COMPUTER SCIENCE e 26(4) 2025 https: //doi.org/10.7494 /csci.2025.26.4.6702

MATIJA NOVAK
MARKO M1JAC

THE BENEFITS OF TESTING SOFTWARE
IN SE RESEARCH: LESSONS LEARNED
FROM TWO PhD PROJECTS

Abstract | Software engineering (SE) research often involves creating software — either as
a primary research output (e.g., in design science research) or as a supporting
tool for the traditional research process. Ensuring software quality is essential,
as it influences both the research process and the credibility of findings. In-
tegrating software-testing methods into SE research can streamline efforts by
addressing the goals of both research and development processes simultane-
ously. This paper highlights the advantages of incorporating software testing
in SE research — particularly for research evaluation. Through qualitative anal-
ysis of software artifacts and insights from two PhD projects, we present ten
lessons learned. These experiences demonstrate that, when effectively inte-
grated, software testing offers significant benefits for both the research process
and its results.
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1. Introduction

Software engineering (SE) research studies systematic, disciplined, and quantifiable
approaches to the development, operation, and maintenance of software [22]. De-
pending on the overall goal, we can identify two distinct modes of SE research [43]:
(1) solution-seeking — a pragmatic research that aims to improve the state of affairs
by engineering solutions to practical problems; and (2) knowledge-seeking — a more
traditional research focused on understanding existing phenomena that appear in
the software engineering context. Both of these modes of research frequently in-
volve producing software that is of critical importance to research contributions. In
solution-seeking research, for example, the produced software may pose as the main
research contribution itself (e.g., instantiation artifacts in design science [21]). In
knowledge-seeking research, on the other hand, software is often produced to support
the research process (so-called research software). Whatever the role of the produced
software, ensuring appropriate quality is imperative; otherwise, we could compromise
the success of research processes and the credibility of research results.

Building working software as a part of a research effort means that, in addition to
the usual research activities, the research process now also has to include the require-
ment specification, design, implementation, and testing of software; i.e., activities
that are traditionally part of the software-development process. The result of this is
an increase in the amount of work and resource consumption, as our research process
has to meet both scientific rigor and practical relevance. In addition, researchers are
required to have skills in both traditional research methods and software-development
methods to meet these goals. Unfortunately, this is not always the case. Two recent
surveys [19,20] reported that, while 92% of academics use research software and 56%
develop their own software, 21% of those have no training in software development.
An additional indicator that researchers need to have both research and development
skills are recent efforts to form a community of such experts under the term of research
software engineers |8].

In order to alleviate the complexity and amount of work required when software
development is a part of the research process, we could take an approach to direct
software-development efforts to simultaneously contribute to research goals. For ex-
ample, an attempt could be made to find common ground between software testing
and the activities of the research process. A particularly promising relationship can be
established between software testing and research evaluation, as both activities would
be interested in judging the state and the worth of the produced software artifact.

The necessity and benefits of testing in the software-development process are
acknowledged by both practitioners and researchers. Testing techniques often drive
development efforts (such as in Test-Driven Development (TDD) [5]), they are a pre-
requisite for the refactoring process [16] and a critical part of DevOps [13]. However,
testing is not often employed within the research process and is even less often prop-
erly reported. For example, while Hevner et al. [21] listed functional and structural
testing (e.g., unit testing) as one of the five design science evaluation methods in their
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seminal paper, subsequent literature reviews [1,12] showed the use of testing to be
marginal compared to other evaluation methods.

The goal of this paper is to raise awareness of the benefits that software-testing
activities can bring in terms of contributing to both the practical and scientific aspects
of software engineering research. We attempt this by qualitatively analyzing the
software artifacts and experiences gained from the two software engineering PhD
projects that we authored. The results of the analysis are reported in the form of
ten lessons learned. These show that, by applying and properly reporting software
testing, we can contribute to different aspects of the research process — especially
research evaluation. We start the remaining part of the paper with a brief overview
of the related literature in Section 2, which is followed by a methodology description
in Section 3. In Section 4, we provide detailed information on the analyzed PhD
projects and software systems that were produced as a part of them. We report
the aforementioned lessons learned in Section 5, and finally offer our conclusions,
recommendations, and future research plans in Section 6.

2. Related work

2.1. Software produced in SE research

As suggested in the introductory section of the paper, both modes of SE research can
result in software being produced. Regardless of whether the software is the main
research result or only has a supporting role, it is often characterized as scientific
software or research software. Kanewala and Bieman [25] described scientific soft-
ware as software with a large computational component that is usually developed
by multidisciplinary teams made up of scientists and software developers. Similarly,
Heaton [18] defined scientific software as a “code that is written by scientists for the
purpose of doing research.” Arvanitou et al. [2| described scientific software devel-
opment as a process of analyzing, designing, implementing, testing, and deploying
software applications for scientific purposes (e.g., physics, biology, medical analysis,
and data science).

On the other hand, Hettrick et al. [20] defined research software as software
used to generate, process, or analyze results intended to be published in scientific
publications. They emphasized that research software can range from a few lines of
code written by a researcher himself to a professionally developed software package.
Badolato [3] defined research software as being developed to meet specific scientific
needs. Such software is developed by scientists as a result of research work and then
used by scientists to support their research work. Hettrick et al. [20] further clarified
that common software systems that are not created specifically for research purposes
should not be called research software. Rather, such software systems can be called
software in research [4].

