COMPUTER SCIENCE e 26(4) 2025 https://doi.org/10.7494/csci.2025.26.4.6657

Abstract

Keywords

Citation

Copyright

DOMINIK ZUREK

KAMIL PIETAK

MARCIN PIETRON

MAREK KISIEL-DOROHINICKI

A PARALLEL APPROACH FOR
METAHEURISTICS SOLVING THE LABS
PROBLEM USING CPU AND GPU

This paper contributes to solving the low autocorrelation binary sequence
(LABS) problem that remains an open hard-optimization problem with many
applications. The current direction of research is focused on developing algo-
rithms dedicated to parallel architectures such as GPGPU or multi-core CPUs.
The paper follows this direction and proposes new heuristics developed from the
steepest-descent local search algorithm that extends the notion of a neighbor-
hood of a given sequence. The introduced algorithms utilize the parallel nature
of multicore CPUs and provide an effective method for solving the LABS prob-
lem. The efficiency levels of SDSL and the new algorithm are presented; to
ensure an effective comparison, they were both implemented in the same man-
ner. The comparison shows that exploring the larger neighborhood improves
the efficiency of the search method.

LABS, parallel computing, steepest-descent local search, local optimization
techniques

Computer Science 26(4) 2025: 33—49

© 2025 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

33


https://doi.org/10.7494/csci.2025.26.4.6657
https://creativecommons.org/licenses/by/4.0/

34 Dominik Zurek et al.

1. Introduction

This paper proposes new possibilities in metaheuristics construction for optimization
problems that utilize parallel computing with CPU and GPU, concentrating on the
low autocorrelation binary sequence as an example of a hard discrete problem.

Despite the extensive research, LABS remains an open optimization problem
for long sequences. It has a wide range of applications, including communication
engineering [18, 19,21, 22|, statistical mechanics [2,14], and mathematics [10,12]. For
details of the various applications and the history of the problem, we refer to the
existing source [16].

The low autocorrelation binary sequence is an NP-hard combinatorial problem
with a simple formulation. It has been under intensive study since the 1960s by
physics and artificial-intelligence communities. The LABS problem found its place in
the CSPLIB list — a library of test problems for constraint solvers [20]. It consists of
finding a binary sequence S = {so, $1,...,55—1} with length L, where s; € {-1,1}
minimizes energy function E(S):

L—k—1
Ck(S) = SiSi+k
o (1)
E(S) =) Ci(5)

~
<.

=
—

Golay defined a so-called merit factor [9] that binds LABS energy level to the
length of a given sequence:
L2
F(S) = 2
)= 3505 )

The search space for a problem of length L has size 2%, and the energy of the
sequence can be computed in time O(L?).

There are many different methods that have tried to solve the LABS problem.
The simplest is an exhaustive enumeration (i.e., the brute-force method) that pro-
vides the best results, but can be applied only to small values of L. Some researchers
use partial enumeration, choosing so-called skew-symmetric sequences [16] that are
the most likely solutions for many lengths (e.g., for L € [31,65], 21 best sequences
are skew-symmetric). Additionally, the idea of branch-and-bound is applied, which
assumes that a discrete optimization problem is solved by breaking up its feasible set
into successively smaller subsets (branch), calculating bounds on the objective func-
tion value over each subset and using them to discard certain subsets from further
consideration (bound) [15]. The best solution that can be found during this procedure
is a global optimum. The goal is, of course, to discard many subsets as early as possi-
ble during the branching process; i.e., to discard most of the feasible solutions before
actually evaluating them [16]. Enumerative algorithms (complete or partial) are lim-
ited to small values of L by the exponential size of the search space; therefore, many



A parallel approach for metaheuristics solving the LABS problem... 35

heuristic algorithms have been developed. They use some plausible rules to locate
good sequences more quickly. A well-known method for such techniques for LABS
is steepest descend local search (SDLS) [1] or tabu search [6,8,11]. In recent years,
some modern solvers based on the self-avoiding walk concept have been proposed.
The most promising solvers are IssOrel [3] and zLostavka [4], which are successfully
used to find skew-symmetric sequences of lengths of between 301 and 401 with a high
merit factor [5].

Another direction of research is using evolutionary multi-agent systems with local
optimization algorithms [13]. This hybrid approach is also very promising, as it
combines global knowledge of an evolutionary algorithm with exhaustive local search
techniques.

In our research, we currently focus on adopting existing local search algorithms
(such as SDLS or Tabu) to the GPGPU architecture or building new algorithms
that utilize possibilities given by GPGPUs. In [23], we described how to design
the SDLS algorithm with a neighborhood of distance 1 (as proposed in [7]) for the
GPGPU architecture. In the single iteration of the algorithm, it searches for all
sequences that differ by 1 bit from the input sequence and then chooses the best
one; each GPU thread changes one bit and evaluates the newly created sequence in
a fully parallel way. Moreover, each thread’s block of the GPGPU unit computes a
different sequence at the same time. Assuming that modern graphics cards provide
around 80 thread blocks (represented by hardware multiprocessors), we can achieve
the significant improvement in effectiveness that was widely presented in [23].

