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Abstract This paper tackles the application of evolutionary multi-agent computing to

solve inverse problems. High costs of fitness function call become a major

difficulty when approaching these problems with population-based heuristics.

However, evolutionary agent-based systems (EMAS) turn out to reduce the

fitness function calls, which makes them a possible weapon of choice against

them. This paper recalls the basics of EMAS and describes the considered

problem (Step and Flash Imprint Lithography), and later, shows convincing

results that EMAS is more effective than a classical evolutionary algorithm.
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1. Introduction

During the past decades, intelligent/autonomous software agents have been gaining

more and more applications in various domains. Considered multi-agent systems

(MAS) are based on intelligent interactions between the agents, such as coordination,

cooperation or negotiation. Therefore, multi-agent systems are ideally suited to rep-

resent problems that have multiple problem-solving methods, multiple perspectives

and/or multiple problem solving entities [27]. Apparently, agents play a key role in

the integration of AI sub-disciplines, which often leads to hybrid design of modern

intelligent systems.

Despite their high complexity, such systems are weapons of choice when dealing

with difficult optimization problems. Inverse problems, belong to a wider class of

so-called “black-box” problems consisting in finding optima of the function described

in a space that is difficult to analyse using classical mathematical apparatuses are

examples of such problems.

Solving such problems usually requires simulation based on a certain model and

prediction of the behavior of the actual system based on its outcome. This classi-

cal approach is called a “forward problem”; however, “inverse problem” consists in

influencing the model by feeding it with different parameters, usually coming from

observing the actual phenomenon. Inverse problems are usually difficult to solve be-

cause different values of the model parameters may not be consistent with the data,

and discovering the values of the model parameters may require the exploration of

a huge parameter space.

The article concerns a hybrid evolutionary-agent approach. In most of the ap-

plications reported in literature (see e.g. [23] or [12] for a review), an evolutionary

algorithm is used by an agent to aid realization of some of its tasks, often connected

with learning or reasoning or supporting coordination of some group (team) activity.

In other approaches, agents constitute a management infrastructure for a distributed

realization of an evolutionary algorithm [25]. Yet, evolutionary processes are decen-

tralized by nature, and indeed, one may imagine the incorporation of evolutionary

processes into a multi-agent system at a population level. It means that, apart from

interaction mechanisms typical of MAS (such as communication), agents are able

to reproduce (generate new agents) and may die (be eliminated from the system).

A similar idea, but with limited autonomy of agents located in fixed positions on

some lattice (like in a cellular model of parallel evolutionary algorithms), was devel-

oped by e.g. [28].

The key idea of the decentralized model of evolution employed by an evolutionary

multi-agent system – EMAS was proposed by Cetnarowicz in [11], and since then,

it has been applied to different optimization problems (e.g., single-criteria, multi-

criteria, discrete, continuous) [8]. The motivation for testing the EMAS algorithm on

the linear elasticity with thermal expansion coefficient modelling, the step and flash

imprint lithography (SFIL) problem concerns one of the most crucial features of the
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inverse problem-solving with a metaheuristic approach: the fitness function is very

complex and time-consuming.

EMAS and its variants (e.g., immunological one: iEMAS) have already proven

to be much more effective than classical, parallel evolutionary algorithm in the means

of fitness function calls (see, e.g., [4, 3, 5]). It is obvious that utilizing dedicated

techniques aimed at reducing the number of processed individuals in the population

may hamper exploration possibilities. However, the experimental results of EMAS and

iEMAS yielded far better results than a parallel evolutionary algorithm (Michalewicz

version [18]), especially in high-dimensional problems. The optima were also visibly

approached faster (when considering the number of fitness function calls).

EMAS-like techniques may also be accused of being too complex to solve any-

thing. Besides experimental evidence, an extensive formal study was conducted, and

features of a dedicated, Markov-chain based model were analysed [9, 24, 7]. The

research yielded that Markov-chain describing the dynamics of EMAS is ergodic,

therefore EMAS may be counted to so-called Las Vegas algorithms (see [1]), having

an asymptotic guarantee of success [22]. A similar proof has also been outlined for

iEMAS [6].