As can be seen, the distinction between scientific software and research software
is not strict, and the terms are often used interchangeably. However, it seems that
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the term "research software" is broader in scope and is used to refer to any piece of
code used to generate, process, or analyze research results. Scientific software is more
narrow in scope and usually refers to software performing complex computations in
scientific disciplines such as physics, biology, and data science. Throughout the rest
of the paper, we will use the term "research software."

2.2. Importance of testing

In 2014 [25], a systematic literature review (SLR) focused on the topic of testing
research software was conducted. The authors analyzed 62 studies and found that
some studies reported the use of unit testing, system testing, and integration testing.
They mentioned that one big problem for testing research software was the oracle
problem, meaning that it was not clear what the result should be. However, some
studies overcame the problem by generating random test cases with specially designed
test cases and similar methods. These studies showed that testing can be done even
in extreme cases. They also noted that only two studies reported test coverage and
similar information. Even though this is not a problem in itself, it shows that testing
is not taken seriously in the process of developing research software.

In addition, this SLR showed that testing was not very common in developing
research software and that some reasons for this were objective (such as the oracle
problem) while others were not. For example, one reason that was mentioned is that
"Scientific software developers are unaware of the need for and the method of applying
verification testing" [25] based on [26]. Another reason mentioned is that "Software
development is treated as a secondary activity resulting in a lack of recognition for
the skills and knowledge required for software development" [25] based on [41]. Such
reasons should not be accepted as excuses for not creating tests. Also, such reasons
show that the scientific community needs to be informed of the importance of testing
and the impacts when testing is neglected.

Another related study was the systematic mapping study by Arvanitou et. al. [2]
in 2021. This study showed the use of software engineering practices for scientific
application development and the impact on software quality. They analyzed 359
papers and found out that the most of the studied artifacts in SE research were the
source codes with 169 papers. On the other hand, only 32 papers dealt with testing. In
addition, they stated, "The results suggest that the most commonly reported practices
are related to implementation" [2], while testing comes as the fourth-most-common
research topic. This showed that there were papers that dealt with testing research
software but not as many as were maybe needed. Only seven papers discussed TDD
and quality assurance as aspects of testing. On the other hand, a good thing was
that "the results showed scientific software-development teams are mostly interested
in software implementation and testing activities." [2]

In the PhD thesis from Heaton [18] with the title "Software engineering for
enabling scientific software development," the empirical evidence showed that, "by
having scientific software-development teams use the software engineering techniques,
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this will help researchers evaluate the effectiveness of those techniques for their own
use" [18]. However, "while scientific software developers recognize they would benefit
from using software engineering practices, those practices that support verification &
validation and testing have not been widely adopted" [18].

Another paper that highlighted the importance of testing in the context of per-
formance was [39]. Recently, there has been an increased focus on the use of Large
Language Models for testing, as seen in 23, 50].

In order to provide guidelines for the management of scientific digital assets (in-
cluding research data and research software), Barker et al. [4] introduced the FAIR
principles (Findability, Accessibility, Interoperability, and Reusability). These four
principles were later expanded by [54], with reviewability and supportability princi-
ples. The reviewability principle emphasizes how easily reviewers can examine and
evaluate research software. In this process, testing plays a key role, as it helps to
demonstrate the correctness of software implementation. Since the exhaustive testing
of all inputs and outputs is often impractical, common strategies include equivalence
class partitioning, boundary value testing, and leveraging complementary subroutine
pairs like "encode-decode" or "serialize-deserialize." Effective testing not only aids in
identifying potential errors but also provides reviewers with critical insights into the
reliability and correctness of research software.

From the literature, it is evident that testing is represented in scientific research
(at least from a theoretical point of view) and that it is considered useful. At the
same time, the testing of research software is not widely adopted, and there is very
little research focusing on this.

3. Methodology

The authors of this paper submitted and successfully defended their PhD projects.
The two PhD projects significantly differed in terms of the topics, research designs,
and technologies involved. However, both PhD projects were in the field of software
engineering, and they involved the developments of complex software systems.

The first system — a Multiple Plagiarism Checker (MPC) developed in the first
PhD project — is an example of research software used to support the research pro-
cess. On the other hand, the second system was a software framework for managing
reactive dependencies in object-oriented (OO) applications (REFRAME), which was
developed in the second PhD project; it was a main research contribution in the form
of design science instantiation artifact.

The main goal of this research is to describe the experience from these two PhD
projects with regard to using software testing in SE research. In accordance with
this goal, we pose the following research question:

What are the key lessons learned from using software testing in SE
research?
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4.

In order to answer this question, the authors performed the following steps:

. Analyze: the authors separately conducted qualitative analyses of their PhD

thesis as well as the software artifacts produced during the PhD projects (speci-
fications, designs, source code, tests, etc.).

. Extract relevant data: the authors extracted data relevant to the use of the

software testing in their PhD projects.

. Identify common themes: after individual analysis, the authors organized several

meetings in which they jointly analyzed and discussed their previous findings and
identified themes common for both PhD projects.

. Report lessons learned: the identified themes were compared and supported with

experiences from scientific and professional literature and reported in the form
of lessons learned.

Demonstration cases

In order to clarify the context from which the proposed learned lessons were drawn,
we provide details about the analyzed PhD projects and the software systems that
were produced as a part of them in this section. Before going into each PhD project
in detail, we provide a summary of the demonstration cases in terms of software size,
technology used, and test methods used in Tables 1 and 2.