Another direction of our research is the combination of neural networks with the
Tabu search [25]. The aim of this technique is to develop a more efficient method for
determining the value of parameter M (the number of iterations for which a selected
bit should be blocked), the use of which enables finding a more optimal value for the
LABS energy. For this purpose, the LSTM neural network predicts the most effective
value of this parameter for a given input sequence S.

In this paper, we propose a new algorithm that is derived from basic SDLS and
utilizes the parallel nature of GPGPU. It extends the notion of the sequence neigh-
borhood to a 2-bit distance and allows for the exploration of many more sequences
before choosing the best, which minimizes stacking in the local optimum. We also
developed the SDLS-DT variant that we proposed in [24], which introduces the recur-
rent exploration of sequences in both the 1-bit and 2-bit neighborhoods. Both of the
new techniques were compared with the basic version of SDLS to verify whether the
proposed extensions are more suitable for a parallel computing model. All of them
were implemented on the CPU using OpenMP or on GPGPU using CUDA.

The next section provides a brief reminder of the SDLS-DT algorithm that was
introduced in [24]. The main part of the paper then presents a new algorithm (called
SDLS-2), followed by details about the parallel implementation of all of the referenced
algorithms. At the end, the results of experiments using the CPU and GPGPU
platform are presented together with conclusions and further work directions.



36 Dominik Zurek et al.

2. SDLS with deep through search algorithm

The first proposed extension of the SDLS algorithm is SDLS deep through (SDLS-DT),
which was widely described in [24]. This approach explores the sequence neighbor-
hood in a depth-first manner, but it starts from all sequences that are in the close
neighborhood of the input sequence; therefore, it significantly extends the explored
solutions space. In this approach, it is not possible to estimate the number of solutions
generated in a single step of the algorithm. The searching of solutions in localities one
and two is done in a single step in this case. The sequential version of this method is
described in Algorithm 1 and is based on external and internal loops.

Algorithm 1 Sequential version of SDLS-DT algorithm [24]
1: function SequntialSDLS-DT(S)
2: E, = compute__reference__energy(S)

3 for i :=0 to len(L) do

4 E[i] = compute__single__energy__by__mutation__iy,__bit(S)
5 improvement := true

6: while improvement do

7: Ejocai__11 = compute__energies__by__mutation__of__two__bits(S)
8 Epest—compute__lowest__energy(E[i], Eiocai_11)

9: if £, < Epest then improvement := false

10: end if

11: update__reference__energy()

12: update__reference__sequence()

13: end whileend while

14: end forend for

15: return Fpes:

16: end functionend function

The single step of the described algorithm should be defined as a single run of
the external loop. At the beginning of the single run of this loop, the input sequence
changes on the position with the index with the same value as the current loop’s
counter. Based on this sequence, the first energy is calculated (in the first run, this
energy is treated as the current reference energy), and this sequence becomes the
input to the internal loop. In each iteration of internal loop L, energies are calculated
based on the sequences that are different on a two-bit comparison to the original
sequence. The lowest of the obtained energies is chosen; in the case where its value
is lower than the current reference energy, an update of reference energy F, and the
input sequence corresponding to it occurs. Each single run of the internal loop is
performed in those cases in which improvement is not observed (the current reference
energy is lower than the best chosen), which is the equivalent of breaking the while
loop. The number of these steps is equal to the length of the input sequence (the
counter of the external loop is equal to L). Figure 1 illustrates the first two steps of
the algorithm on a sample sequence.



A parallel approach for metaheuristics solving the LABS problem... 37
[10110] 10 [00010] 2
[01110] 6 [10010] 10
[00110] 6 [[00010] ) [01010] 30
[00100] 6 [00110] 10
[00111] 10 [00000] 30
[00011] 10
[11110] 6
Y
[[01110] ¢
P [10110] 10
\\[10110] 10/\ [11110] 6
[11010] 6
[11100] 10
[11111] 30

Figure 1. Example of iteration in SDLS-DT algorithm [24]

The parallel version of SDLS-DT for GPGPU is presented in Algorithm 2.

Algorithm 2 Parallel version of SDLS-DT on GPGPU [24]

1: function ParallelSDLS-DT(S)
2: for bit :== 0 to len(L) do

3 if threadld == bit then Syock[threadld]x = —1 end if
4 end if

5 create__T(S)_and__C(S)()

6: E, := compute__energy__ with__local__one(Spiock )

7: while improvement do

8 mutation__of__threadld__bit(Spiock)

9 ParallelValue Flip(Spiock, T, C")

10: Eypest := compute__lowest__energy()

11: if E, < Epest then improvement := false end if
12: end if

13: update__reference__energy()

14: update__re ference__sequence()

15: update__T(S)_and__C(S)()

16: end whileend while

17: if EbeStglobal < Ebgst then EbeStglobal = Ebest end if
18: end if

19: end forend for
20: return Fpeg:

global
21: end functionend function




38 Dominik Zurek et al.

In this case, in each iteration of the inner loop L energies are calculated according
to the parallel version of the SDLS algorithm [23]. In this implementation, the L
energies are calculated using the L threads. This description is about the single-
thread block. Similarly to each SDLS version that solves the LABS problem, the K
thread’s blocks are running at the same time, and the best energy from the K energies
is chosen by using the double reduction operation [23].

3. SDLS-2 algorithm with extended neighborhood

The new approach to solving the LABS problem through the use of an innovation
algorithm (called SDLS-2) relies on increasing the search area of the searching during
each single iteration.

