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Abstract Multiple different filesystems — including disk-based, network, distributed, ab-

stract — are an integral part of every operating system. They are usually

written as kernel modules and abstracted to the user via a virtual filesystem

switch.

In this paper, we analyze the feasibility of reimplementing the virtual

filesystem switch as a userspace daemon and applicability of this approach in

real-life usage. Such reimplementation will require a way to virtualize processes

behavior related to filesystem operations. The problem is non-trivial, as we as-

sume limited capabilities of the VFS switch implemented in userspace. We

present a layered architecture comprising of a monitoring process, the VFS ab-

straction and real filesystem implementations. All working in userspace. Then,

we evaluate this solution in four areas: portability, feasibility, usability, and

performance. Our results demonstrate possible gains in the use of a userspace-

based approach with monolithic kernels, but also underline problems that are

encountered in this approach.
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1. Introduction

The idea of moving non-critical components off of an operating system from the

kernel has been a recurring theme for at least thirty years. One such component is

the filesystem manager. This is the part of the OS that is responsible for providing

a filesystem-related interface to user applications; i.e. dispatching calls to individual

filesystems, managing mounts, translating paths, and other similar operations. In

this paper, we will analyse how this component can be moved to the userspace in

systems with mostly monolithic and modular kernels.

A filesystem, in its most basic form, is a collection of files and directories, usually

organised into some kind of a structure or hierarchy. When we think of a filesystem,

we tend to connect it with some external storage. However, in addition to disk-based

solutions, there are also many network or special filesystems (e.g. NFS, Lustre1 or

procfs).

A virtual filesystem switch (VFS)2 is a kernel module responsible for providing an

abstraction over individual, heterogeneous filesystems. The userland can access them

with a well-defined, common interface in a nearly transparent way. To emphasise the

difference between a filesystem located on, e.g., the disk and the virtual filesystem,

we sometimes call the former a underlying filesystem.

The kernel provides a filesystem interface to the userland. In this paper, we are

interested mostly in the operations defined by the POSIX standard.

Relationships between these three layers: filesystem interface, VFS and filesys-

tems are shown in Figure 1.

Filesystem interface

Virtual Filesystem Switch

ext3 ext4 NFS btrfs . . .

Kernel

Userspace

Figure 1. The filesystem implementation stack.

This paper also discusses the consequences of moving services from the kernel to

the userspace. In short, the important difference between the kernel and userspace

programs is the lack of rights to perform certain actions. A userspace process can-

not access memory of other processes or change their parameters. Also, userspace

1Available at http://wiki.lustre.org/index.php/Main_Page.
2Sometimes called virtual filesystem.
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filesystems are separated from other services. This increases security and stability

of the system. Moreover, userspace filesystems do not require root capabilities to

be mounted. This typically leads to easier interaction from the end-user point of

view [16].

Despite the advantages described above, there are concerns regarding the per-

formance of user-level kernel services and filesystems. However, with the increasing

computing power of modern processors, this problem plays a smaller and smaller

role. In fact, it was shown that it is possible to implement userspace drivers without

a significant loss of performance [10].

The traditional approach to implementing filesystems has several limitations,

mostly related to the fact that the implementation is done within the OS kernel.

These are:

Lack of extensibility understood as difficulty in extending the functionality. It is a

result of, e.g., a requirement for strict backward compatibility and compatibility

with a particular kernel version.

Difficulties in development as kernel programming is more error-prone than

application-level programming, errors are more fatal, utility libraries are not

available and debugging is harder.

Unportability as kernel code is unportable to unrelated operating systems.

Lower security and stability as mistakes and errors made in the kernel code are

much more dangerous for the end user than those in the userspace code, especially,

if the code has contact with the external world (e.g. remote filesystems). This is

one of the reasons for creating microkernels [6].

Kernel “bloating” i.e. monolithic kernels become too large to maintain [15]. Includ-

ing in the kernel all the filesystems potentially interesting to some users could

greatly increase the size of the kernel3.

Difficulties in usage for the end-user. Classical filesystems require root privileges

for mounting so new devices cannot be easily attached and made available. More-

over, it is not usually easy for the user to add a new filesystem to their system.

2. Short review of selected solutions

There are several methods that can be used to implement a userspace VFS. However,

they provide very different levels of transparency for the user. Also, their convenience

from a developer’s point of view varies. Some require writing code very close to

the operating system, whereas others may be written in any available programming

language. Some of the already-existing solutions, as well as methods used in them,

are discussed below.