Table 1
Summary of demonstration cases

CASE Type Programming Test LOC Number
language coverage of classes
MPC Research software Java 94% 12.113 240
REFRAME | Software framework C# 96% 15.000 172
R Statistical analysis R NA NA NA
Table 2

Testing methods used

CASE Testing methods used

REFRAME | TDD, UnitTests, Integration Tests, System Tests, Regression Tests

MPC TDD, UnitTests, Integration Test, System Test, Regression Tests,
Acceptance Tests

R TDD, UnitTests

4.1. MPC — plagiarism detection

MPC is a research software developed for a PhD project [37] aimed at analyzing

the impact of preprocessing techniques on the accuracy of plagiarism detection in



The benefits of testing software in SE research. . . 57

student programming assignments. The experimental design involved running sev-
eral similarity-detection tools on multiple data sets (each preprocessed with different
techniques), followed by statistical analysis using the F1 measure. The study used 6
plagiarism-detection tools, 5 preprocessing techniques, and 133 data sets (44 to 259
files each), resulting in 3990 unique detections. MPC was developed to automate this
process, as manually performing these tasks was not feasible.

4.1.1. Description

The first system was developed in Java and featured both CMD and Web GUI in-
terfaces. The Web GUI was built using PrimeFaces on top of the Java Server Faces
(JSF) framework. The full system code is available on GitHub (https://github.com/
matnovak-foi/MPC).

MPC supports research by preparing and preprocessing data sets, performing
detection using external tools, unifying results, calculating statistical measures (e.g.,
F1, Precision, Recall), and exporting data for further analysis in R.

Execution on a cluster (https://www.srce.unizg.hr/isabella/) with 104 nodes
(208 CPUs, 2469 cores, 12.5 TB RAM, 200 TB storage) took around 30 days, gener-
ating 1 TB of data. Given its critical role, MPC needed reliability, as failures could
compromise months of work. Due to its complexity, automated testing was essential.

4.1.2. Metrics

The code coverage was measured using Clover. With data model classes included, the
total coverage was 84.7% (68.1% conditionals, 87.2% statements, and 89.4% methods).
Excluding model classes, the coverage increased to 94% (88.3% conditionals, 94.8%
statements, and 94.9% methods). GUI methods were not explicitly tested due to their
framework-dependent nature but were included in the coverage calculations.

MPC consists of 12,113 lines of code (excluding model classes), with 684 con-
ditionals, 3,679 statements, 1,071 methods, 240 classes, 171 files, and 50 packages.
Development, using the Pomodoro technique, took approximately 300 hours (38 work-
days), spread over three months.

4.2. REFRAME - software framework

REFRAME is a software framework developed as part of a PhD project using design
science research [35]. It aimed to improve the management of reactive dependencies
in object-oriented applications. To ensure a rigorous evaluation, the FEDS frame-
work [47] was used to create a detailed strategy aligned with the project goals. The
evaluation was conducted in four episodes, starting with formative tests in an ar-
tificial setting and concluding with summative tests in a realistic context. The first
episode (Prototyping&testing) focused on evaluating REFRAME’s efficacy using soft-
ware testing techniques, which is the relevant episode for this paper.
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4.2.1. Description

REFRAME is an object-oriented framework developed in C# that consists of
two parts: (1) REFRAME-Core (which handles reactive dependencies), and (2)
REFRAME-Tools (a set of tools to enhance usability). The source code is available
on GitHub (https://github.com/MarkoMijac/REFRAME).

REFRAME helps manage reactive dependencies by providing abstractions for re-
active nodes, which are used to create dependency graphs. These graphs track depen-
dencies between object members and update when changes occur. The REFRAME-
Analyzer tool connects to running applications to fetch and analyze dependency
graphs, producing a reduced version for visualization in REFRAME-Visualizer as
a directed acyclic graph. Over a hundred analyses can be performed and visualized.
The framework also optimizes code generation with fluent syntax and code snippets.

4.2.2. Metrics

REFRAME contains 15,000 lines of code across 172 classes and 13 components (.dll
files). Approximately 1000 automated tests (20,000+ lines) were written. While the
necessary amount of code covered by tests is still an open question, most recommen-
dations in the literature and practice range from 80 to 100%. In order to calculate
the code coverage for REFRAME, we used Visual Studio’s internal analyzer tool.
The calculation is based on block measure, which official documentation for Visual
Studio defines as a "piece of code with exactly one entry and one exit point" [34]. The
calculated code coverage for the entire framework was 95.7%, while the coverage of
the individual components ranged between 91 and 100%. Since all of these numbers
were within the upper half of the recommended values, we can conclude that the
framework was sufficiently covered with tests.

4.3. Statistical analysis with R

In Section 4.1, an example of research software was presented, and the result was a
CSV file for statistical analysis. This can be done using software like Statistica, SPSS,
or programming language R (which was used in [37]). R is popular for statistical
analysis, offering numerous packages for various analyses. It also allows users to view
the source code of functions to ensure accuracy and enables the creation of custom
functions for specific analyses.

4.3.1. Description of using R for MPC

In [37], various functions were created for statistical analysis and graphical representa-
tions, using data from MPC and a systematic literature review [38]. The experimental
design [15,36] involved performing a two-way multifactorial ANOVA to test hypothe-
ses, with contrast comparisons to identify affected groups. Orthogonal contrast and
simple effects analysis were also used to further break down interactions.

It is not necessary to explain the statistical analysis in more depth. The point
is that a rather extensive statistical analysis was done and not just simple tests like
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calculating the mean. When doing such extensive analysis, there are many things
that can go wrong because some parameter was set wrong or that the function was
called in the wrong way or that there is a logical mistake in a newly created function.
So, the problem of ensuring validity is similar here as in any programming any other
application.