One of these is an algorithm that was proposed by Cotta et al. [8], which improves
the speed of the computation of the sequence’s energy. It introduces the notion of the
neighborhood of a sequence S with length L obtained by flipping one symbol in the
sequence:

N(S) = {flip(S,i),i € {1,.., L}} 3)

where flip(sy...8;...80,1) =81...8;...5 [8].

All of the computed products can then be stored in a (L — 1) x (L — 1) table
T(S) such that T'(S);; = s;si4+; for j < L — i, and saving the values of the different
correlations in a L — 1 dimensional vector C(S), which is defined as C(S), = Cx(S5)
for 1 < k < L — 1. Figure 2 shows these data structures for an instance of L. =
5. Cotta observed that by flipping a single symbol s; multiple by —1 the value of
cells in T'(S) where s; is involved, the fitness of sequence flip(S,i) can be efficiently
recomputed in time O(L).

S1S82 | S283 | S3S4 | 5485 8182 + S283 + S3S84 + S4S85
5183 | S284 | S3Ss S$183 + S284 + S3S5
S184 | 8285 5184 + S285
8185 8185

7(5) ()

Figure 2. Data structures supporting efficient computation of fitness in neighborhood

3.1. Sequential version of SDLS-2

The SDLS-2 algorithm (Alg. 3), extends the notion of neighborhood to sequences
that differ by up to 2 bits. In this case, in addition to searching for the solution
in the neighborhood with a distance equal to 1 (Alg. 3, line 5); the best results in
a single iteration are explored among sequences that differ on two bits with regard to
the input sequence (Alg. 3, line 6). If the best sequence has a higher energy than the
best sequence from the current iteration (Alg. 3, line 8), the last one becomes the
reference sequence for the next iterations (Alg. 3, lines 9-10). If the best sequence



A parallel approach for metaheuristics solving the LABS problem... 39

founded in the current iteration is worse than the input sequence, the algorithm is
stopped, and the actual reference sequence is returned as a result. In the case of the

sequence with length L, in the single step, this algorithm implies the need to look

through L(LQ_U more solutions than the traditional SDLS algorithm [23].

Algorithm 3 Sequence version of SDLS-2 algorithm
1: function SequntialSDLS-2(S)
2: improvement := true

E,. = compute__reference__energy(S)

3
4 while improvement do

5 Ejocai_1 = calcuate__energies__by__mutation__of__single__bit(S)
6: Ejocai__11 = calcuate__energies__by__mutation__of__two__bits(S)
7 Epest=compute__lowest__energy(Eiocai_1, Eiocal_11)

8 if E, < Epest then improvement := false

9

end if
10: update__reference__energy()
11: update__re ference__sequence()
12: end whileend while
13: return f

14: end functionend function

The iteration example for the sequence of length L =5 is presented in Figure 3.
In this case, the algorithm stops after two iterations.

[10110] 10 [10111] 2
[00110] 6 [00111] 10

[11110] 6 [11111] 30

[10010] 10 [10011] 10

[10100] 6 [10101] 30

[10111] 2 [10110] 10

[01110] 6 [01111] 6

[m] [00010] 2 [00011] 10
[00101] 6 [00101] 6

[00111] 10 [00110] 10

[11010] 6 [11011] 6

[11100] 10 (111011 2

[11111] 30 [11110] 6

[10001] 6 [10001] 6

[10011] 10 [10010] 10

[10101] 30 [10100] 6

Figure 3. SDLS-2 iterations on sample L = 5 sequence



40 Dominik Zurek et al.

3.2. Parallel version of SDLS-2 for GPGPU

This algorithm can be further parallelized and adjusted to the GPGPU architecture as
defined in Algorithm 4. The parallel SDLS algorithm [23] is able to efficiently find the
best energy in the neighborhood with the locality one. The moment that this optimal
algorithm will be run L times with the inputs where each of them is different on only
one other position in regard to the original sequence, the space with locality two will
be searched. This assumption forms the basis of the approach that is proposed in
this section.

Algorithm 4 Parallel version of SDLS-2 on GPGPU
1: function PARALLELSDLS-2(S)
2: create__T(S)_and__C(S)()

E, = compute__reference__energy(Shiock)

3
4 while improvement do

5: mutation__of__threadld__bit(Ssiock)

6: ParallelValue Flip(Spiock, T, C")

7 Epest := Epest_iocai1 := compute__lowest__energy()

8 for bit := 0 to len(L — 1) do

9: if threadld == bit then Syock[threadld]x = —1 end if
10: end if

11: update__T(S)_and__C(S)()

12: mutation__of__threadld__bit(Spiock)

13: ParallelValueFlip(Spiock, T, C")

14: E; ocal, == compute__lowest__energy_ for__current__bit()
15: if E,,»ilocam[bit] < ErﬁlocalQ[bZ‘t — 1] then
16: Ebestilocalg = ET?localQ[bit] end if

17: end if

18: if Ebest_localg < Ebest_locall then

19: update__C(S)__optimum__and__E__best
20: end ifend if

21: end forend for

22: if E, < Epest then improvement := false

23: end if

24: update__reference__energy()

25: update__reference__sequence()

26: update__T(S)_and__C(S)()

27: end whileend while
28: end functionend function

At the beginning of the SDLS-2 algorithm, there is a searched space with locality
one (Alg. 4, lines 2-3). In order not to double-check the same sequence, the search in
the space with locality two is realized through the use of the loop with the number of
iterations equal to L — 1 (Alg. 4, line 8). The first step of this iteration is changing
one bit in the original sequence to the position with the same index as the actual loop
counter and it is realized by the thread with that index (Alg. 4, line 9). This sequence



A parallel approach for metaheuristics solving the LABS problem... 41

becomes the input sequence for the next steps of the algorithm, so it is necessary to
update helper structure C(S) and T'(S) (Alg. 4, line 10). This actualization is
performed in the same way as it is in the SDLS algorithm.

