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Abstract | One of the major challenges of document images that can hinder readability
and the analysis of information is low resolution; this is typically caused by
low-pixel density scanning or excessive compression to save storage space. This
results in a loss of fine detail in images, making it difficult to detect critical infor-
mation. To solve these problems, super-resolution techniques are used. These
techniques improve image quality by increasing the resolution while maintain-
ing the fine detail. PSO-WESRGAN is an innovative method that combines
wavelet processing, deep-transfer learning, and particle swarm optimization
(PSO). Wavelet processing analyzes image detail at diverse scales and orien-
tations, while transfer-based deep-learning advantages pre-trained models on
vast image data sets. By integrating PSO, the efficiency of the method is en-
hanced through the optimal exploration of the solution space to identify the
best parameters for the super-resolution model. The experimental results show
the effectiveness of this method and open up prospects for future improvements
in the super-resolution of document images.
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1. Introduction

Digitized documents represent a valuable source of information in many sectors; their
high resolution is essential for making text legible and illustrations visible, thus fa-
cilitating subsequent accurate automatic analysis. However, their quality can be
compromised by various forms of degradation; among these, the low resolution that
results from technical limitations during digitization compromises the accuracy of fine
details. Figure 1 shows low-resolution image examples.
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Figure 1. Low-resolution image examples

This requires advanced image-processing techniques to restore the visual quality
of documents, improve their legibility, and facilitate the accurate extraction of the in-
formation they contain. This article focuses on the development of a super-resolution
approach using bio-inspired and deep pre-processing to improve document image qual-
ity and facilitate the extraction of useful information. Super-resolution aims to in-
crease the resolution of images to reveal fine details and improve their legibility. The
development of image super-resolution methods has distinct changes in levels through
the phases and the corresponding technological changes. These techniques are classi-
fied into two broad families: Single-Image Super-Resolution (SISR), and Multi-Image
Super-Resolution (MISR). The MISR methods increase image resolution by using
a series of LR image scenes. These methods take advantage of information redun-
dancy across multiple images to produce a high-resolution (HR) image. Although
multi-image super-resolution methods may offer significant improvements in high-
resolution image quality in various application fields such as medical [5,8,9,42] and
satellite [3,33,38,41], they face significant challenges related to computational com-
plexity, data availability, and motion-artifact management. These aspects should be
carefully assessed when choosing a super-resolution method for a given scenario. The
second family generates a high-resolution output image using a single low-resolution
input image. These methods offer considerable potential for improving image quality
and resolution — especially for super-resolution document images. In this category,
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we can identify two subcategories of techniques: interpolation-based techniques, and
learning-based techniques (using machine or deep-learning methods). Using math-
ematical techniques, interpolation techniques determine the values of missing pixels
in a LR picture. Although interpolation methods are simple, they can cause noise,
blurring, and false colors and may not capture fine details in high-resolution images
(especially thin lines of text). In our study, we compared our proposed approach with
the following interpolation methods: Bell [26], Bi-linear [36], Bspline [14], Contour
stencils [12,13], Gaussien [34], Hanning [15], Lanczos [11], neighbor [1], Mitchell [27],
and bicubic [16]. Learning-based techniques use machine-learning models’ abilities to
convert low-resolution (LR) images into high-resolution (HR) images, thus surpassing
traditional interpolation techniques in terms of quality and accuracy.

Documents often contain fine text, diagrams, and details that are essential for
their legibility and accurate interpretation. Low-resolution images frequently suffer
from noise, artifacts, and losses of detail; these can cause errors during analysis or
optical character recognition (OCR). In addition, preserving the original layout is
crucial for applications such as archiving or document reuse. The super-resolution
of document images is a major challenge due to the unique requirements of this
type of image. The difficulty is in the ability to reconstruct these textual and visual
details while maintaining the integrity of the document structure. Our method effec-
tively addresses the challenges of the super-resolution of document images by com-
bining wavelet decomposition, pre-driven ESRGAN models, and PSO optimization.
Wavelet decomposition helps preserve critical details, while ESRGAN networks im-
prove visual quality by reconstructing complex textures. PSO optimization ensures
an optimal balance between different sub-bands for a faithful reconstruction. This
approach also improves OCR performance by maximizing readability and preserving
the original layout, providing a robust solution for demanding document applications.
The next parts of the article will review existing deep-learning-based super-resolution
techniques and provide a detailed description of our approach to super-resolution doc-
ument images. In addition, we will discuss the experimental results that support the
effectiveness of our approach to improve document image resolution.