4.3.2. Metrics

There is no easy way to check the coverage that was done in R; however, there
were more than 100 test functions created in the process of doing different kinds of
statistical calculations. In the R UtilityFunctions package, for example, there are 88
tests for 62 functions.

4.4. Testing methods used

The testing for Systems 1 and 2 and the statistical analysis with R followed similar
approaches (Fig. 1) to ensure the validity of the software and minimize errors.

Feature Done

Write system test

Y

A

Write
Acceptance OR
Integration test

A

4

Acceptance/Integration Test - Regression Test

Acceptance/Integration test passed?

\4

Run all regression tests

All tests pass

Write Unit Test Run full system tests Fix errors
x epeat if needed
Write Code
Start new feature
Refactor OR Improve old feature

OR Improve system test

Figure 1. Generalized testing workflow
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Test-Driven Development (TDD) [5] was employed in all of the systems, alongside
refactoring techniques by Martin Fowler [16], clean code practices by Robert C. Martin
[29,30], and design patterns [17]. Unit tests, the core of TDD, provided immediate
feedback during development, following the guidelines of Gerard Meszaros [33]. For
MPC, additional acceptance and system tests were written, with acceptance tests
later serving as regression tests. Even with a thorough test, a 100% certainty was
not guaranteed; however, the tests significantly increased reliability, with no bugs or
errors found during execution.

For REFRAME, the testing was formative, guiding the framework’s design
through TDD. While the tests were written after some exploratory prototyping, the
MSTest framework was used to automate the tests, which included unit, integration,
and system tests. These results were integrated into corrective and perfective actions
to improve the framework.

For the statistical analysis with R, TDD and clean code practices were also ap-
plied. Unit tests were written using the testthat package http://testthat.r-lib.org/
to check the correctness of the functions that processed quantitative data, such as
frequency tables. The graph’s appearance was manually checked, and the data input
was validated with unit tests. A generic R package, R_UtilityFunctions, was cre-
ated for future use and is available on GitHub (https://github.com/matnovak-foi/
R_ UtilityFunctions).

5. Discussion

Software systems produced in analyzed PhD projects are different types of software
systems, they are from different domains, and serve different roles within the con-
ducted research. MPC and R statistical analysis from the first PhD project are
typical examples of research software. Their role was to support the research process
in “identifying the effect of preprocessing techniques on plagiarism detection accu-
racy...”. On the other hand, REFRAME is produced in the second PhD project as
a primary contribution; i.e., a solution for a problem of managing reactive dependen-
cies in applications. REFRAME is an example of an instantiation artifact, which is
one of four main scientific contributions regularly found in design science research.

Now, despite all the differences between the software systems, the analysis that
was performed on the written PhD theses produced software artifacts as well as on
discussions between the authors; this indicated that there were common themes in
both PhD projects related to the role of software testing. In this section, we present
these common themes in the form of ten lessons learned.

5.1. LL 1. Testing contributes to evaluation efforts
in different types of SE research

As previously described, developing software was a huge part of both PhD projects.
The first PhD project conducted an experiment that required a large number of pla-
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giarism detections to be performed. Manually performing such a number of analyses
was unrealistic, so an MPC software system was developed to support the experiment
process and automate the aforementioned analyses.

The second PhD project conducted design science research in which a software
framework (REFRAME) was developed as a form of instantiation artifact intended
to solve a primary problem stated in the dissertation. Both PhD projects heavily
employed automated testing during the software-development process. In the authors’
experience, this resulted in multiple benefits for both the overall research process and
the research outcomes.

The two PhD projects can be seen as representatives of two distinct types of SE
research: knowledge-seeking, and solution-seeking research [43].

Knowledge-seeking research is a traditional research primarily aimed at investi-
gating existing phenomena that appear in a software engineering context (e.g., inves-
tigating what effect preprocessing techniques have on plagiarism-detection accuracy).
In this type of research, the developed software can be characterized as research
software and has a supportive role; i.e., it supports the activities of the research pro-
cess (e.g., gathering data, extracting data, transforming data, analyzing data, etc.).
Proper testing increases the chance that the software is correct; i.e., that it correctly
performs its supporting function. In this way, the testing indirectly participates in the
research evaluation, as it makes the research process more reliable and the research
results more credible. For example, if the software is intended to collect data that
will serve as a basis for developing models and answering research questions, then
software testing increases the chance that we obtained the right data.

Solution-seeking type of research, on the other hand, is more pragmatic than
knowledge-seeking research. It intervenes in the software engineering context and
tries to improve the state of affairs by engineering solutions to practical problems
(e.g., by creating specific software frameworks intended to facilitate the management
of reactive dependencies in OO applications). In this type of research, the developed
software is the very solution we engineered to tackle the stated problem, which makes
it a primary research output (rather than a supportive one). That being the case,
software testing now directly participates in research evaluations. First, during the
development, the testing provides early feedback on the state and correctness of the
software. This gives developers a chance to resolve issues and improve software while
this is still feasible (the so-called formative evaluation). After the development is
done, we use testing to ensure that the software indeed does what it is required to do
and that it does it correctly, thus evaluating the worth of the software (the so-called
summative evaluation).