3For example, the FUSE project lists currently over 150 filesystems based on it [4].
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2.1. Kernel module – FUSE

Filesystem in Userspace (FUSE) is a userspace filesystem framework for Linux [3, 11].

It consists of a kernel module (fuse.ko), a userspace library (libfuse) and a utility

for mounting filesystems. The main goal of FUSE is to enable secure mounting of

filesystems for an unprivileged user in a manner transparent to applications.

VFS FUSE

ls /tmp/fs libfuse

Filesystem in /tmp/fs

Kernel

Userspace

Figure 2. The architecture of FUSE. A /tmp/fs mountpoint is used as an example.

The kernel module acts as a “bridge” between kernel filesystem interfaces and

userspace applications. It implements the standard Linux VFS interface and, there-

fore, acts as a real filesystem to the kernel. However, instead of performing filesystem

operations on its own, it forwards them to the userspace.

The libfuse library provides an API for implementing real filesystems. It han-

dles forwarded calls from the kernel and executes relevant functions defined by the

filesystem implementation. When mounted, the FUSE filesystem exists as a daemon

process in the user space.

Figure 2 shows the architecture of FUSE and the processing path for the filesys-

tem operations. Communication between the userspace daemon and the kernel mod-

ule is performed over the so-called “filesystem connection”. Its lifetime is limited by

the existing mounts and the exit of the daemon.

From the point of view of the filesystem creator, FUSE greatly simplifies the

implementation of a new filesystem. The operations that need to be implemented by

the developer are much simpler than standard filesystem operations required by the

kernel, and they are usually not directly mapped to filesystem calls. The developer

can use any available libraries or methods to implement its filesystem. It is a direct

result of writing a userspace code. This possibility is actively used by, for example,

348 Łukasz Faber, Krzysztof Boryczko



EncFS4 that uses OpenSSL library to provide encryption capabilities to users. More-

over, filesystems can be implemented in languages other than C. Bindings have been

created, for example, for Python5, Java6 or Erlang7.

An additional benefit for the developer is a possibility to use standard debugging

mechanisms intended to interact with userspace code, e.g. GNU Debugger (gdb),

Valgrind, strace and others. It actually may improve the stability of the filesystem

and usually makes the development process easier [2].

The other positive aspect is the portability of such filesystems. Firstly, they are

usually more immune to Linux API changes because FUSE guarantees a stable API

and provides protocol version negotiation during a filesystem initialisation. Secondly,

FUSE itself was ported to other operating systems, e.g.: NetBSD8 (especially [7]

contains a detailed description of this port), MacOS X9 or Hurd10. This means that

a lot of FUSE-targeted filesystems can work on other POSIX platforms without (or

with only slight) changes.

From the filesystem user’s point of view, the most important feature is the possi-

bility to do non-privileged mounts. Also, access is, by default, restricted only to this

user. The support for many filesystems is also very important.

The biggest drawback of FUSE is its performance penalty as compared to more-

traditional approaches. The OS needs to perform at least one additional mode switch

and must send data between user- and kernelspace.

2.2. Explicit userspace virtual filesystem – GVFS

By the explicit userspace virtual filesystem, we understand a library that provides

all common filesystem operations in the form of a public API. It implies that the

program using this kind of a filesystem must explicitly call functions provided by this

library. Operations provided by the library do not need to match those offered by

the underlying OS. The use of a filesystem of this kind greatly reduces the burden

of porting the application to other platforms, as all the filesystem operations are

provided by an abstract interface. Some of the better-known virtual filesystems in

this category are GVFS, KIO11 and Commons VFS12.

GVFS is a virtual file system for GNOME13. It consists of two parts [5]:

GIO — a shared library providing API for accessing the VFS,

4Available at http://www.arg0.net/encfs.
5Available at https://code.google.com/p/fusepy/.
6Available at http://sourceforge.net/projects/fuse-j.
7Available at https://code.google.com/p/fuserl/.
8Available at http://www.netbsd.org/docs/puffs/.
9Available at http://fuse4x.org/.

10Available at http://www.nongnu.org/hurdextras/.
11Available at http://api.kde.org/4.x-api/kdelibs-apidocs/kio/html/.
12Available at https://commons.apache.org/vfs/index.html.
13Available at http://www.gnome.org/.
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GVFS — which provides backends, e.g. for protocols such as SSH, FTP, ObexFTP,

and a daemon (gvfsd) that tracks GFVS mounts.

GVFS architecture is shown in Figure 3.