2. Deep-learning-based super-resolution techniques

Super-resolution models using deep learning have demonstrated exceptional perfor-
mance in a number of quality metrics. The most notable approaches in terms of
quality and complexity are: Super-Resolution Convolutions Neural Network (also
known as SRCNN) was developed in [7]. SRCNN is a supervised-learning tech-
nique that allows learning the non-linear correspondence between low-resolution and
high-resolution images. The main layers that define the architecture of the SRCNN
model are the convolution, pooling, and reconstruction layers. The authors of SR-
CNN demonstrated that it gives superior results by enhancing the details and quality
of the generated images. Improved Deep Super-Resolution (IDSR) (discussed in [23])
is characterized by its rather profound neural network architecture proposed to solve
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the degradation issue due to depth by using a solution known as residual connections.
Using residual blocks, Very Deep Super-Resolution (VDSR) [6] is a highly accurate
super-resolution approach using a deep convolution network; this was inspired by the
VGG network for ImageNet classification. Composed of 20 layers, this model effi-
ciently exploits contextual information over large image regions in a cascade of small
filters. To speed up training, high learning rates and gradient clipping are used, en-
suring training stability. The method has shown superior performance in terms of
accuracy and visual improvements over existing methods.

In [48], the authors described the Residual Dense Network for image super-
resolution. This method attempts to employ dense residual blocks to enhance super-
resolution (SR) image quality-learning residual details. Depending on the density of
these residuals, the proposed approach envisages enhancing the details of HR images
using dense residual blocks. RCAN (Residual Channel Attention Networks) is a type
of SR-based deep learning [47]. Some of the unique features of the chosen RCAN ar-
chitecture concern the usage of residual blocks and channel attention. RCAN aims to
extract the essential features of the problem while maintaining a compact model. The
fundamental units of RCAN are deep residual blocks. Each residual block contains
multiple convolution layers, which helps in learning highly non-linear features. The
RCAN method introduces the channel-attention mechanism; this mechanism lets the
network focus on the most informative channels (or features) in each residual block. It
facilitates the identification of important channels for super-resolution and the efficient
allocation of computational resources. Fast and Accurate Image Super-Resolution
with Deep Laplacian Pyramid Networks [20] exploits information at different scales
to reconstruct detailed super-resolved images. Deep Plug-and-Play Super-Resolution
for Arbitrary Blur Kernels [46] uses neural networks to estimate and invert arbitrary
blurs, thus improving image resolution. Uformer: A General U-Shaped Transformer
for Image Restoration [45] proposes a novel method for image-restoration tasks that
makes use of the Uformer, which is an adaptable U-shaped transformer model specif-
ically designed for image-restoration tasks. Uformer is a model that includes an
encoder-decoder structure with skip links. The encoder component extracts multi-
scale information from an input image, while the decoder component reconstructs
the image. The various scales can be reconstructed through skip connections to cre-
ate the image since they help the model maintain and integrate information from
different scales. Super-resolution on a single image using a directional variance at-
tention network [2] proposes the directional variance-based attention network (or Di-
VANet) for image super-resolution. DiVANet presents a new strategy for SR that
includes an optimized attention mechanism (referred to as DiVA) and another system
known as the Residual Attention Feature Group (RAFG). This enhances the quality
of super-resolution, as it works with spatial features and ensures that fine details are
well-handled; all of this is achieved with the model being light, fast, and efficient.
Single super-resolution images by the progressive integration of orientation-sensitive
features [17] provides an SISR-PF-OA that uses an OAM feature-extraction technique
using both 1D and 2D convolution kernels with channel attention. It also presents
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progressive fusion to enhance multi-scale fusion performance, making it potential to
offer high-quality output with high accuracy and less computational complexity as
compared to the other deep-learning methods. SR-FEINR: End-to-End Video Super-
Resolution Through Feature-Enhanced Implicit Neural Representation [24] provides
a new solution for the successive SR of remote-sensing images. The technique consists
of three primary modules: an encoding module, a feature-extraction module, and a
feature-enhanced multi-layer perceptron. The authors in [22] proposed a method for
image restoration known as SwinlIR, which was built on Swin Transformer. SwinIR
has three main components: surface-feature extractors, deep-feature extractors, and
HR-reconstruction modules. The model uses a series of residual Swin Transformer
(RSTB) blocks to extract deep characteristics. Each RSTB is designed with a resid-
ual connection, convolution layer, and Swin Transformer layer set to improve the
extraction of deep features in the restoration process. The authors presented a new
transformer-based technique for the super-resolution of images in [4]. They pro-
vided a hybrid attention transformer (HAT) that incorporates both window-based
self-attention models and channel attention to address geographic information. Multi-
Level Dispersion Residual Network for Efficient Image Super-Resolution [25] was de-
signed to improve the efficiency of image super-resolution (EISR). This model builds
on EADB, which has ECCA and MDSA added to it. The experiments proved the
effectiveness of these techniques. This approach achieved first place in the NTIRE
2023 Efficient SR Challenge. The Super-resolution Generative Adversarial Network
(SRGAN) is a super-resolution method that was introduced in [21]. It is based on the
GAN architecture, which involves two neural networks, a generator, and a discrimina-
tor, which train concurrently. The generator creates a high-resolution version from an
input’s low-resolution image. The discriminator looks for distinctions between images
generated by the generator and actual HR images. The capacity of the generator to
really create super-resolution images is enhanced by this adversarial training process.

Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) [44]
are composed of two opposing neural networks: discriminating, and generating neu-
ral networks. The generator is responsible for transforming an LR image into a more
accurate and detailed HR version. It analyzes large sets of high-resolution images to
identify the relationships between the pixels in an image and learns how to recon-
struct them accurately. By including dense residual blocks and increasing perceptual
loss, the ERGAN model outperformed the SRGAN model. The discriminator acts as
a binary classifier to distinguish real images from generated ones. Designed to operate
efficiently in an image-resolution context, the discriminator is built with convolution
and pooling layers that allow it to extract discriminant characteristics from input
images. Its goal is to maximize its ability to identify subtle differences between real
HR images and those generated by the generator. During the training, the discrimi-
nator and generator are adversely optimized: the discriminator adjusts its weights to
minimize its error between real and generated images. The generator tries to produce
increasingly realistic images to fool the discriminator. This dynamic leads to a grad-
ual refinement of the skills of both networks until a balance is reached, where the
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generator produces high-resolution images that are impossible to distinguish from real
ones. This process allows for the continuous improvement of image-generated quality.

With its more advanced architecture, ESRGAN is better than the SRGAN model
at capturing fine features and producing high-quality images in super-resolution. The
ESRGAN model uses dense connections within the RRDB block to improve overall
system performance when generating high-resolution images. ESRGAN has proven
to produce better results than existing super-resolution techniques. It can produce
high-resolution images that look more realistic and natural by capturing details. Bi-
ESRGAN: A New Approach for Document Image Super-Resolution Based on Dual
Deep Transfer Learning [19] is a new approach to the super-resolution images of low-
resolution documents. This method uses two ESRGAN networks on separate image
cards (the original image, and the contours of the image using the Laplacian filter); it
preserves the texture and graphic properties of document images. The experimental
results demonstrate the superiority of "Bi-ESRGAN” over several other approaches on
a variety of document images, demonstrating significant progress in super-resolution
of document images. Recent advances in deep-learning-based super-resolution models,
which surpass traditional methods in terms of quality and accuracy, have led to the
active exploration of these methods. Our approach is an improvement of the ESRGAN
method by integrating information from wavelet transformations and using the PSO
algorithm. This combination allows us to find the best data balance for optimizing
the resolutions of document images.

3. Proposed approach

Our approach is a super-resolution technique for images of documents that use deep-
learning and bio-inspired methods. Figure 2 demonstrates our technique’s architec-
ture and procedures.