Summing up these two highlights of EMAS-related research, the application of

EMAS to inverse problems seems to be well-justified, both by existing analytical and

experimental backgrounds.

In this paper, first the basics of evolutionary and agent-based computation and

presentation of the concepts of the examined systems are recalled. Then, the inverse

problem consisting in finding non-uniform Young moduli of the Step and Flash Im-

print Lithography (SFIL) feature is described. The goal of the inverse analysis is to

localize these 27 Young moduli, resulting in the measured deformation of the feature.

The Finite Element-Method solver is utilized as a black-box, serving as a means for

computing fitness function for EMAS (evolutionary multi-agent system [10]) and EA

(evolutionary algorithm [18]) heuristics. Selected optimization results presented at

the end of the paper encourage further research concerning such an application of

agent-based computing, as better results are obtained after a lower number of costly

fitness function calls, as in the case of EA.

2. Step and Flash Imprint Lithography

Step and Flash Imprint Lithography (SFIL) constitutes an important patterning

framework used in silicon industry [13, 20]. The process consists of the following

phases:

• dispense – depositing a low viscosity silicon containing photocurable etch barrier

onto a substrate,

• imprint – bringing the template into contact with the etch barrier,

• expose – exposing the etch barrier to UV in order to cure it,

• separate – releasing the template.
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Photopolymerization, however, is often accompanied by densification. The

shrinkage of the feature can be modelled by linear elasticity with thermal expansion

coefficient.

2.1. Linear elasticity model with thermal expansion coefficient

Following [15] the strong and weak formulations for the linear elasticity problem with

thermal expansion coefficient are given as follows. The computational domain Ω is

defined in the following way

Ω = {(x1, x2, x3) : xi ∈ (0, 1)} (1)

The bottom of the Ω constitute the Dirichlet boundary

ΓD = {(x1, x2, x3) : x1, x2 ∈ (0, 1) , x3 = 0} (2)

and the remaining parts of the boundary of Ω constitute the Neumann boundary

ΓN = ∂Ω− ΓD (3)

Strong formulation. Given gi : ΓD ∋ x → gi (x) ∈ R, θ and αkl, find the

displacement vector field ui : Ω̄ ∋ x→ ui (x) ∈ R, i = 1, 2, 3, such that

σij,j = 0 in Ω, (4)

ui = gi on ΓD, (5)

σijnj = 0 on ΓN , (6)

where σij is the stress tensor, defined in terms of the generalized Hook’s law

σij = cijkl (ǫkl + θαkl) , (7)

here cijkl are elastic coefficients (known for given material), θ is the temperature, αkl

are the thermal expansion coefficients, and ǫij = u(i,j) =
ui,j+uj,i

2 is the strain tensor,

where ui,j are displacement gradients.

Weak formulation. The weak formulation is obtained by multiplying (4) by

test functions wi ∈ H1
0 (Ω) and integrating by parts over Ω:

−
∫

Ω

wi,jσijdΩ +

∫

Γ

wiσijnjdΩ = 0. (8)

Since σij is symmetric tensor, then wi,jσij = w(i,j)σij and
∫

Ω

w(i,j)σijdΩ = 0. (9)

where we have also used the fact that wi = 0 on ΓD and σijnj = 0 on ΓN . Finally,

by utilizing (7) we get
∫

Ω

w(i,j)cijklu(k,l)dΩ = −θ
∫

Ω

w(i,j)cijklαkldΩ. (10)
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Reformulation for the SFIL modelling. For the convenient implementation

of the algorithm, we utilize the following equivalent weak formulation. Find u ∈ V,

such that

a (u,w) = −A (w) ∀w ∈ V, (11)

a (u,w) =

∫

Ω

ǫ (w)
T
Dǫ (u)dΩ (12)

A (w) = θ

∫

Ω

ǫ (w)
T
DαdΩ (13)

where = {V ∈
(

H1(Ω)
)3

: trv = 0onΓD}, and ΓD is defined as the bottom of the 3D

cube. Here

ǫ(u) =
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2.2. Inverse problem

In order to calibrate the direct problem model, we need to find out the model pa-

rameters which involves the Young modulus, Poisson ratio and thermal expansion

coefficient.