This created sequence is put as an input to SDLS with the use of L — 1 threads
so that the number of energies is calculated (Alg. 4, lines 11-13), each of which
was obtained from the sequences where they were all different at two positions with
respect to the original input sequence. The reason why first iteration L — 1’s energies
are calculated with the use of L — 1 threads instead of calculating L energies that are
calculated with the use of L threads is the fact that, during this iteration, thread thg
is blocked. For example, for the sequence 1,1,1,1,1, the input for the first iteration
is the sequence 0,1,1,1,1. If thread thy calculates the energy in the first iteration,
its sequence would be 1,1,1,1,1. For this sequence, the energy was calculated in the
first step of the algorithm (during the calculation of the reference energy) when the
energies were obtained through the use of the SDLS algorithm with locality one. For
this reason, it makes no sense to calculate this energy again. Of those, the L — 1
energy is chosen as the one with the lowest value. The best energy is chosen through
the use of the double reduction operation, which returns their position in addition
to the value of the energy; this enables reproducing the sequence that was used to
calculate this minimum energy.

In the second iteration, the input sequence is changed on the position with the
index number, which is realized by the thread with that ID. This thread is then
turned off from future calculations for the same reason that thg was turned off from
the calculation during the first iteration. In this iteration, thread thg is also not active
because, in the current iteration for the same example of the original sequence as in
the above example (consisting of only one values), the input sequence is 1,0,1,1,1.
If thread thg calculates the energy, then the sequence for it would be in the shape of
0,0,1,1,1; however, the energy was calculated in the previous iteration by thread thy
for this sequence. Therefore, in the second iteration, L — 2 energies are calculated;
after this, the one with the lowest value is chosen. This energy is compared with the
best energy from the first step of the algorithm, and the better energy is set as the
current best energy that was obtained after searching the space with localities one
and two (Alg. 4, lines 14-15).

Furthermore, new helper structure C(S)_optimum was introduced. This struc-
ture is needed because, at this stage of running the algorithm, there is no possibility
to predict if the best energy will be obtained from the sequence after changing one
or two bits (the first or second step of the algorithm). After the first step of the de-
scribed algorithm, this structure contains the v values that were copied from the
cache memory of the winning thread. When the best energy from the second step
of the algorithm is better than the one from the first step, structure C'(S)_optimum
is updated by the v values of the winning thread from the second step of the best
iteration (Alg. 4, line 17). According to the proposed approach, the one-less solution
is obtained in each of the next iterations with the use of the one-less thread than in
the current iteration.



42 Dominik Zurek et al.

Having calculated the energies in this way, the best one with the sequence base on
which it was calculated is taken. Afterward, this energy is compared with the actual
reference energy (in the case of the first iteration, the reference energy is calculated
by use of the original input sequence). In those cases in which the value of the best
energy is lower than the value of the reference energy, this best energy becomes a new
reference energy, its sequence becomes the input sequence to the next iteration, and
structures C'(S) and T'(S) are actualized (Alg. 4, lines 19-21). The algorithm stops
searching when the best energy that is found is higher than the actual reference energy.
Continuing the running of the algorithm in this condition would cause the same value
of best energy to be returned because, according to the algorithm, the input sequence
is changed only if, in the current state, it was possible to identify a lower energy than
in the previous steps.

The above description concerns the calculations that are realized by the single-
thread block. As in the case of the basic SDLS version, K thread blocks are running
at the same time. Consequently, as a result of the algorithm, K energies are returned;
from these, the best is chosen through the use of a double reduction operation. This
energy is treated as a result of a single run of the SDLS-2 algorithm. As mentioned
in the single thread block, the algorithm runs until an improvement is achieved in
the current step in comparison with the previous one. Each thread block receives
a unique input sequence as far as possible (when two thread blocks receive the same
input sequence, the result will be the same for both); so, each block should finish its
search after a different time. Therefore, the time when all of the algorithms would be
completed is equal to the searching time of the longest-running thread block.

4. Parallel version of three variants of SDLS for CPU

The parallel implementation of the CPU of three variants of the SDLS algorithm was
performed with the C+4+ language using the OpenMP! library to improve the perfor-
mance. As a result of the application of OpenMP, the calculations are performed in
a parallel manner. By using OpenMP, the threads are created automatically through
the use of special directives, which indicate the place on the code that will be run in
a parallel manner. In the experiments, a special compiler directive (-03) was used to
optimize the multicore CPU implementation. The experiments were performed on an
Intel Xeon Gold 5220 3.9 GHz that contains 36 cores. In the GPGPU implementation
of SDLS, SDLS-2, and SDLS-DT, it was possible to achieve parallelism on number
of the solution level (number of the thread’s blocks) and during the performing of
the SDLS calculation where the L threads are calculating L energies at the same
time [23] (in each version of the presented algorithms, the basic version of SDLS is
calculated). In the CPU’s implementation, it is possible to use only one-level paral-
lelism. As it turns out, the most effective way is to introduce a parallel on the number
solution level that is equivalent to the K thread block in the GPGPU implementation.