3.1. Wavelet transfer

Wavelet transformation divides an image into several sub-bands; the LL (Low-Low)
sub-band contains the low frequencies of the image. It represents the overall detail
and structure of the image. In general, this is the component that retains the most
information from the original image. The LH (Low-High) sub-band combines low
frequencies in the horizontal direction and high frequencies in the vertical direction,
capturing the horizontal details of the image. In contrast, the HL (High-Low) sub-
band combines horizontal high frequencies with vertical low frequencies; it represents
vertical image detail. The HH (High-High) sub-band contains horizontal and vertical
high frequencies; it represents fine image details such as contours and textures [28,30].
Figure 3 illustrates a wavelet transformation example.

In our method, we chose a decomposition level of 1; this means that the image
was decomposed once, thus generating an approximation sub-band and three detailed
sub-bands. This choice of decomposition was a strategic compromise between the
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amount of information retained in the image and computational efficiency. By reduc-
ing the complexity of the decomposition to a single level, we were able to maintain
the most important details while optimizing the resources needed for processing. By
using wavelets for document images, we separated the fine details from the coarse
components, thus improving the readability of the characters and small structures;
this facilitated the processing of multi-scale information, reduced noise, and optimized
image reconstruction. By independently processing the different frequencies, wavelets
helped to preserve details while minimizing artifacts, resulting in a high-quality super-
resolution image and better preservation of the document structure.

Low-Low sub-band
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Low-High sub-band
Interpolatios
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Input Image High-Low s

ub-band
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Figure 2. Processes and architecture of our SR technique for document images
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Figure 3. Wavelet transformation example

3.2. Training of ESRGAN networks

We used the ESRGAN model pre-trained on nature images (DIV2K, Flickr2K, and
ImageNet) and trained it on the document image database SR_VISIONThis database
was designed at the LIMOSE laboratory of the University of Boumerdes (UMBB) in
order to meet the specific needs of research on super-resolution applied to document
images. It provided a practical framework for the training and evaluation of various
approaches, taking into account the particularities of documentary images such as the
presence of texts, diagrams, and fine details.

The data set was carefully structured into two subsets: TRAIN, and TEST —
each consisted of 757 separate images. This organization ensured a robust learning
process and an independent evaluation of the model’s performance on unseen data.

The images included in this database covered a variety of structures and qualities,
thus providing a realistic challenge for super-resolution models and contributing to
reliable assessments in practical scenarios.

Figure 4 shows an illustration from the SR_VISION data set.

The SR_VISION data set is not public, and access to it is restricted. Due to
confidentiality considerations and internal policy, this data set is for internal use only
and cannot be shared with external parties.
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Figure 4. Illustration from our SR_VISION_LIMOSE data set

In our method, we opted for partitioning the data, where 50% was used for
training, and 50% split between the validation and the testing. This allocation was
intended to ensure optimal model training while maintaining a rigorous assessment
of its performance on independent data. It achieved a balance between learning and
assessment while ensuring that the model could be effectively generalized to new
data. We used pre-trained ESRGAN models on natural images for several reasons
(even though our main target was document images). Firstly, pre-trained models
benefit from transfer learning, capturing a wide range of useful features applicable
to various types of images. This technique significantly reduces the need for specific
training data and computational resources. Natural images also possess textures/pix-
els, objects/backgrounds, etc., which helps the model learn very effectively how to
generalize. This will let it support other kinds of images like document images out
of the box with little extra adjustment. Natural images are easier to collect since
extensive high-quality data sets of such can be found compared to specialized docu-
ment images. Pre-trained models allow one to mitigate such challenges in smaller or
worse quality data sets made for document images. The use of pre-trained models
gave us an initial performance advantage because the model already understood many
common image features. To make it even better, this model was fine-tuned by incor-
porating information from document images, which outperformed training everything
from scratch. Deep-learning models are also computationally expensive to train from
scratch, and it takes a lot of time. When one uses pre-trained models, the training
time is significantly shortened, and far fewer resources are needed while still being
able to realize excellent results. This way, the features learned by training on a large
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base of images can be fine-tuned on our sets and adjusted to better suit document
image specifics, combining broad generality with focused specialization. For training
ESRGAN networks, parallel training was performed on five types of resulting images.
The LL, LH, HL, and HH sub-bands, representing low frequencies, horizontal details,
vertical details, and diagonal details, respectively, were bicubically interpolated to in-
crease their resolution. Each type of image is then used to train a distinct ESRGAN
network:

e ESRGAN_ORJ: trained on original image;

e ESRGAN_LL: trained on interpolated LL sub-band;

e ESRGAN_LH: trained on interpolated LH sub-band;
e ESRGAN_HL: trained on interpolated HL sub-band;
e ESRGAN_HH: trained on interpolated HH sub-band.