GIO provides a higher-level interface than the POSIX calls. It is designed to be

“document-centric” [5]. In addition to simple file operations, it supports I/O streams,

sockets, file monitoring, D-Bus integration, asynchronous I/O, etc. Some of these

operations are strictly related to standard system calls. For example, g_file_delete

is a method similar to unlink. Yet, most of the GIO methods provide much more

complex operations, e.g. g_file_get_parent that returns a parent directory of a file.

The GIO API is object-oriented and quite complex. For example, it has over one

hundred methods operating on the GFile file object.

Application GIO

dbus

Main daemon

Mount daemons

Figure 3. The architecture of GVFS.

The virtual system runs wholly in OS daemons [8]. There is one main daemon

that keeps track of all user mounts and a separate daemon for every mount. An appli-

cation does not have to link to, or even know about, the existence of backend-specific

libraries. The communication is performed over dbus connections. Unfortunately,

this approach is completely opaque to the user. There is no easy way to use files from

a filesystem of this kind, with applications that were not written to explicitly exploit

its functionality.

2.3. Overriding dynamically loaded libraries – libtrash

Another way to create a userspace filesystem is to replace the standard library of the

employed programming language. Typically, it will be the standard C library. The

replacement is done by altering the work of the dynamic loader. In Linux, it is usually

done by modifying the LD_PRELOAD variable, as illustrated in Listing 1 [14].

This works because the called function is searched in linked libraries in the order

they were loaded. Chains of the function name resolution are shown in Figure 4.
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Listing 1 An example usage of LD_PRELOAD.

LD_PRELOAD="/path/to/replacement.so:$LD_PRELOAD"

./ program_to_run

Application

glibc

Kernel

Application

mylib

glibc

Kernel

Figure 4. On the left: a call chain without library preloading. On the right: a call chain in

an application executed with LD_PRELOAD=./libmylib.so.

In order to stub a call to, e.g. the open syscall, the library has to define a function

with the same exact name as the stubbed function.

One example of LD_PRELOAD usage is libtrash14. It is a shared library that can

be preloaded, and that transparently implements the trash functionality for Linux.

It intercepts potentially destructive calls from the standard C library and backs up

removed or modified data.

2.4. ptrace system call – Goanna

The ptrace is a common Unix system call15 used for process tracing. It lets the calling

process trace the execution of another process. ptrace is available in several Unix and

Unix-like systems, including: Linux, FreeBSD, NetBSD, Mac OS X [1] and UnixWare

[17]. However, its implementations provide very different sets of capabilities. The

most limited implementation is the one available in Mac OS X. It offers little more

than single-stepping. The Linux implementation, on the other hand, provides a very

wide set of functions: e.g. reading and modification of process data, an emulation

of syscalls, inheriting tracing through fork, etc. ptrace-based approaches to the

filesystem implementation are not new. Frameworks for rapid filesystem development

were created, although, with moderate success. One example is Goanna, presented in

2007 [18].

14Available at http://pages.stern.nyu.edu/~marriaga/software/libtrash/.
15Commonly abbreviated as syscall.
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Goanna was created mainly for prototyping of experimental filesystems. The

authors of Goanna focus on reducing the effort of a filesystem developer during the

prototyping and debugging of their code. In order to do so, they have built a ptrace-

based monitoring infrastructure. The architecture of Goanna is simple. It consists of

a single userspace monitor process that dispatches system calls to multiple filesystems.

The fact that Goanna has one narrow task to perform makes it possible for its authors

to freely use all the facilities provided by the Linux kernel and even extend the kernel

itself.

Our approach, although similar in nature to Goanna, is focused on creating a

more end-user-centered and portable solution. In the prototype, we intentionally fo-

cus on creating an architecture that would require minimal effort for porting to other

operating systems and, at the same time, would simplify the interface for filesystem

developers. Therefore, we try to avoid using platform-specific features. This is in

contrast to Goanna, where, for example, modifications to Linux ptrace implemen-

tation are suggested in order to improve execution speed. Another main difference

to Goanna is an approach towards implementation architecture. For better porta-

bility, our system introduces three strictly-separated layers, while Goanna’s monitor

is joined with the specific filesystem that is using it. Overall, Goanna is much more

lightweight than our solution due to its specialization as a prototyping framework.

2.5. Summary

Table 1 summarizes the comparison given in this section. Categories shown therein

are related to the issues pointed out in the description of the discussed technological

solutions. Overhead is related to additional computational work when using a given

solution; portability relates to how easily a given solution may be reimplemented on

another OS; transparency says how well it integrates with standard OS tools and how

transparent it is to the user; limitations enumerates special limitations of a given

solution.

Table 1

Comparison of the discussed VFS solutions.