Thttp://www.openmp.org/



A parallel approach for metaheuristics solving the LABS problem... 43

Consequently, K’ solutions are calculated by K’ threads at the same time, where K’
means the number of available cores of the CPU (in our case, this number equals 36).

5. Effectiveness of proposed algorithms

In order to measure the effectiveness of the proposed new SDLS algorithms versus
the basic version, each of them sought the optimal solutions for three different input
lengths (128,192, 256) for a period of one hour. The number of solutions was 128. In
the first iteration, the processor randomized 128 different sequences (as far as possible)
— one for each block in the GPU implementation, and one for each thread in the CPU
implementation. With data generated in such a way, each kernel/thread started
searching the minimum value of energy. The moment that the best energy from each
block/thread was found, it was stored as current best energy Egiobal optimum- TLhe
processor generated a new set of 128 sequences for which the algorithm repeated the
search process and, if applicable, the global energy was updated. The entire process
was continued for one hour. In addition, the actual best result was stored every two
minutes. This experiment for each algorithm was duplicated ten times.

Tables 1 and 2 show the numbers of solutions found together with the averages
of the solutions found for the single thread block and the numbers of individual
kernels/functions executed for both parallel implementations of GPGPU and CPU.

Table 1
Number of explored solutions during one-minute computations on GPGPU
Number of Standard Number of
Method searched solutions Average deviation | running kernels
Sequence length — 128
SDLS 20,740,434,073 2807 531.8 57,773
SDLS-2 16,865,830,144 224,089 41,837.6 593
SDLS-DT 31 176 794 592 356,752 46,302.4 703
Sequence length — 192
SDLS 19,152,109,696 5458 1116 27,303
SDLS-2 15,342,863,872 818,216 145,562 148
SDLS-DT 25,827,182,720 1,056,786 121,272 191
Sequence length — 256
SDLS 22,380,865,408 11,159 2836 15,661
SDLS-2 15,975,437,994 1,657,780 257,819 74
SDLS-DT 24,978,089,130 3,019,130 292,121 68
Table 2

Number of explored solutions during one-minute computations on CPU

Number of Number of
Method . . .
searched solutions running functions
Sequence length — 128
SDLS 470,069,120 6462
SDLS-2 281,504,512 47
SDLS-DT 444,684,288 46




44

Dominik Zurek et al.

1450

1400 4

best energy
-
o
&
=

1300 4

1250 4

Table 2 cont.
Method Number of. N'umber of.
searched solutions | running functions
Sequence length — 128
SDLS 470,069,120 6462
SDLS-2 281,504,512 47
SDLS-DT 444,684,288 46
Sequence length — 192
SDLS 467,266,944 3302
SDLS-2 264,717,824 17
SDLS-DT 557,498,304 21
Sequence length — 256
SDLS 475,191,552 2881
SDLS-2 267,377,536 74
SDLS-DT 490,716,416 10
b)
—&— sdis —— sdis
—§— sdis-dt —&— sdls-dt
—&— sdis-2 3500 4 —&— sdis-2
s 3400
ansy 8
FFF 7T | £ 3300 Y
Feo 4
| !‘[" 3200 4 T :EHi‘;i:: I
. . _ |- 3100 -, . . . . . .
0 10 20 30 50 60 0 10 20 30 40 50 60
time[min] time[min]
c)
6600
—&— sdis
$ o
6400 4
>'630(1— TToe -
% 6200 44 L ,__l
E o9 (TTTTT
6100 4 .
6000
5900 4
5800 ~ T T T T T T
[} 10 20 30 40 50 60
time[min]

Figure 4. Energy achieved on GPGPU by basic SDLS and SDLS-2, SDLS-DT: a) Energy of
LABS L =128; b) Energy of LABS L = 192; ¢) Energy of LABS L = 256



A parallel approach for metaheuristics solving the LABS problem... 45

Figure 4 shows the efficiency of the presented SDLS variants — all implemented
on GPGPU (Figures 4a, 4b, and 4c present the results for LABS 128, 192, and 256
consecutively). The best results in all cases were achieved by the SDLS-DT variant,
and the basic SDLS beat SDLS-2; however, the further analysis presented below will
explain the differences in more detail. The same configurations were also run using a
pure CPU implementation — the results are shown in Figure 5. SDLS-DT still gave the
best results, but the SDLS-2 variant now had better convergence than basic SDLS for
all problem sizes (Figures 5a, 5b, and 5c show the results for LABS 128, 192, and 256
in succession). Since the SDLS-2 algorithm explored many more sequences in a single
run, it may have initially produced worse solutions than basic SDLS; however, all of

the plots show that, after exploring a larger neighborhood, it eventually produced
better solutions.