These networks are designed to produce high-resolution reproductions of input
images, reducing reconstruction losses and optimizing the visual quality of generated
images. The computational cost associated with driving multiple ESRGAN networks
(one for each sub-band of wavelets as well as for the original image) can be high. This
computational load results from the fact that each network requires significant GPU
resources to be efficiently trained — especially with complex networks like ESRGAN
(which are already very time-consuming). However, our method was eased by using
pre-model training, which had significantly reduced the time and resources required
for training. Using pre-existing models minimizes the need to recalculate parameters
from zero. In addition, we used powerful GPUs, which allowed us to further reduce
the processing time (thus, improving the overall efficiency of the process). We formed
our models using the following configurations: the model was formed for a total of
20 epochs to ensure sufficient convergence and avoid overfitting. Batch size: to guar-
antee strong generalization and effective use of computing resources, a batch size of
32 was used for each training iteration. Learning rate: to ensure steady and progres-
sive learning, we chose a starting learning rate of 0.001. This allowed us to balance
the convergence speed and stability of the model while avoiding oscillations. This
choice was based on proven practices for ESRGAN architecture. The loss function
used was the mean square error (MSE); it calculates the difference in the mean square
between the predicted values of the model and the actual values. This allows us to
measure the gap between the model output and the reference image. MSE is com-
monly used in regression and super-resolution tasks, as it promotes rapid convergence
while improving the accuracy of results.

The optimization function we used was Stochastic Gradient Descent (SGD). It
is called ”stochastic” because it randomly samples data at each iteration to estimate
gradients, making training more effective on large data sets.

By adjusting these parameters, we obtained satisfactory super-resolution quality while
maintaining an efficient and robust model formation.

Transfer learning is used to enhance the efficiency of training and the quality
of the results by reusing the weights of a pre-trained model on a large data set.



PSO-WESRGAN: A novel document image super resolution 15

Consequently, specialized ESRGAN networks improve the resolution and quality of
images by leveraging the unique characteristics of each frequency sub-band.

3.3. Particle Swarm Optimization (PSO)

The PSO algorithm was inspired by the collective behavior of swarms of birds or
schools of fish. It is an optimization algorithm that is implemented to solve certain
types or formats of problems. A search space is explored using a population of
elements (called ’particles’ in PSO). Each particle corresponds to a possible solution
of the problem and is defined by its location and speed in the search space. Each
particle in the PSO algorithm updates its speed based on its individual experience
(pbest solution) and collective memory value (gbest solution) within iterations. The
particles are oriented to a new better position according to these two optimal values.
The particles use their current speed and direction to move in the direction of the
place that has produced the best results [29,35,43]. In the PSO algorithm, the
velocity of particle ”i” at time V;! depends on the velocity of the particle at time
Vfﬁl ("pbest” and ”gbest,” respectively) representing the best position reached so
far by an individual particle and by the whole swarm. Once these two best values are
found, the particle updates its velocityV; and position using the following equations:

t t—1 t t t t
Vis= cd xV +¢2 x (pbest; — X;)+¢3 x (gbest’ — X))
N——
Current movement Particle local search Swarm influence