Solution Overhead Portability Transparency Limitations

FUSE medium low very high requires module in the
kernel

Explicit UVFS small high none no interaction with
standard OA tools

Overriding
DLL

variable,
typically small

depends on
the underlying
library

high easily circumvented; does
not work with statically
compiled applications

ptrace very high high high
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3. ptrace-based portable userspace VFS

This section describes our approach to the implementation of the userspace virtual

filesystem. It discusses both the high-level conceptual view of the system and low-

level implementation details. We start with the description of the logical architecture

and then move to the details of the system layers and solutions used within them.

3.1. High-level architecture

K
er
n
el

User process

Process monitor

VFS

Filesystems

Figure 5. The logical architecture of the proposed system.

The conceptual view of the architecture is shown in Figure 5. Four logical layers

can be defined:

1. the user process layer in which the executed user process is being run,

2. the monitor layer, which controls the user process and emulates its system calls,

3. the virtual filesystem switch layer that takes care of presenting a common inter-

face, for all supported filesystems,

4. the filesystems layer that consists of all loaded and mounted filesystems and

performs the actual processing of requests.

Additional requirements for these layers are:

1. the only layer that can depend on an underlying OS is the monitor layer,

2. the VFS and filesystems layers are global in the operating system,

3. programs see changes introduced to the filesystem by other processes, as we

emulate the real VFS,

4. user applications have in their disposition a wholly-emulated filesystem, so there

is no direct interaction with the host filesystem interface,

5. the system has to be able to work with multiple user processes,
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6. the VFS and monitor layers should not have any assumptions about the com-

munication between them; in particular, no external communication might be

needed in the single process case,

7. there is no interaction between non-adjacent layers.

3.1.1. Monitor layer

The main role of the monitor layer is to intercept all system calls of the user process,

choose these that should be virtualized and rerouted to the VFS layer. The process

monitor is called a tracer and its children (i.e. observed processes) are called tracees.

Tasks for this layer include:

1. starting and monitoring the running user process,

2. following forks, clones and replacements (execve) of this process,

3. analyzing, restarting and aborting selected system calls and signal deliveries.

3.1.2. Virtual filesystem switch layer

The virtual file system layer is an equivalent of the virtual system interface of the

OS kernel. It implements all operations exposed to the userspace by system calls. It

also defines an interface for a concrete filesystem to implement. Tasks for this layer

include:

1. process-related:

(a) tracing data about processes (e.g. current working directory),

(b) keeping information about open files,

(c) keeping information about mapped memory regions;

2. filesystems-related:

(a) handling mounting of filesystems and keeping the filesystem tree,

(b) translation of process-relative data to mountpoint-relative data (e.g. transla-

tion of an absolute path of a file to its equivalent relative to the root directory

of the mountpoint),

(c) simplifying the interface of filesystems.

3.1.3. Interface for filesystems

Implemented filesystems may provide only a subset of operations that are available

to the user process. Moreover, not all of these operations have equal semantics. The

reason behind this is that a lot of operations can be generalized and, thus, simplified.

For example, chown function may exist in three versions:

• chown which receives a path and follows symlinks,

• lchown which it receives a path and does not follow symlinks,

• fchown which it receives a file descriptor and follows symlinks.

A VFS can perform converting a file descriptor to a path or dereferencing a

symlink on behalf of the target filesystem. Therefore, the underlying filesystem needs

to provide only the lchown operation. Additionally, there are functions that can be

completely handled within the VFS, e.g. chdir syscall.
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3.2. Implementation details

Figure 6 shows what the physical architecture of the prototype looks like. There are

three group of processes shown:

• user processes, i.e. applications started by the user,

• process monitors, i.e. monitors attached to the user processes,

• one global VFS daemon.

There is an n : m relation between the number of user processes and monitors.

The number of monitors is always lower than the number of user processes. This is

due to the fact that, when a user process forks, there is no new monitor created. The

monitor is based on the ptrace syscall and is implemented as a simple state machine.
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Figure 6. Physical implementation of the proposed system.

3.3. System call inspection

The system call inspection is performed in the monitor layer. Its role is to intercept

all system calls, obtain information about them, decide whether a syscall is related to

the filesystem, and collect all data from the tracee. The monitor layer is dependent
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on the operating system and, therefore, its structure is also related to OS. For Linux,

the following units are defined:

1. ptrace-based monitor,

2. methods for obtaining data from the memory and registers of the tracee,

3. list of all syscalls with metadata, including number, name, number of parameters,

an action to be performed, and a pointer to the stub,

4. implementation of stubs for the RPC service [19].