Regardless of the type of SE research and the role of the developed software, the
underlying research process and research outcomes greatly depend on the quality of
the developed software. By incorporating software tests in the research process, we
improve the software quality and provide empirical evidence for it — thus benefiting
evaluation efforts.
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5.2. LL 2. TDD provides guidance for software-design activity

MPC and REFRAME as software solutions played a critical role in the practical and
scientific contributions of the two PhD projects. Therefore, it was essential from the
very start to design these solutions in a quality manner. In both of our experiences,
the application of TDD had a significant role in achieving that. Writing tests before
code helped the authors to first adopt an external code consumer’s view of a particular
code instead of prematurely jumping right into technical and implementation details,
with the additional emphasis on code testability and building a system that is testable
by design. With TDD, the authors were forced to think in terms of smaller but more
cohesive functionalities, thus better separating concerns and improving overall code
quality. Having such cohesive code elements, it was easier for the authors to assemble
their respective software solutions in the first place, but also to maintain the software
afterwards. One big benefit to the authors was that there was no fear of changing the
system and improving the design when it was necessary.

There was an additional benefit of the test-first approach in the second PhD
project. REFRAME is a software framework whose natural "user interface" is a
set of available types and their exposed members; i.e., API. By applying a test-first
approach, the author was also able to first imagine the framework’s API through
the eyes of potential users (application developers). This provided additional inputs
in terms of framework usability early on in the development process and led to the
further optimization and fine-tuning of the framework’s API. This was extremely
important, as the steep learning curve is one of the most recognized barriers in using
frameworks.

Software design plays a decisive role in software quality. Whether the software
is a direct result of SE research or a tool developed to support the research, the
quality of the software will affect the success of the research itself. Quite a lot of
research indicates a positive impact TDD has on software quality. For example, in
their systematic review, Bissi et al. [6] reported that 76% of the identified studies
demonstrated a significant increase in internal software quality and 88% external
software quality as a consequence of the application of TDD. Our experiences are in
line with these reports, as TDD provided valuable guidance in our efforts to design
MPC and REFRAME.

5.3. LL 3. Testing is safety mechanism when making changes in software

When developing software, it is not possible to know everything at the beginning.
Even with the best planning, there is always something that changes during the
course of development. There is always the factor of the unknown. This is especially
true for research software because in science we deal with the "unknown" to find new
knowledge. Therefore, research software is prone to change at the last moment when
we discover some new facts. Changing software at the last minute is risky, but with a
test suite in place, it is not impossible. Tests that were written during development
now become regression tests and give a safety net and confidence to the developer
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that, by doing the necessary changes, one will not break the code in some unexpected
places. This is confirmed in the three demonstration cases.

One such event during the implementation of MPC was when the idea happened
to pass data to a phase. To explain what happened, one first needs to understand in
a bit more detail how the system was built. MPC has three main execution phases.
The first phase is the preparation of data, which includes the following preparations:
extracting the data set from the archive; renaming all folders to unique names; and
delete all files that are not used in the detection process like images, pdf files, etc. The
next phase is the preprocessing phase, where the different preprocessing techniques
are applied on each individual data set. The third and final phase is the detection
phase, where similarity detection was performed in each preprocessed data set using
the six different tools. Now, first, each component was developed separately, which
means that first all preparation methods, preprocessing techniques, and adapters for
the tools were developed. Then, the different components were integrated into a single
process using a class called PhaseRunner. PhaseRunner, at first, had the job only
to start the phases in correct order and nothing more. But soon it was clear that
there needs to be one folder for each data set where the different executions need to
be performed and that the PhaseRunner is also responsible for telling the individual
phase what the working directory is. This means each phase will return the output
directory where the results are stored and accept an input directory which to use
when the phase is run.

Here is where the problems started, because there was no way to pass in such
information; this meant it needed to be added to all components. This seems simple
enough that it can be done without problems, but it was not. In fact, adding this
option was more difficult than expected and required changing around 40 classes. The
reason why so many classes needed to be changed was that this was a fundamental
change to the logic of how the system would operate. Thankfully, there were tests
that showed where the places of error were and informed about the problems right
away. Otherwise, these problems would be caught much later — maybe only at the
end — and then fixing them would be much more difficult. Probably, without the test,
this improvement would never be made and would lead to much worse system design.

The tests also played a pronounced role as a safety mechanism in the second PhD
project. The development of REFRAME as a novel framework was characterized by
a high level of uncertainty. Until the very end, it was not evident what design,
implementation, and underlying technologies would make the final solution. Because
of this, frequent prototyping sessions were conducted in order to try out different
design, implementation, and technology options. Having a large test suite made it
possible to freely experiment without the fear of introducing subtle errors in the
framework.

Regression tests are the key to enable change and the maintenance of source-code.
This was already established in software engineering more than 10 years ago [49].
According to [14], there are 28 empirically evaluated techniques on regression testing.
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Unfortunately, according to the mapping study done by Arvanitou et. al. [2] in 2021,
only 5% (19 of 359) of the studies investigated the practice of testing, including
regression testing. The number was slightly better in [14], where 27 papers were
identified. In comparison to the number of papers in the area of programming, this
was not enough.

5.4. LL 4. Testing helps in handling complexity

One of the early setbacks that the authors faced during the development of MPC
and REFRAME was due to complexity of their intended solutions. Being eager to
jump into creating their software solutions, both authors initially started writing
code without tests. However, during the course of a few weeks, it became increasingly
difficult to continue evolving the solution, as we managed to turn an already complex
problem domain into even more complex programming code. Due to so many things
that had to be done, bugs that manifested at random times and places, and subtle
details that required our attention, we became overwhelmed with complexity thrown
at us and got stuck in the development process. In addition, there was constant fear
of how to be sure that there will not be problems in the final phase of the research.
Since there were no tests, refactoring was difficult and neglected, so the code became
more and more unclean and difficult to maintain.