Here, X! denotes the particle’s actual location in the search area, where cl is the
inertia weight of the particle. When c1 is close to 0, the particle tends to follow its
own best position more (pbest), which can lead to rapid convergence to a suboptimal
(poor) solution. On the other hand, when ¢l approaches 1, the search space is better
explored, but the rate of convergence slows down. Constants ¢2 (individual confi-
dence) and ¢3 (swarm confidence) influence the movement of the particle to a better
position. c¢o represents the coefficient that determines the influence of the best individ-
ual position reached by a particle, while c3 regulates the influence of the best overall
position reached by the entire swarm. These values are usually selected randomly at
the moment by a function like rand(0.1). In addition to emax, a gravitational coeffi-
cient attracts particles to gbest (the best overall position) or pbest (the best personal
position) to improve the search efficiency. However, an excessive value of cmax can
lead to a divergence of the algorithm. It is crucial to emphasize that the optimal
performance of the optimization is achieved when inertia and gravity work together.
Therefore, the values of ¢l ¢max should not be selected independently for effective
convergence. The following formula is then used to update particle position X f“ at
time (¢ + 1):

XH = X! of 1)

A particle j may leave the originally set search space [Xmin, Xmax]” at any
point during the swarm’s development. According to this process, the value of the
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nearest boundary point is then allocated. In practice, this means that Equation (1)
must be changed to the following equation:

X;H‘l — ]\4[]\[(]\414)(()(}5 X ‘/jt,Xmin)7X7nuw) (2)

In addition, this mechanism is often supplemented by a gear change or by the
replacement of the problematic component by its opposite (usually weighted by a co-
efficient less than 1 or by simply by canceling it). In our method, the parameters
of the PSO algorithm were chosen to optimize the balance between the exploration
and the exploitation of the solutions. Inertia factor w = 0.5 favors initial exploration,
then rapid convergence. Coefficient ¢; = 1 ensures a balance between individual
and collective particle searches, thus limiting their overdependence on past solutions.
Coefficient ¢ = 2 encourages particles to focus more on the best overall solution,
thus accelerating the convergence. A swarm of 15 particles and a range of initial
velocities between —2 and 2 enable controlled exploration, while 50 iterations en-
sure rapid convergence and efficient optimization while minimizing computational
costs. These choices offer an optimal compromise among exploration, exploitation,
and computational efficiency. The PSO algorithm seeks to find optimal position
X* = (a1, a9, a3,a4,as5). Using these coefficients found by PSO, the results of the
ESRGAN networks are merged to produce a final high-resolution image. This com-
bination is expressed by the following formula:

I = a1 X IgSRGAN_ORJ + @2 X JESRCGAN_LL + @3 X IRSRGAN_LH

+ ay X IgsrRgANHL + a5 X TESRGAN_HH (3)

where 1,9, a3,aq4,5, is a weighting generated by PSO algorithm, and
IgsrcAN.ORG, IESRGAN LL, IESRGAN_LH, IESRGAN_HL, and IpsraaN_HH are the
image results of the ESRGAN_ORG, ESRGAN_LL, ESRGAN_LH, ESRGAN_HL, and
ESRGAN_HH models, respectively.

These coefficients play a crucial role in optimizing the balance between each
sub-band’s contribution and the original image, aiming to enhance the visual quality
of the final image significantly. During the optimization process, different values of
coefficients are examined to find those that maximize a chosen fidelity metric. The
purpose of this was to maximize the Peak Signal to-Noise Ratio (PSNR) between
the high-resolution output image and the reference image, indicating that the super-
resolution process adequately keeps elaborately small detail and intactness in refining
the quality images. The PSO in our PSO-WESRGAN method of super-resolution for
document images is crucial. PSO is an optimization technique well-suited to our prob-
lem because it allows us to determine the optimal coefficients that weigh the different
sub-bands of the super-resolved image. These coefficients are essential to balance the
contribution of each sub-band and the original image to maximize the visual quality
of the final image. The experiments demonstrated the effectiveness of our approach,
showing significant improvements in terms of the sharpness, preservation of details,
and overall visual quality of the super-resolved documentary images. These results



PSO-WESRGAN: A novel document image super resolution 17

confirmed the ability of our method to meet the high demands of documentary image
processing.

A PC running Windows 11 with an Intel i7-10750H CPU, 32 GB of RAM, 512 GB
hard drive, and an Intel (R) UHDaphics card with an NVIDIA GeForce RTX 2060
graphics card was used to create our technique.