Inspection is performed using the ptrace function. After every stop, the tracee

is restarted with PTRACE_SYSCALL call that forces it to stop at both the entry and the

exit from a syscall. When the tracee stops, a reason for stopping is inspected. The

stop may occur for many reasons, so we need to be able to differentiate between them.

The tracer waits for a child to stop using the waitpid function. After returning from

this call, the status is inspected to see what action should be performed. If the child

stopped due to a system call, its state is TRST_RUNNING. Then, the routine related

to syscall inspection is executed. First, the process registers are obtained using the

ptrace call PTRACE_GETREGS. Second, the type of the syscall is checked. Three types

are recognized:

1. filesystem-related syscall that needs straightforward stubbing and forwarding,

2. memory-mapping related syscall that needs to be examined before forwarding,

3. other syscall that is ignored and executed directly by the kernel.

In the first case, following actions are performed:

1. data about the syscall is saved in the child structure,

2. the state of the child is changed to TRST_IN_SYSCALL,

3. the syscall is canceled by overwriting the syscall number to −1,

4. a VFS stub is called and the return value is saved in the child structure,

5. the child is restarted,

6. if the child stops just before returning from the cancelled syscall, the return value

from the VFS is written to the registers,

7. the child is restarted again.

Handling of memory-mapping operations is described in Section 3.4. For all other

system calls, the monitor restarts their execution without performing any actions.

3.3.1. Syscall error handling (errno)

Sometimes a syscall needs to notify the caller about an error that occurred during its

execution. From the point of view of a user application, such information is passed

through the errno variable and a predefined return code16. However, there is no

special interface on the kernel side — an error is returned the same way as correct

values. Accordingly, the process monitor returns the error to the application by

setting the RAX register and the standard C library perform actions necessary to store

the error value in an appropriate place.

16Usually −1.
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3.4. Memory-mapping operations

Memory mapping presents a more-complex challenge than normal filesystem opera-

tions. First, all memory maps must be created by the OS kernel as it needs to know

which memory regions are in use. Second, some mappings may be created without

any associated file. Third, the tracer has no way to control what happens when the

user process access mapped memory.

All memory mappings that are backed by the filesystem are replaced with anony-

mous ones. Access to these anonymous mappings is forbidden to the process, so the

tracer will be notified by the kernel when the process wants to read from a mapped

memory page. When this happens, memory is filled with the data from the file. If

the mapping was created with write access, the modified data is written on call to

msync or munmap.

On a more-technical level, handling of memory-mapped filesystem operations

involve:

1. when mmap is called with a file descriptor or without MMAP_ANONYMOUS, it is con-

verted to an anonymous mapping with the PROT_NONE access;

2. the original data about mapping is sent to the VFS layer;

3. when the tracee tries to access the memory page with PROT_NONE access, SIGSEGV

is generated and delivered to the tracer;

4. the tracer consults with the VFS whether the address that generated the page

fault is located in any mapped region; if so, it receives appropriate data from the

backing file and puts it into this memory region;

5. the memory is unlocked by an injected mprotect call;

6. the tracee is restarted.

Of course, all operations are validated against the original values: if the original

access did not have PROT_READ permission, it would not be allowed. Writes performed

by the user are noticed in the same way as reading from the region, i.e. by being

notified with the SIGSEGV signal. It is also important for the implementation to allow

splitting regions and changing their properties, as these are very common operations.

3.5. Communication between monitors and VFS daemon

Communication between the process monitor layer and VFS daemon is performed

using a remote procedure call interface from the protobuf-c17 library. The RPC

model was preferred over other models (e.g. shared memory). It is simple and it fits

well with the way both layers operate. Most of the time, the process monitor forwards

the intercepted calls to the VFS without any modification or additional actions.

For simplicity, calls in the prototype from the monitor layer to the VFS daemon,

are synchronous and blocking. However, in actual OS deployment, they can be asyn-

chronous and non-blocking. This is due to the fact that one monitor will usually be

17Available at https://code.google.com/p/protobuf-c/.
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tracing more than one process. With asynchronous processing, the monitor can start

a call to the VFS daemon and then serve another stopped process instead of waiting

for the call to finish.

3.6. VFS layer

The VFS layer, as shown in Figure 5, is mapped into a daemonised process with

a running RPC service that dispatches calls to the skeletons, which later forward

them to the functions implementing VFS logic. These functions handle such issues

as process identification, input sanitization, etc. In the very end, calls are forwarded

to the underlying filesystems.