a) b)
—— sdis —4— sdis
2800 { —— sdis-dt —— sdls-dt
—&— sdis-2 7000 4 —4— sdis-2
2600
2400
> > 6000
=) &
T 2200 ]
H rTT S o
v o
& 20004 b-0-4 e 7 HH\H
2 b4 2 5000
1800 . T [T
1600 4000 | L1
1 AdA
1400 II L
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 a0 50 60
time[min] time[min]
<)
—&— sdis
14000 —&— sdis-dt
—&— sdis-2
12000
=
2
g
@ 10000
il
2
T3040
8000
6000
0 10 20 30 a0 50 60
time[min]

Figure 5. Energy achieved on CPU by basic SDLS and SDLS-2, SDLS-DT: a) Energy of
LABS L = 128; b) Energy of LABS L = 192; ¢) Energy of LABS L = 256

To summarize the results, the best solution was obtained by the SDLS deep
through algorithm for each problem size; this was due to the efficient parallel imple-



46 Dominik Zurek et al.

mentation of this algorithm. Table 3 compares the size of the search space and the
best sequences obtained with the baseline version of the SDLS algorithm. In the case
of the SDLS-DT algorithm, it can be seen that the GPU implementation allowed
a much larger region of the solution space to be searched; in both versions, the algo-
rithm found better sequences. For one hour, it was able to successively check larger
spaces than the SDLS and SDLS-2 algorithms by 50 and 84% for L = 128; 34 and
68% for L = 192; and 12 and 56% for L = 256, respectively.

Table 3
Size of search space explored by new algorithms compared to SDLS,
and comparison of best solutions achieved

Problem SDLS-2 SDLS-2 SDLS-DT SDLS-DT
. Platform

size search space | best result | search space | best result
128 GPU 81% 97% 150% 10%
192 GPU 80% 98% 135% 102%
256 GPU 71% 99% 112% 101%
128 CPU 60% 110% 95% 125%
192 CPU 57% 106% 119% 124%
256 CPU 56% 109% 103% 124%

Analyzing the table, it is also important to note the interesting behavior of the
SDLS-2 algorithm. At the same time, it searched a much smaller number of solutions
on both the CPU and GPU; this was due to the inability to use the simplified mecha-
nism for determining the energy of the sequences with direct neighborhoods (differing
by one bit) that was used in the other variants of the SDLS algorithm. Neverthe-
less, the algorithm found sequences comparable to the baseline version of the SDLS
algorithm — at 97-99% for the GPU implementation, and at 106-110% for the CPU
implementation. Therefore, it can be hypothesized that searching the space in the
extended neighborhood (according to the SDLS-2 algorithm) allowed them to find
more-efficient paths to search the solution spaces than the other SDLS algorithms.
However, the current implementation of the algorithm required more computation in
determining the sequence energy. The improvement of this implementation is consid-
ered for future work.

6. Conclusions and further work

This paper is the next step of our research related to efficient algorithms for LABS
realized using GPGPU architectures. As shown before in [24], the SDLS-DT algorithm
can be efficiently implemented on GPGPU and explores more LABS sequences than
the other two algorithms, giving the best solutions. On the other hand, the SDLS-2
algorithm explores much fewer sequences, but the quality of the solutions is promising.

The new SDLS algorithms presented show a significant improvement in effec-
tiveness compared to the traditional SDLS approach. Implementation can be further



A parallel approach for metaheuristics solving the LABS problem... 47

integrated with meta-heuristics such as evolutionary algorithms, which constitute a
basis for the concept of a hybrid computational environment in the master-slave model
that was proposed in [17].

In the near future, the authors plan to implement parallel variants of the self-
avoiding walk algorithm or other solvers such as lssOrel or xLostavka. We will also
show that we considered extending the search neighborhood in tabu search heuristics
and propose new variants of the algorithm dedicated to the GPGPU. The next inter-
esting and promising direction of research is to design and implement an evolutionary
multi-agent system with local optimization on GPGPU units.

Acknowledgements

The research presented in this paper was realized thanks to the funds of the Polish
Ministry of Science and Higher Education assigned to AGH University of Science and
Technology.

References

[1] Bartholomew-Biggs M.: The Steepest Descent Method. In: Nonlinear Optimiza-
tion with Engineering Applications, pp. 1-8, Springer US, Boston, MA, 2008.
doi: 10.1007/978-0-387-78723-7_7.

[2] Bernasconi J.: Low autocorrelation binary sequences: statistical mechanics and
configuration space analysis, Journal De Physique, vol. 48, pp. 559-567, 1987.
doi: 10.1051 /jphys:01987004804055900.

[3] Boskovi¢ B., Brglez F., Brest J.: Low-Autocorrelation Binary Sequences: On
Improved Merit Factors and Runtime Predictions to Achieve Them, arXiv e-
prints, arXiv:1406.5301, 2014. doi: 10.1016/j.as0c.2017.02.024. 1406.5301.

[4] Brest J., Boskovié¢ B.: A Heuristic Algorithm for a Low Autocorrelation Binary
Sequence Problem With Odd Length and High Merit Factor, IEEE Access, vol. 6,
pp. 4127-4134, 2018. doi: 10.1109/ACCESS.2018.2789916.

[5] Brest J., Boskovié¢ B.: In Searching of Long Skew-symmetric Binary Sequences
with High Merit Factors, 2020.