4. Evaluation and results

To assess the accuracy and effectiveness of our super-resolution technique for doc-
ument images, it is essential to carefully examine its quality. We use PSNR and
the Structural Similarity Index (SSIM) as two main indicators. PSNR is a popular
measure to assess the quality of an over-resolved image against a high-resolution ref-
erence. It allows us to evaluate the performance of our super-resolution methods by
quantifying the noise level in the super-resolution image compared to the reference.
Calculated using the logarithm of the maximum pixel range (typically 255 for RGB
images) divided by the square root of the mean deviation between the corresponding
pixels in the super-resolution and reference images, PSNR is expressed in decibels
(dB). A higher PSNR value indicates better super-resolution image quality.

PSNR(IL, Iy) = 10log| ——229" (4)
b S\ /MSE(. L)
where:
1 R—-1C-1
MSE(I, 1) = (5 S 3 (o) ~ Bo(e — )l )
X=0Y=0

The SSIM measure examines image quality in three key aspects: luminance sim-
ilarity (L), contrast similarity (C), and structure similarity (S). These factors are
combined to provide an overall assessment of the structural similarity between two
images (I3 and I). SSIM is considered more advanced than PSNR because it takes
into account how humans perceive images. It is often considered a better indicator of
perceived image quality and is calculated by the following formula:

2uniul2 + cl

L(L,I) = —————5— 6
(71, 12) u§1+ul22+cl (6)
2011019 + ¢l
Cl,I) = 5¥——F—— 7
 2) oh + 07y +cl ©
2 2/2
S(I, 1) _ 20n12+c2/2 (8)

or10r2 +02/2
SSIM(I1,I>) = L(I1, I)* x C(I1, I2)" x S(I1, )" 9)

By setting weights alpha, beta, and gamma, we simplify the formula. The ¢l and ¢2
parameters stabilize the division by keeping the denominator high. The average and
standard deviations of the image are represented by w and sigma, respectively.
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To show the importance of each wavelet sub-band in the super-resolution process,
we performed several comparative studies using various sub-band configurations. We
first simply used the LL sub-band. This allowed us to watch how well the model
performed when a high-resolution image was predicted using only the global infor-
mation from the low-resolution image. Then, we included the HH sub-band, which
contains diagonal details. However, this last step did not provide a significant im-
provement over the use of the LH and HL sub-bands, as the details of the other bands
can sometimes overlap. This redundancy may explain why the PSNR improvement
was not as significant as when we focused on the LH sub-band alone. Finally, we
used all of the available sub-bands, including LL, LH, HL, and HH; this allowed us
to integrate all of the information contained in these different sub-bands for super-
resolution. Each of these sub-bands contributes to capturing specific image details,
whether coarse or fine and horizontal or vertical. These steps show how important
it is to choose the right sub-bands or the right weighting of sub-bands according to
the information they contain to get the best super-resolution results. This demon-
strates the strategic and methodical approach needed to optimize the super-resolution
process using PSO. Table 1 shows the average PSNR values for each LIMOSE-based
configuration.

Table 1

Representative table of PSNR values on LIMOSE database

Configuration PSNR (dB)
ORJ + LL 32,84903
ORJ + LL + LH 33,61347
ORG+LL + LH + HL 33,63208
ORG + LH 33,64842
ORG + LH + HL 33,50335
ORG + LH + HL+ HH 32,0637
Our method (ORG + LL + LH + HL + HH) 33,65108

We observe a significant improvement in PSNR as more wavelet sub-bands are
included in the super-resolution model. The configuration that uses all of the sub-
bands shows the best performance in terms of predicted image quality on this specific
database. The curves in Figures 5 and 6 show the evaluation of our approach with
the different methods using the PSNR and SSIM measures. It should be noted that
the specific PSNR values for each method depend on the parameters used, the data
set, and the specific images to be evaluated. The PSNR, values measure the quality
of the super-resolved image compared to the high-resolution reference image; higher
values indicate better image quality in terms of pixel fidelity.