Following [13] we set up the Poisson ratio ν = 0.3. We also assume that gi : ΓD ∋
x→ gi (x) = 0 (the feature is fixed at the bottom, with free boundary conditions on

all other sides), θ = 1 (the thermal expansion coefficient α expresses the volumetric

contraction of the feature when the temperature gradient is equal to 1 Celsius), αij =

−αδij where α = −0.0615 is based on inverse analysis [21].

In this paper, we want to find out the non-uniform Young modulus of the feature,

resulting in slight lean of the feature, presented in Figure 1. We assume that there

are 27 Young moduli for each of 27 sub-parts of the feature, summarized in Figure 2.

The goal of the inverse analysis is to localize these 27 Young moduli, resulting in the

measured deformation of the feature.

For the direct problem solution, we have utilized the self-adaptive hp finite ele-

ment method application hp3d [19, 14], implementing the linear elasticity with ther-

mal expansion coefficient.
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Figure 1. Slight lean of the feature.

Figure 2. The problem considered.

3. Evolutionary multi agent computing

Agents of EMAS represent or generate solutions for a given optimization problem.

They are located on islands which constitute their local environment where direct

interactions may take place, and represent a distributed structure of computation.

Obviously, agents are able to change their location, which allows for diffusion of

information and resources all over the system [16].

In EMAS, phenomena of inheritance and selection–the main components of evo-

lutionary processes–are modelled via agent actions of death and reproduction (see Fig.
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3b). Inheritance is accomplished by an appropriate definition of reproduction, like

in classical evolutionary algorithms. Core properties of the agent are encoded in its

genotype and inherited from its parent(s) with the use of variation operators (mu-

tation and recombination). Besides, an agent may possess some knowledge acquired

during its lifetime which is not inherited. Both inherited and acquired information

determine the behavior of an agent in the system (phenotype).
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(b) Schematic presentation of an evolutionary multi-agent system

Figure 3. EA and EMAS outlines.
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Assuming that no global knowledge is available (which makes it impossible to

evaluate all individuals at the same time) and autonomy of the agents (which causes

reproduction to be achieved asynchronously), selection is based on the non-renewable

resources [10]. Thus, a decisive factor of the agent’s activity is its fitness, expressed

by the amount of non-renewable resource it possesses. The agent gains resources as

a reward for ‘good’ behavior, and loses resources as a consequence of ‘bad’ behavior.

Selection is realized in such a way that agents with a lot of resources are more likely

to reproduce, while low energy increases the possibility of death.

The main advantage of the approach is the coverage of various specialized evolu-

tionary techniques in one coherent model. Concerning computational systems, EMAS

enables the following:

• local selection allows for intensive exploration of the search space, which is similar

to parallel evolutionary algorithms,

• the way phenotype (behavior of the agent) is developed from genotype (inherited

information) depends on its interaction with the environment,

• self-adaptation of the population size is possible when appropriate selection mech-

anisms are used.

What is more, explicitly-defined living space facilitates implementation in a dis-

tributed computational environment.

Solving optimization problems with evolutionary algorithms requires that the

following must be defined [2]: appropriate encoding of the solutions, crossover and

mutation operators appropriate for the encoding, choosing a selection mechanism,

and possibly other components of specialized techniques like configuring topology of

islands and migration strategies for the island model of parallel evolutionary algo-

rithms.

In the simplest possible model of an evolutionary multi-agent system, there is

one type of agent and one resource defined. Genotypes of agents represent feasible

solutions to the problem.