To mitigate that, we started over — this time by applying TDD. Now, the unit
tests became foundational blocks of our software solutions. Being by definition a type
of test that evaluated individual and isolated units of software, the unit tests served
as a mental tool for decomposing complex problems into smaller problems. Now, we
were able to shift our focus on one manageable thing at a time and progress with
our solutions in small but certain increments. This gave us more confidence; with
time, the progress was faster instead of slower as in the first attempt. The refactoring
was done all the time and without fear; therefore, the code was clean and easy to
maintain.

Developing software is a difficult endeavor. Many influential authors such as
Grady Booch [7] seek causes for this in the increasingly complex problem domain
we are dealing with as well as inherent complexity of software as a solution. When
software development is carried out as part of research, it becomes much more com-
plicated because of the additional requirements that scientific rigor may place on the
software-development process. Even a full-time software engineer may find this too
much to handle, let alone an SE researcher with many other duties. Unit testing and
TDD can help mitigate this problem by serving as a natural decomposition tool.

5.5. LL 5. Testing evaluates scientifically relevant properties

Although the unit testing framework was a key piece of testing technology used by
both authors, not all tests created using this framework were unit tests. Instead,
we used a technique known as the testing pyramid. The testing pyramid’s base was
made up of unit tests, which were the most prevalent tests concentrated on individual
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units of the code. After that, a smaller number of integration tests were written to
determine whether the separate units worked properly when combined. Last but not
least, a small number of system tests were created to examine the key features of the
software solutions as a whole.

In today’s software development, writing tests on these three levels before we
hand it over to users is crucial. However, these tests can also help to evaluate the
research of certain software properties. For example, Prat et al. [40] studied design
science research articles to assemble a list of frequently evaluated artifact properties.
They discovered that efficacy, or "the degree to which the artifact fulfills its goals
considered narrowly without addressing situational concerns" was by far the most
often evaluated property. This was precisely the case in the second PhD project. As
a formal part of the REFRAME evaluation, testing was used to evaluate early efficacy
under laboratory conditions. The tests provided evidence that the framework and its
parts work as expected and can be used to handle reactive dependencies. The testing
took a similar role also in the first PhD project; however, it was not a formal part of
the research evaluation.

In addition to efficacy (although not demonstrated in our PhD projects), testing
could be a suitable method to evaluate some other properties from the list that Prat
et al. [40] assembled, including accuracy, validity and completeness.

5.6. LL 6. Testing should be combined with other evaluation methods to
provide comprehensive evaluation strategy

Although we advocate for the use of testing as an evaluation method in SE research,
testing should not be the sole evaluation method used in a research. Rather, testing
should be an integral part of the comprehensive evaluation strategy (Fig. 2) perform-
ing multiple evaluation methods. For example, in the second PhD project, testing was
used in the first evaluation episode to formatively evaluate efficacy in artificial (lab-
oratory) conditions. This was supplemented by three summative evaluation episodes
that gradually moved REFRAME from the laboratory to the real world.

When using testing as part of an evaluation strategy, we have to be aware of
both its strengths and limitations and supplement it with other evaluation episodes
that overcome these limitations. One of the tools that can help us design evaluation
strategies but also discuss the role of testing within these strategies is the framework
for designing evaluation strategies proposed by Venable et al. [47]. They depicted the
evaluation strategy as a trajectory of evaluation episodes placed within two dimen-
sions: (1) functional purpose (formative vs summative evaluation), and evaluation
paradigm (artificial vs naturalistic). Formative evaluation is done before an artifact
is complete in order to provide feedback that guides further development. Summative,
on the other hand, is conducted after the artifact is complete, with the purpose of
assessing its overall value. With respect to the evaluation paradigm, artificial evalua-
tion is done in controlled laboratory conditions, while naturalistic evaluation assumes
evaluation in a realistic setting and conditions and done by real users.



66 Matija Novak, Marko Mijac¢

Optimal
4 evaluation
=
=]
2 -
I e
2 ~
= ’,
4 User acceptan
4 testing 7
/ ’
/ #  System /
e I lnteg;atwn testing
;..E | tegting P
=i 7 P
< ./ . d ’
u nlt.tes_t_llng_— -
Formative Summative

Figure 2. Role of testing in evaluation strategy

The ultimate goal of research software evaluation within SE research would be
to provide summative naturalistic evaluation; i.e., thoroughly evaluate software in its
entirety in perfectly realistic conditions. However, this can be costly, risky, and some-
times even not possible. This is why evaluation is often done in steps, with evaluation
trajectory starting in an artificial setting with a formative role and gradually moving
toward a more summative role and more naturalistic conditions. Evidently, by its
definition, testing fits into the artificial-evaluation paradigm, as its very purpose is
to evaluate software before it is put to real use. Some testing methods such as unit
testing and integration testing take formative roles, as they are done in parallel with
development. Others such as system testing, E2E testing, acceptance testing, and
non-functional testing can also take the role of summative evaluation, as they require
software to be complete to give realistic assessment.