The main logic of VFS is implemented as a single shared library. It is linked with

the daemon module that is able to load the configuration (e.g. initial mounts), which

starts the protobuf-c service. The library containing the RPC skeletons is also linked

to the program.

3.6.1. RPC skeletons

The role of the skeletons is to receive data from the RPC service, allocate additional

memory needed for out parameters and call the proper method in the VFS. The

memory allocation is performed here due to the requirement that the VFS must work

with any possible communication layer. Furthermore, overhead may be reduced when

memory allocation is performed in the monitor process.

3.6.2. Filesystem operations

Filesystem operations that the VFS provides have interfaces designed after their stan-

dardized equivalents (i.e. POSIX operations they implement). They are executed to

sanitize input values and provide the underlying with data that it understands. Usu-

ally, these operations take parameters very similar to their POSIX counterparts plus

the pid parameter which carry the PID of the process executing the syscall. Listing 2

shows, as an example, the signature of the truncate system call.

This function needs to: a) obtain the real path using the information about the

process, b) obtain the mountpoint relevant to the path (i.e. the filesystem in which

this path is located), c) obtain the path relative to the root of the mountpoint, and

d) call the real filesystem method with the appropriate path.

Listing 2 The signature of the truncate function.

int vfs_truncate(const char *path , off_t length , pid_t pid);

3.6.3. Process Identification and Related Information

The userspace VFS cannot rely on kernel to keep an updated information about user

processes. Additionally, in most cases, such data cannot be stored by kernel as it

358 Łukasz Faber, Krzysztof Boryczko



is incompatible with its view of the world. At least the following parameters of the

process needs to be stored in VFS for the minimal working prototype:

1. its current working directory,

2. its open files,

3. mapped memory regions.

Adding other classes of system calls may require storage of other data in the

VFS. Some of this data may require specialized structures, both to make them easier

to work with and to speed up operations involving them. The open files are stored in

the array with integer keys. These keys are file descriptors passed to user processes.

For the memory regions, balanced binary trees are used, as implemented in the GLib

library. Their properties allow for an easy look-up of the memory region that contains

a specified address. This is especially useful when the memory region is being split

in two by the user process.

3.6.4. Mountpoints

The VFS needs to store all mounted filesystems along with their mountpoints. It also

must be able to locate the last mountpoints for the path to be looked up. The mount-

points could be stored in a simple list, but then it would be hardly usable. Instead,

a partial directory tree is constructed and stored in a n-ary tree with directories as

nodes. It is partial because it contains only nodes required for storing mountpoints

and does not cache all directories. When the VFS needs to locate an appropriate

mountpoint for a path it iterates over each level of the tree, looking for matching

pathname prefixes.

3.6.5. Filesystem loading and mounting

Filesystems are implemented as dynamically loaded shared libraries. They are stored

in a hash map with their names being the keys. This allows for their reloading,

replacing, and even running different versions of the same filesystem at the same

time. Mounting is performed by attaching the data about a mountpoint (e.g. its

options) to the aforementioned partial directory tree.

3.7. Filesystems layer

Underlying filesystems should be stateless, i.e. not bound to a single mountpoint.

This way, each filesystem may be mounted many times, and every mountpoint will

use the same instance of it. Data that is required for correct operation should be

passed by the VFS.

The created filesystem must conform to certain rules:

1. it must define structure that describes its available operations; this is basically a

list of pointers to functions;

2. it must provide an init function and register itself in the VFS; in its first pa-

rameter is a filesystem name and the second parameter is a structure that defines

its operations;

3. a negative returned value from an operation should be a correct errno error code.
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4. Evaluation

Both the theoretical and practical aspects of the proposal described in previous sec-

tions were validated in four areas outlined before(above?):

1. efficiency of executing common operations in typical scenarios,

2. usefulness of the system from the filesystem developer point of view,

3. portability to other operating systems inheriting from the Unix philosophy and

based on POSIX,

4. feasibility.

4.1. Efficiency

This part is carried out strictly for the sake of completeness as a comparison to

other solutions. There is no doubt that the fully-userspace approach (which needs to

emulate the kernel) will perform worse than non purely-userspace implementations.

However, our goal is to see how large performance penalty is involved.

4.1.1. Methodology

A simple benchmark was created without employing external, off-the-shelf testing

utilities. This is, in part, due to the fact that the benchmark used for the prototype

needs to have all its filesystem calls virtualized. Additionally, using our own solution

allows us to test non-transparent virtual filesystem switches such as GVFS.