Energy is exchanged by agents in the process of evaluation. The agent increases

its energy when it finds out that one (e.g. randomly chosen) of its neighbors has

lower fitness. In this case, the agent takes a part of its neighbor’s energy; otherwise,

it passes part of its own energy to the evaluated neighbor. The level of life energy

triggers actions of death and reproduction (low energy causes death while high energy

makes reproduction possible).

EMAS agents may perform the following actions:

• Reproduction – performed when the agent’s energy raises above a certain level,

followed by production of a new individual in cooperation with one of its neigh-

bors, with genotype based on parents’ genotypes (crossed over and mutated)

and part of energy (usually half of its initial value) also passed from each of its

parents.

• Death – agent is removed from the system when its energy falls below a certain

level, the remaining energy is distributed among its neighbors.
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• Evaluation – agent chooses its neighbor and compares the fitness of its genotype

with its own; in the case when the neighbor is better, it receives part of the

agent’s energy, and vice versa.

• Migration – agent (with some probability) may migrate, then it is removed from

one evolutionary island and moved to another (random) according to predefined

topology.

Each action is attempted randomly with certain probability, and it is performed

only when basic preconditions are met (e.g. an agent may attempt to perform the

action of reproduction, but it will reproduce only if its energy rises above certain level

and it meets an appropriate neighbor).

The topology of an island defining the structure of inter-agent relations may

be random (full graph of connections between the agents); but in order to enhance

diversity of the population, an additional level of population decomposition besides

the evolutionary islands) may be introduced. Thus, a two-dimensional square lat-

tice (similarly to the ones used in Cellular Automata [26]) may be considered. In

such a lattice, different neighborhoods (e.g., Moore’s) and boundary conditions (e.g.,

periodic, reflexive and fixed) may be utilized.

In such an island, the agents may interact between themselves, provided they are

in the zone of each other’s neighborhood.

4. Experimental results

Having experience in the development of component-based agent-oriented computing

platforms (cf. AgE1), a simplified version of such a discrete-event simulation and

computing system was developed using Python technology. The choice of this tech-

nology was undertaken based on a relatively easy implementation process and high

portability [17]. Using this software environment, both EMAS and EA systems were

implemented and used to generate the presented results. All possible parameters of

the both systems were set to the same value. The configuration of the both systems

is presented as follows. The exact values of these parameters have been based on the

results already presented in [5] and tuned up in trial-and-error process.

Common parameters:

• Mutation: continuous distribution-based modification of one randomly chosen

gene.

• Crossover: single-point, the descendant gets parts of its parents genotype after

dividing them in one randomly chosen point.

• Problem: 27-dimensional described earlier problem with error (precision) 60%

(30 repetitions of experiment), 25% (5 repetitions of experiment) and 8% (single

run of experiment). The dispersion of results was pointed out in graphs using

error bars (based on standard deviation).

1http://age.iisg.agh.edu.pl
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• Values boundaries for each Young modulus: [105, 1010].

• Agent/individual mutation probability: 0.2.

• Population size: 15.

EA parameters:

• Number of steps: 1000.

• Mating pool size equals to number of individuals.

EMAS parameters:

• Number of steps: 10000.

• Initial energy: 100, received by the agents in the beginning of their lives.

• Minimal reproduction energy: 90, required to reproduce.

• Evaluation energy win/loose: 20/-20, passed from the looser to the winner.

• Death energy level: 0, used to decide which agent should be removed from the

system.

• Intra-island neighborhood: Moore’s, each agent’s neighborhood consists of 8 sur-

rounding cells.

• Size of 2-dimensional lattice as an environment: 10×10.

A number of steps was arbitrary chosen to satisfy final average fitness value on

level about 1.0. This parameter differs for EMAS and EA for one more reason: the

most important observations (e.g., best fitness) were noted in relation to the num-

ber of fitness computation (instead of subsequent step of computation or arbitrarily

measured time).

Initial values of genes were randomly generated from continuous space defined by

boundaries. They represent 27 Young moduli and, with precision, are input to hp3d

application which outputs deformation values.