However, testing alone cannot capture all aspects of software validation [11,42]
— particularly those influenced by real-world factors. For example, empirical stud-
ies such as case studies or surveys can provide broader insights into how software is
actually used in practice, offering a more holistic understanding of its value in differ-
ent contexts. Prototyping and simulation serve as valuable supplements to testing,
allowing developers to explore new ideas in a controlled manner before committing
to full-scale implementation. While testing may confirm that a component functions
as intended, prototyping helps to identify potential problems early by experimenting
with different configurations or system behaviors. In addition, peer reviews and ex-
pert evaluations focus on the qualitative aspects of the system such as code quality,
maintainability, and architectural decisions. These methods can identify potential
issues that testing alone may overlook, such as inefficient algorithms or design flaws
that might impact scalability or ease of future development.
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Although it is hard to prescribe exact evaluation episodes that are to be combined
with testing episodes, researchers should strive to fill the gap that testing methods
leave in terms of naturalistic evaluation. This means that the testing episode should be
accompanied by at least one (non-testing) summative naturalistic evaluation episode.
Depending on software maturity, this evaluation episode could target one, two, or
even all of the three reality dimensions; i.e., real users, real problem, and real setting.
For example, one can apply software to a real problem in laboratory conditions,
give software to real users to solve illustrative examples, or jointly conduct action
research with real practitioners in a real company. In addition, it is always a good
option to use a mixed-method approach to strengthen evaluation. So, for example, if
we in one evaluation episode provided tests and coverage analytics to quantitatively
demonstrate our software’s correctness, another episode could use a focus group to
investigate the perception of our users.

When designing comprehensive evaluation strategies in SE, we can choose from
a wide range of evaluation methods to complement testing. In case of high-assurance
systems where correctness is critical, testing as an evaluation method might not
be reliable enough. In such cases, we might opt for more-formal methods such as
formal verification [44] to provide mathematical proof of software correctness. In
performance-critical domains, benchmarking [24] can complement testing by offer-
ing performance comparisons, helping to position the software within the context of
competing systems or industry standards. Additional proof that developed software
achieves its desired effects can be provided by conducting experiments [53]. In order
to evaluate software in real contexts and from the perspective of real users, quali-
tative methods such as case studies [27], action research [52], and focus groups [46]
can be used.

5.7. LL 7. Tests provide proof (evidence) of software correctness

In science, the results must be precise and correct so that valid conclusions can be
drawn. In most research, some kind of software is used, and the researcher has to
trust that software works as it is supposed to. When external tools are used by many
researchers or users (e.g., SPSS, SAS), one can trust that the software works correctly
by looking at bug reports and experiences from other users. But when a software is
used only by a few people or one person, how do we even know that it works correctly?

When using or developing software that is a part of research, it should therefore be
mandatory to provide proof that the software works correctly. If it is not mandatory,
a totally wrong conclusion can be made because of an error in the software that
was used.

In practice (professional development [5,32]), testing software is a discipline that
should provide such proof. Based on the literature [2,18,25], it is evident that testing
has a positive impact on developing software used in scientific research and that should
be encouraged; these articles also show that it is not used all the time. That testing
has a positive impact can be seen when analyzing the three cases, and it confirms
that tests provide a proof of correctness.
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But what kind of testing should researchers do when developing their software or
require from developers if someone else is developing it? Also, how should this proof
be reported in the paper? The reporting will be discussed in a separate lesson, so let
us focus on the first question.

Based on the three cases, we propose the following. First, we propose to use
unit testing since it is a discipline used in practice [32] and has been proven to be
effective [45]. Unfortunately, unit tests are very low-level, and one has to have a good
idea of what the software should do; so, it is recommended to start by writing an
Acceptance Test or Full system test (also called end-to-end tests). This test basically
describes the main idea of what a tool should do. Naturally, this might change over
the course of time, but it is still a way of expressing what the purpose of the system is.

These acceptance and full-system tests help in cases where unit testing might not
be possible due to the nature of the research. Nonetheless, we believe that unit tests
should be used for developing research software or software parts that have concrete
input and output data. Even in cases where the data is vague, one can write tests
that test the results approximately. In such cases, tests are not exact regarding the
final usage but prove that the component connections of the system are working as
intended.

5.8. LL 8. Report quantitative metrics (e.g., code coverage)
related to testing

It might happen that testing was used while developing research software; however,
no report is given (since the author does not believe that it is required or necessary).
In this paper, we tried to provide concrete use cases that showed the importance of
testing as well as examples of how testing was reported when doing research.

Reporting test-code coverage is a good first step. It is known [31] that code
coverage is not perfect, but it gives first insight into the amount of testing that was
done. There is a study [28] that showed that code coverage is moderately or strongly
correlated to the effectiveness of a test suite. In the case of both MPC and REFRAME,
the authors have provided not only an overall code coverage but code coverage based
on each module; this provides a better overview of the parts that were or were not
tested. Now of course this data is always questionable; therefore, Lesson 9 about the
importance of source code availability and open data comes into play.

5.9. LL 9. Source code, tests, and test data should be
made available if possible

This LL might be obvious, but sometimes researchers do not publish their programs
and data. This is problematic since other researchers cannot replicate the results.
It would be best if it was possible to provide code and data. By just providing the
source-code, one can already use the system on different data and by providing the
data so others can test it with a different tool (if one exists).
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Providing data that was used in research can be viewed in two ways. One is
data used for the tests themselves. When someone has a test that uses data that
is not provided, such a test will fail; with tests, it should be mandatory to provide
the data that it uses. The data for the tests include test scenarios, test plans, test
documentation, and any other documentation that the author used.

On the other hand, by providing data used for the research itself (and not just
test data), it becomes possible for others to verify that there is no bias in the data
for that tool, that there are no errors in the data itself, or check if this tool is really
better than others (in the cases when research performs comparisons).

All of this source-code, test data, and research data enables us to control factors
that impact the research results and provide more-objective comparisons between
different tools, approaches, etc. In the literature, there are different studies [9, 48]
that have dealt with the importance of open access, open source, and other areas that
confirm this lesson.