[6] Dott 1., Van Hentenryck P.: A Note on Low Autocorrelation Binary Sequences.
In: F. Benhamou (ed.), Principles and Practice of Constraint Programming —
CP 2006, pp. 685-689, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
doi: 10.1007/11889205_ 51.

[7] Gallardo J.E., Cotta C., Fernandez A.J.: A Memetic Algorithm for the Low Au-
tocorrelation Binary Sequence Problem. In: Proceedings of the 9th Annual Con-
ference on Genetic and Fvolutionary Computation, pp. 1226-1233, GECCO ’07,
ACM, New York, NY, USA, 2007. doi: 10.1145/1276958.1277195.

[8] Gallardo J.E., Cotta C., Ferndndez A.J.: Finding Low Autocorrelation Binary
Sequences with Memetic Algorithms, Appl Soft Comput, vol. 9(4), pp. 1252-1262,
2009. doi: 10.1016/j.as0c.2009.03.005.


https://doi.org/10.1007/978-0-387-78723-7_7
https://doi.org/10.1007/978-0-387-78723-7_7
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1051/jphys:01987004804055900
https://doi.org/10.1016/j.asoc.2017.02.024
https://doi.org/10.1016/j.asoc.2017.02.024
https://doi.org/10.1016/j.asoc.2017.02.024
1406.5301
https://doi.org/10.1109/ACCESS.2018.2789916
https://doi.org/10.1109/ACCESS.2018.2789916
https://doi.org/10.1109/ACCESS.2018.2789916
https://arxiv.org/abs/2011.00068
https://arxiv.org/abs/2011.00068
https://doi.org/10.1007/11889205_51
https://doi.org/10.1007/11889205_51
https://doi.org/10.1145/1276958.1277195
https://doi.org/10.1145/1276958.1277195
https://doi.org/10.1145/1276958.1277195
http://dx.doi.org/10.1016/j.asoc.2009.03.005
http://dx.doi.org/10.1016/j.asoc.2009.03.005
https://doi.org/10.1016/j.asoc.2009.03.005

48 Dominik Zurek et al.

[9] Golay M.: The merit factor of long low autocorrelation binary sequences (Cor-
resp.), IEEE Transactions on Information Theory, vol. 28(3), pp. 543-549, 1982.
doi: 10.1109/tit.1982.1056505.

[10] Giinther C., Schmidt K.U.: Merit factors of polynomials derived from difference
sets, 2016. doi: 10.1016/j.jcta.2016.08.006.

[11] Halim S., Yap R., Halim F.: Engineering Stochastic Local Search for the Low Au-
tocorrelation Binary Sequence Problem. In: Principles and Practice of Constraint
Programming, vol. 5202, pp. 640-645, 2008. doi: 10.1007/978-3-540-85958-1_57.

[12] Jedwab J., Katz D.J., Schmidt K.U.: Advances in the merit factor problem
for binary sequences, Journal of Combinatorial Theory, Series A, vol. 120(4),
pp- 882-906, 2013. doi: 10.1016/j.jcta.2013.01.010.

[13] Kowol M., Byrski A., Kisiel-Dorohinicki M.: Agent-based Evolutionary Comput-
ing for Difficult Discrete Problems, Procedia Computer Science, vol. 29, pp. 1039—
1047, 2014. doi: 10.1016/j.procs.2014.05.093.

[14] Leukhin A.N., Potekhin E.N.: A Bernasconi model for constructing ground-state
spin systems and optimal binary sequences, Journal of Physics: Conference Se-
ries, vol. 613, p. 012006, 2015. doi: 10.1088/1742-6596,/613/1/012006.

[15] Moore C., Mertens S.: The Nature of Computation, Oxford University Press,
Inc., USA, 2011. doi: 10.1093/acprof:0s0,/9780199233212.001.0001.

[16] Packebusch T., Mertens S.: Low autocorrelation binary sequences, Journal
of Physics A: Mathematical and Theoretical, vol. 49(16), p. 165001, 2016.
doi: 10.1088/1751-8113/49/16/165001.

[17] Pietak K., Zurek D., Pietrofi M., Dymara A., Kisiel-Dorohinicki M.: Striving for
performance of discrete optimisation via memetic agent-based systems in a hybrid
CPU/GPU environment, Journal of Computational Science, vol. 31, pp. 151-162,
2019. doi: https://doi.org/10.1016/j.jocs.2019.01.007.

[18] Ukil A.: On asymptotic merit factor of low autocorrelation binary sequences.
In: IECON 2015 — 41st Annual Conference of the IEEE Industrial Electronics
Society, pp. 004738-004741, 2015. doi: 10.1109/TECON.2015.7392840.

[19] Velazquez-Gutierrez J.M., Vargas-Rosales C.: Sequence Sets in Wireless Commu-
nication Systems: A Survey, IEEE Communications Surveys Tutorials, vol. 19(2),
pp. 1225-1248, 2017. doi: 10.1109/COMST.2016.2639739.

[20] Walsh T.: CSPLib Problem 005: Low Autocorrelation Binary Sequences, http:
/ /www.csplib.org/Problems/prob005. Accessed: 2017-01-31.

[21] Zeng F., He X., Zhang Z., Xuan G., Peng Y., Yan L.: Optimal and Z-Optimal
Type-1I Odd-Length Binary Z-Complementary Pairs, IEEE Communications Let-
ters, vol. 24(6), pp. 1163-1167, 2020. doi: 10.1109/LCOMM.2020.2977897.