Two sets of tests were performed; the first involved many short FS operations,

whereas the second was based on a few long operations. The first set of tests was

based on the skeleton with calls to short, fast functions, like: [f]stat, chdir, mkdir,

etc. The simple test involved only the skeleton, whereas the writes test added one-

megabyte writes to opened files, and the reads test added similar reads. In these tests,

we counted the number of executions of the whole operation within ten seconds. The

second set of tests measured the execution time of a single long-running operation a

number of times. The write test wrote a 500 MiB file of random data, and the read

test read a 500 MiB file. The read with seek test performed one hundred 50 MiB

reads from random offsets in a file. The position was set using lseek. The last test

— lstat — involved running a single function (lstat) 100,000 times to compute the

overhead introduced by the prototype for a single, short call. This test was not run

with GVFS as it has no exactly-equivalent operation.

In all test cases, the time was measured using clock_gettime with the

CLOCK_MONOTONIC clock. All tests were run on the tmpfs-backed filesystem, to reduce

potential effects of disk I/O. The tests were run on the bare kernel VFS, a FUSE-

based transparent filesystem, GVFS, and our prototype-based transparent filesystem.

All tests were executed on a system equipped with an AMD Phenom II X6 1055T

processor and 8 GiB of RAM, 667 MHz memory clock rate, using Debian GNU/Linux

with 3.0 kernel.
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4.1.2. Results

The results from the first and the second set of tests are shown in Table 2 and Table 3

respectively. They are consistent. The kernel outperformed all of userspace-based

approaches. FUSE was worse than GVFS, which could be explained by additional

communication between a userspace daemon and the kernel. The prototype was slow-

est, as its operation involved even more kernel–userspace interactions than in FUSE.

It only performed better with big-write operations. Moreover, the read with seek test

has shown that the performance of the proposed prototype is closely related to the

number of operations. With a small amount of long calls, it performs reasonably well,

while for many short operations, its efficiency decreases. It is a direct consequence

of the communication overhead. The lstat test shows that, for a short operation,

the prototype performs over 1200 times worse than the native version that uses ker-

nel without any additional layers. Very good results of GVFS may suggest that it

optimizes local operations and does not route them through the separate daemon.

Table 2

A comparison of the average execution time in milliseconds. The results were obtained by

executing specific tests for 10 seconds and counting the number of runs.

Test Kernel FUSE GVFS Prototype

simple 0.4072 34.7222 16.5017 175.4386

writes 48.5437 1428.5714 71.9424 1666.6667

reads 34.6021 416.6667 54.0541 1666.6667

Table 3

A comparison of execution times (in seconds) for the tests of long-running operations.

Test Kernel FUSE GVFS Prototype

write
Average 0.5831 8.1545 0.6674 5.2596

Std. dev. 0.1037 0.2004 0.0597 0.2122

read
Average 0.4322 2.6334 0.4229 4.7311

Std. dev. 0.0145 0.0164 0.0154 0.0476

read with seek
Average 2.4026 4.0808 2.2852 44.353

Std. dev. 0.0592 0.0324 0.0422 0.4655

lstat
Average 0.0384 0.0414 — 48.409

Std. dev. 0.0027 0.0034 — 0.2576

4.2. Usefulness

As mentioned in earlier sections of this work, some of the important goals that

userspace development should fulfill (compared to the in-kernel modules) are eas-
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ier programming and higher code quality. The proposed solution seems to fulfill these

requirements. Individual filesystems are created as separate shared libraries that are

loaded on-demand by the VFS during the first mount operation involving its filesys-

tem. This implies that the shared libraries can be separately tested and debugged.

They can also be easily replaced without recompiling the rest of the proposed proto-

type. Additionally, with some work, the filesystems implementations could even be

replaced in runtime.

Userspace implementations are lightweight. The sample, transparent localfs

takes around 240 lines of code in C (with logging). This is because of providing

a strict, simple interface to implemented filesystems. Some operations are handled

entirely by the VFS. Closely-related operations (e.g. lchown, chown, chown) require

only one function in the filesystem, as the VFS can implement all of them with one

specific filesystem function; for example, by executing readlink before chown.

4.3. Portability

As a test for the requirement of easy portability to other Unix-like platforms, the

prototype was reimplemented in FreeBSD 9.0. The reimplementation involved only

the process monitor (which was previously planned and necessary). Although the

version of ptrace provided by FreeBSD offers virtually the same functionality as its

Linux equivalent, it has some important differences regarding its usage and semantics

of its operations and parameters. Nevertheless, the requirement of portability was

fulfilled.