The outputs from the hp3d code are the minimum and maximum displacements

of the feature along x, y and z axes. Fitness function is calculated using mean

squared error between output values of the minimum / maximum displacements

obtained from hp3d code and the minimum / maximum displacements obtained from

experimentation.

Experiments were conducted with three different precisions. Time of fitness

function evaluation depends on this parameter as presented in Table 1. Experiments

were repeated to ensure independence from initial values. The numbers of experi-

ments repetitions were chosen to finish them in reasonable time as shown in Table

2, therefore the most reliable results from the statistical point of view are shown for

the precision 60%.

All the conducted experiments revealed that EMAS produced better results far

earlier than EA (see Figs. 4, 5, 6). These differences were visualized in Figs. 6b, 5b,

4b. Only for the precision 25%, EA reached the same fitness level as EMAS; however,

not earlier than after computing 800th fitness function call.

376 Krzysztof Wróbel, Paweł Torba, Maciej Paszyński, Aleksander Byrski



-20

 0

 20

 40

 60

 80

 100

 120

 0  500  1000  1500  2000

b
e
s
t 
fit

n
e
s
s

number of computation

EA mean
EMAS mean

(a) Average best fitness of EA and EMAS

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  20  40  60  80  100

best fitness

(b) Difference between numbers of fitness function evaluations

needed to achieve equal fitness value by EA and EMAS

 0

 500

 1000

 1500

 2000

 2500

 0  200  400  600  800  1000

number of EMAS computation

y=x

(c) Number of EA fitness computation where it obtains the

same fitness as EMAS
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Table 1

Execution times of fitness function evaluations on different processors with different preci-

sions.

Precision Intel i7 2670QM 2.2GHz AMD Opteron 1220 2.8GHz

100–60 0m0.533s 0m1.053s

59–25 0m53.234s 2m37.105s

24–8 2m31.210s 7m41.221s

7–5 4m11.729s 12m49.887s

4–1 6m26.175s 19m7.572s

Table 2

Execution time of experiments on AMD Opteron 1220 2.8GHz.

Precision Repetitions EMAS EA

60 30 17h30m 26h20m

25 3 10d22h 16d8h

8 1 10d16h 16d

Found solution on acceptable precision (8%) has fitness value 0.876222 and 27

Young moduli are: 1.9e+09, 5.1e+08, 1.6e+09, 3.4e+08, 1.4e+08, 5.1e+08, 1.2e+08,

1.1e+09, 1.1e+09, 1.2e+09, 4.9e+08, 6.5e+08, 1.7e+09, 1.4e+09, 3.7e+07, 5.2e+08,

9.1e+08, 3.8e+08, 6.6e+07, 1.3e+09, 4.8e+08, 8.7e+08, 1.8e+09, 2.9e+08, 1.0e+09,

7.4e+08, 2.4e+08.

1e+05 3e+05 1e+06 3e+06 1e+07 3e+07 1e+08 3e+08 1e+09 3e+09 1e+10

E7 E8 E9 E16 E17 E18 E25 E26 E27

E4 E5 E6 E13 E14 E15 E22 E23 E24

E1 E2 E3 E10 E11 E12 E19 E20 E21

Figure 7. Visualization of found solution. Solution with fitness 0.876222 with precision 8

5. Conclusions

Inverse problems pose a challenging task for solving, especially using population-

based meta-heuristics, because of a significant burden: a very costly fitness function

call. Therefore, approaches reducing the number of fitness function may become
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very valuable. In this paper, the approach to solve such problems using evolutionary

agent-based systems (EMAS) was presented. The obtained results clearly showed

that this approach was successful in the considered problems, namely EMAS, turned

out to be more effective than EA. The experiments were repeated, and the average

with standard deviation revealed that these experiments were repeatable. The most

reliable experiments were conducted for quite a low precision (60%), as the runtime

of experiments was barely acceptable. In the future, the authors plan to repeat the

experiments with a wider range of parameters; also, additional inverse problems will

be approached with this promising agent-based computing methodology.
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