[22] Zhao L., Song J., Babu P., Palomar D.P.: A Unified Framework for Low Autocor-

relation Sequence Design via Majorization—-Minimization, IEEE Transactions on
Signal Processing, vol. 65(2), pp. 438-453, 2017. doi: 10.1109/TSP.2016.2620113.


https://doi.org/10.1109/tit.1982.1056505
https://doi.org/10.1109/tit.1982.1056505
https://doi.org/10.1109/tit.1982.1056505
https://doi.org/10.1016/j.jcta.2016.08.006
https://doi.org/10.1016/j.jcta.2016.08.006
https://doi.org/10.1016/j.jcta.2016.08.006
https://doi.org/10.1007/978-3-540-85958-1_57
https://doi.org/10.1007/978-3-540-85958-1_57
https://doi.org/10.1007/978-3-540-85958-1_57
http://www.sciencedirect.com/science/article/pii/S0097316513000216
http://www.sciencedirect.com/science/article/pii/S0097316513000216
https://doi.org/10.1016/j.jcta.2013.01.010
https://doi.org/10.1016/j.procs.2014.05.093
https://doi.org/10.1016/j.procs.2014.05.093
https://doi.org/10.1016/j.procs.2014.05.093
https://doi.org/10.1088/1742-6596/613/1/012006
https://doi.org/10.1088/1742-6596/613/1/012006
https://doi.org/10.1088/1742-6596/613/1/012006
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
http://dx.doi.org/10.1088/1751-8113/49/16/165001
https://doi.org/10.1088/1751-8113/49/16/165001
http://www.sciencedirect.com/science/article/pii/S1877750318307774
http://www.sciencedirect.com/science/article/pii/S1877750318307774
http://www.sciencedirect.com/science/article/pii/S1877750318307774
https://doi.org/https://doi.org/10.1016/j.jocs.2019.01.007
https://doi.org/10.1109/IECON.2015.7392840
https://doi.org/10.1109/IECON.2015.7392840
https://doi.org/10.1109/COMST.2016.2639739
https://doi.org/10.1109/COMST.2016.2639739
https://doi.org/10.1109/COMST.2016.2639739
http://www.csplib.org/Problems/prob005
http://www.csplib.org/Problems/prob005
https://doi.org/10.1109/LCOMM.2020.2977897
https://doi.org/10.1109/LCOMM.2020.2977897
https://doi.org/10.1109/LCOMM.2020.2977897
https://doi.org/10.1109/TSP.2016.2620113
https://doi.org/10.1109/TSP.2016.2620113
https://doi.org/10.1109/TSP.2016.2620113

A parallel approach for metaheuristics solving the LABS problem... 49

[23] Zurek D., Pietak K., Pietron M., Kisiel-Dorohinicki M.: Toward hybrid platform
for evolutionary computations of hard discrete problems, Procedia Computer
Science, vol. 108, International Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland, pp. 877-886, 2017. doi: 10.1016/
j-procs.2017.05.201.

[24] Zurek D., Pietak K., Pietroni M., Kisiel-Dorohinicki M.: New Variants of
SDLS Algorithm for LABS Problem Dedicated to GPGPU Architectures. In:
M. Paszynski, D. Kranzlmiiller, V.V. Krzhizhanovskaya, J.J. Dongarra, P.M.A.
Sloot (eds.), Computational Science — ICCS 2021, pp. 206-212, Springer Inter-
national Publishing, Cham, 2021. doi: 10.1007/978-3-030-77961-0_18.

[25] Zurek D., Pietron M., Pietak K., Kisiel-Dorohinicki M.: A Deep Neural Network
as a TABU Support in Solving LABS Problem. In: D. Groen, C. de Mulatier,
M. Paszynski, V.V. Krzhizhanovskaya, J.J. Dongarra, P.M.A. Sloot (eds.), Com-
putational Science — ICCS 2022, pp. 237-243, Springer International Publishing,
Cham, 2022. doi: 10.1007/978-3-031-08754-7_32.

Affiliations

Dominik Zurek
AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Kamil Pietak
AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Marcin Pietron
AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Marek Kisiel-Dorohinicki
AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Received: 21.10.2024
Revised: 02.02.2025
Accepted: 04.05.2025


http://www.sciencedirect.com/science/article/pii/S1877050917307949
http://www.sciencedirect.com/science/article/pii/S1877050917307949
https://doi.org/10.1016/j.procs.2017.05.201
https://doi.org/10.1016/j.procs.2017.05.201
https://doi.org/10.1007/978-3-030-77961-0_18
https://doi.org/10.1007/978-3-030-77961-0_18
https://doi.org/10.1007/978-3-030-77961-0_18
https://doi.org/10.1007/978-3-031-08754-7_32
https://doi.org/10.1007/978-3-031-08754-7_32
https://doi.org/10.1007/978-3-031-08754-7_32

	Introduction
	SDLS with deep through search algorithm
	SDLS-2 algorithm with extended neighborhood
	Sequential version of SDLS-2
	Parallel version of SDLS-2 for GPGPU

	Parallel version of three variants of SDLS for CPU
	Effectiveness of proposed algorithms
	Conclusions and further work