The current implementation is prone to difficulties related to non-standard filesys-

tem operations. In other words, operating systems evolve separately and introduce

new functionalities that, although generally similar in behavior, have very different

mechanics and interfaces. These differences create a real problem for the portable

implementation. It is not a problem of the monitor layer, as the implementation is

scalable and the list of system calls is always system-dependent. The problem lies in

the VFS layer that needs to generalize and abstract a common, sensible functionality.

Let us consider an example of asynchronous I/O. Traditionally, there were two

mechanisms available in Unix: select(2) and poll(2) [12]. Nowadays, some plat-

forms offer their improved equivalents. For example, Linux uses epoll(4) and

FreeBSD has kqueue(2) [9, 13]. They have completely different interfaces, although

both use file descriptors as a base for listening to events. We cannot just account

for all possibilities in the VFS layer, because it would become system-dependent and

the code would become complicated. We need to generalize the solution and provide

stubs that would translate it correctly in the monitor layer for all supported operating

systems. There is, however, one unfortunate consequence of such a solution: we can

sensibly support only common and easily abstracted functionalities. Everything that

cannot be done in the monitor layer will need to be handled in the VFS layer, which

is discouraged given our requirements.
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4.4. Feasibility

Evaluating feasibility involves the discussion of whether all aspects of the VFS can be

implemented within the frames of the proposed solution. There are several problems

in the solution and its implementation. The level of complexity is high. Specifically?,

the process monitoring using ptrace involves making many workarounds for special

cases that arise in the system calls (e.g. mmap handling). The correct implementation

of the VFS that conforms to standards and common functionalities of all supported

platforms is not easy either. Usually, there are many border cases that need to be

detected (e.g. incorrect arguments, non-standard extensions) and handled in a sensible

way. It is also worth reiterating that the VFS layer needs to collect all data about

processes that might be required to virtualize their filesystem-related functionality.

Finally, if we would like to ensure that the process is not aware that it is using a

virtual filesystem, we would need to modify the behavior of many other elements of

the operating system (for example the /proc filesystem).

Other related problems are mixed system calls. By mixed, we mean system calls

that do not always need to be virtualized. There are calls, like the aforementioned

select, that uses many file descriptors. Some of them may be strictly kernel-backed

(e.g. sockets, pipes), and some may be virtualized by our system. Such a situation

implies that every call to select must be analyzed, and a decision on how to handle

these mixed arguments must be made. We can:

• fully reimplement the function, in which case, it would need to be handled by the

monitor as it is not a VFS function, and also requires handling of events from

the kernel,

• let the user process use a kernel version of the function, but trace its execution.

Also, the kernel should be notified of changes in “our” file descriptors via dummy

ones.

Such analysis and solutions could possibly be applied to other similar system calls.

5. Conclusions and future work

This paper began with a discussion of traditional UNIX filesystems: the solutions they

use and the problems they have. We followed by showing what advantages userspace

filesystems have over the traditional approach. We analyzed the most widely-known

implementation, i.e. FUSE, and later, examined other possible ways for implementing

a userspace filesystem. We chose a low-level solution based on the ptrace function

and system calls emulation and implemented the prototype using this approach. We

validated several aspects of our solution: efficiency, usefulness and portability. On the

basis of this validation, we discussed existing and potential problems with the chosen

approach.

We have been able to fulfill all the set requirements. The initial prototype that

supports most common-system calls have been built successfully, with portable and

flexible architecture. Porting it to FreeBSD involved converting only the process
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monitor. The VFS layer has been implemented in a way that reduces the burden to

filesystem creators.

Although the implementation was successful, it is clear that such a solution

introduces very large overhead due to process tracing, inter-process communication,

and mode switches. There is also an issue with the complexity of the VFS layer,

which needs to take care of many aspects of the system normally reserved for the

kernel: keeping process information, memory mappings, etc.

When looking at the shortcomings described in earlier sections, it is easy to see

what is still needed:

1. adding virtualisation of remaining syscalls on all supported platforms,

2. adding support for more POSIX operating systems,

3. improving efficiency by using more sophisticated techniques in the process moni-

tor or in the VFS; for example, by leveraging better access to the process memory,

possibly with the /proc filesystem, or by introducing caches similar to those kept

by the kernel,

4. solving the issue with handling different implementations of similar functionalities

in various OS (e.g. asynchronous calls).

There are also many issues and improvements to consider that were not mentioned

before. For example, implementing a way for easier VFS debugging by providing

information filesystem for it, similar to /proc, and testing the VFS with the POSIX

compliance tests like the ones used by the NTFS-3G project.18
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