https://doi.org/10.1016/j.diin.2016.07.003
https://www.usenix.org/conference/usenixsecurity21/presentation/pasquini
https://www.usenix.org/conference/usenixsecurity21/presentation/pasquini
https://www.usenix.org/conference/usenixsecurity21/presentation/pasquini
https://www.usenix.org/conference/usenixsecurity21/presentation/pasquini
https://www.usenix.org/conference/usenixsecurity21/presentation/pasquini

Toward RAM forensics supported by machine-learning methods 103

[14] Pasquini D., Gangwal A., Ateniese G., Bernaschi M., Conti M.: Improving pass-
word guessing via representation learning. In: 2021 IEEE Symposium on Security
and Privacy (SP), pp. 1382-1399, IEEE, 2021. doi: 10.1109/sp40001.2021.00016.

[15] Percival C., Josefsson S.: The scrypt Password-Based Key Derivation Function,
RFC 7914, 2016. doi: 10.17487/RFC7914.

[16] Ravindra Sali V., Khanuja H.: RAM Forensics: The Analysis and Extraction
of Malicious Processes from Memory Image Using GUI Based Memory Forensic
Toolkit. In: 2018 Fourth International Conference on Computing Communica-
tion Control and Automation (ICCUBEA), pp. 1-6, IEEE, 2018. doi: 10.1109/
iccubea.2018.8697752.

[17] Su X., Larangeira M., Tanaka K.: How to prove work: with time or memory,
IEEFE Access, vol. 10, pp. 1192-1201, 2022. doi: 10.1109/access.2021.3138497.

[18] Thomas S., Sherly K., Dija S.: Extraction of memory forensic artifacts from win-
dows 7 ram image. In: 2013 IEEE Conference on Information & Communication
Technologies, pp. 937-942, IEEE, 2013. doi: 10.1109/cict.2013.6558230.

[19] Yu F.: On Deep Learning in Password Guessing, a Survey, 2022.

[20] Zareen M.S., Waqar A., Aslam B.: Digital forensics: Latest challenges and re-
sponse. In: 2013 2nd National Conference on Information Assurance (NCIA),
pp- 21-29, 2013. doi: 10.1109/NCIA.2013.6725320.

Affiliations

Kamil Jurczyk
AGH University of Krakow, al. Mickiewicza 30, 30-059, Krakow, Poland, jurczyk@agh.edu.pl

Pawel Topa
AGH University of Krakow, al. Mickiewicza 30, 30-059, Krakow, Poland, topa@agh.edu.pl

Lukasz Faber
AGH University of Krakow, al. Mickiewicza 30, 30-059, Krakow, Poland, faber@agh.edu.pl

Received: 11.12.2024
Revised: 20.02.2025
Accepted: 05.05.2025

https://doi.org/10.1109/sp40001.2021.00016
https://doi.org/10.1109/sp40001.2021.00016
https://doi.org/10.1109/sp40001.2021.00016
https://www.rfc-editor.org/info/rfc7914
https://doi.org/10.17487/RFC7914
https://doi.org/10.1109/iccubea.2018.8697752
https://doi.org/10.1109/iccubea.2018.8697752
https://doi.org/10.1109/iccubea.2018.8697752
https://doi.org/10.1109/iccubea.2018.8697752
https://doi.org/10.1109/iccubea.2018.8697752
https://doi.org/10.1109/access.2021.3138497
https://doi.org/10.1109/access.2021.3138497
https://doi.org/10.1109/cict.2013.6558230
https://doi.org/10.1109/cict.2013.6558230
https://doi.org/10.1109/cict.2013.6558230
https://arxiv.org/abs/2208.10413
https://doi.org/10.1109/NCIA.2013.6725320
https://doi.org/10.1109/NCIA.2013.6725320
https://doi.org/10.1109/NCIA.2013.6725320

	Introduction
	Challenges related to cryptanalysis of hashed passwords
	Preventing attacks on hashed passwords
	Improving efficiency of dictionary attacks

	Challenges related to RAM analysis
	Overview of existing forensic tools used for RAM analysis
	Traditional approach for RAM forensics
	RAM analysis for digital forensic
	Testbed environment
	Application of standard/popular toolsfor retrieving password-related data

	RAM Forensics supported by machine-learning methods
	Preparing materials for analysis
	Cleaning materials before analysis
	Machine-learning model for memory-dump analysis
	Evaluation of proposed solution

	More case studies
	Keepass XC serving passwords for Gmail service
	Dropbox password stored by browser

	Conclusions