Finally, this lesson is also supported by FAIR principles, which were introduced
by Barker et al. [4]. By complying with FAIR, software artifacts produced as a part
of a research process are easier to find, and they are more accessible, interoperable,
and reusable. This significantly increases the transparency and reproducibility of the
research.

5.10. LL 10. Testing is beneficial —
even when performing statistical analysis

In the third case (about R), testing was used while writing our own statistical func-
tions. In this case, one can see that testing (in this case, unit testing) goes beyond
the software engineering field. Many researchers in different fields use R and write
their own R functions. The same problems that we discussed in the other lessons
apply here. R functions are specific for statistical analysis; but in their essence, they
are just software programs, so they should not be treated differently.

If a function is used by many users, we have some assurance that it is doing the
right thing; if not, then the same problems occur that if there is an error. R functions
are great in the sense that they are always open source, so the code can be examined.
By having tests as well, one can quickly check if the function works as the author
intended, and one can check if there was a flaw in the reasoning of the author when
building these functions.

There were some personal situations where using tests was shown to be very
useful, and not having tests was a bad idea. The first example was when a graph was
created to display the number of articles that dealt with plagiarism-detection tools
per year. At first, it seemed like a very simple graph, and it was a relatively simple
function to display it. Now, since it was a graph, no tests were used. By doing some
other graphs, it was discovered that some data was wrong. Since it was not clear
where the error was, a test was created for this function (or to be more precise, a part
that creates the data that needs to be displayed). By doing the test, the error was
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quickly fixed since the problem was that NA values were taken into account rather
than being dismissed. Now, if the test was done in the first place, the error would
have never occurred; it was only by pure luck that it was discovered that something is
wrong with the graph. It might not seem reasonable how such errors can be missed,
but when there is a lot of data, it is very difficult to know if some number is off by
little; by having tests, it will ensure that such mistakes are recognized quickly.

Another example was when additional logic was added to the function that ma-
nipulates data frames (a data structure used by R). At first, there was the need to
create a frequency table; but then, it was necessary to have the creation of a fre-
quency table for a list of variables. It is not relevant what exactly the function does.
In this case, tests were done; when the extension was implemented at some point, the
creation of a frequency table without a list of variables stopped working. This was a
quick fix; but if the test had not been there, it would have been a big problem. The
reason is that some data was returned that was wrong. Hopefully, this shows how
useful unit tests are in writing statistical methods.

One has to admit that writing tests for statistical calculations is a bit different
from normal programming, but it has the same effect. In fact, it is easier to write
tests for statistical methods since one can create test input data for which it is known
what the output of the function should be. Now, easy does not imply that every
statistical function is simple but rather that the process is very defined and concrete,
which enables writing concrete tests. The difficult part in writing tests for statistical
functions is that, sometimes, there is an unlimited number of data combinations, so
there is no way to test every possible combination. By testing the degenerate cases and
some common cases of usage, one can get quite confident that the function behaves
as it should.

In [51], it was explained why writing tests was important. The benefits included
decreased frustration, better code structures, fewer struggles to continue development
after a break, and increased confidence. For more information on testing R code, there
is a book [10] with the exact title.

6. Conclusion

In this study, we have demonstrated that any kind of software engineering research
can benefit from applying testing (with a focus on unit tests). Although there are
areas where it might be more difficult to write tests, one should try to overcome this
problem and find a way.

By writing unit tests or tests in general, one is forced to think about the outcome
and what the software should do rather than focusing on how to do it. Therefore, it
helps to think about the problem. By writing tests, one thinks about the software
twice; i.e., one time about the desired outcome, and the other about how to implement
what is desired. Also, anytime the program needs to change, the tests will make sure
that nothing was accidentally broken in the process.
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By having tests, one then provides at least some proof that others can trust that
the results of the system are correct and that the system works as expected. Without
tests, there is a higher probability that the system has some part(s) that do not
work as expected. It is always the question of how far to go in the testing; for this,
(unfortunately) there is no simple answer. All it can be said is that it is better to have
a test than not. Excuses for not using tests because the lack of time or knowledge is
wrong and should not be excused. From the experience in these projects, one can say
that tests only make you go faster in the end.

There are still open questions like "What metrics should be reported?" or "What
level of code-coverage is sufficient?" Answering these questions is beyond the scope
of this research and needs to be addressed in future work. We can only say that
some kind of quantitative metric should be reported anytime a piece of software is
developed as part of research. Also, regarding code-coverage, there is a simple answer:
only 100% code coverage is enough; however, this is not feasible to achieve. Based on
the experience of the authors, we might say that above 90% is usually a good-enough
number if the 10% is not the core logic of the program.

While reporting is important in order to be able to evaluate what is stated,
one would need to open-source the code, tests, and data to have a complete review
and reproducible research. In addition, research software must conform to the FAIR
principles in order to be more transparent, reproducible, and reusable.

In addition, it was shown that testing goes beyond the field of software engi-
neering and can be useful where one has to write source code. Since R is a statistical
programming language and statistics is used in every field, it is safe to say that testing
is useful in all research fields.

Software testing is not the only way of validation and it does not cover all aspects
of software validity — especially those that are influenced by real-world factors. Com-
bining testing with other methods such as formal verification, researchers can ensure
that a system not only works as expected but also conforms to its formal specifica-
tions. Nevertheless, based on the benefits that testing provides, it is suggested that
testing should be mandatory in every software-development process and, therefore, in
all scientific research where new software is developed.
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