From Figure 5 and Table 2, we can see that our method has the highest PSNR
score, indicating better super-resolved image quality in terms of fidelity to the refer-
ence image details. ESRGAN comes in second, closely followed by SRGAN, SRCNN
and Bell, Bilinaire, Bspline, Contour stencils, Gaussien, Hanning, Hermite, Lanczos,
Neighbor, and Mitchell obtaining the lowest scores. It is important to note that PSNR
is a quantitative metric that does not take into account certain aspects of the visual
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quality perceived by the human eye. It is therefore recommended to complete the
evaluation with SSIM and human observation to better evaluate the image quality.
Figure 6 shows that our approach tends to obtain better SSIM values, indicating bet-
ter structural similarity between super-resolved images and high-resolution reference
images compared to the other methods.

[ PSO-WESRGAN [l Bell

M Gaussien
B Mitchell
M Bi-ESRGAN

es0e ©

. . ° . . 3 . H ° 3 H
o
L]

r O 0 . O
[ Bi linaire [ Bspline M Contour stencils

B Hanning M Hermite M Lanczos M Neighbor

B ESRGAN [l EDSR "] SRCNN [l SRGAN

Bicubic

Figure 5. Representative PSNR curves obtained by applying different methods

on LIMOSE database

Table 2

Representative table of PSNR and SSIM values on LIMOSE database

Methods PSNR (dB) SSIM
Our method 33,65108 0,849795998
Bell 29,42585 0,797391499
Bi linaire 25,81925 0,796938341
Bspline 29,04785 0,698770523
Contour stencils 27,569125 0,788846099
Gaussien 29,523 0,753854316
Hanning 29,661825 0,798700025
Lanczos 29,678475 0,795954727
Neighbor 28,47185 0,796712643
Mitchell 29,8833 0,798971884
Bicubic 33,3849918 | 0,799521700
ESRGAN 33,30121989 | 0,761439613
EDSR 29,43117478 | 0,802635148
SRCNN 26,94576659 | 0,805519466
SRGAN 27,09932406 | 0,762026427
Bi-ESRGAN 33,50647544 | 0,840099273
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Figure 6. Representative SSIM curves obtained by applying different methods
on LIMOSE database

Figures 7 and 8 present an example of how our method performs when compared
to classic techniques (Bicubic, Biliniar, Lanactoz, and Nearest Neighbor) and deep-
learning methods (SRCNN, EDSR, SRGAN, ESRGAN).

Deep-neural-network-based image super-resolution techniques ESRGAN,
SRGAN, SRCNN, and EDSR vary in their architectures and image quality perfor-
mance. Figures 5, 6, 7, and 8 illustrate how our method more accurately traced the
characters and defined their shapes.

Figures 5, 6, and 7 show that other methods demonstrate good performance in
image accuracy and quality but have limitations in rendering extremely fine details
or complex textures — sometimes resulting in the loss of subtleties. Comparing the
results of our algorithm with classical methods such as Bicubic, Bilinear, Lanczos, and
Nearest Neighbor showed that PSO-WESRGAN outperforms these methods in terms
of PSNR and SSIM, thus indicating better image quality and preservation of image
structures. Visually, our method produces images that are sharper and more faithful
to the details of the reference image, with fewer artifacts and better readability of
documents. SRCNN and EDSR focus on learning nonlinear relationships, showing
good performance but with limitations for very fine details. ESRGAN and SRGAN
significantly improve super-resolved image quality but may be sensitive to artifacts
and irregularities in generated images. Due to the complexity of generative adversarial
networks (GANs), there may be cases where ESRGAN and SRGAN results contain
visible defects, such as blurred contours, halos around objects, and artificial textures.
These artifacts can affect the perceived quality of an image and make the results less
natural.

To evaluate our method effectively, we measured its impact on the accuracy of
OCR systems by comparing it with other super-resolution methods. This comparison
was performed using a set of low-resolution documentary images processed by our
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approach as well as competing techniques (SRGAN, SRCNN, and other reference
methods). The super-resolved images were then analyzed by a standard OCR tool.
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Figure 7. Visual comparison between our method and traditional methods: (1) LR image;
(2) PSO_-WESRGAN; (3) Bicubic; (4) Biliniar; (5) Lanactoz; (6) Nearest Neighbor
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Figure 8. Comparison of efficacy of our method compared to deep-learning methods:
(1) LR image; (2) PSO.-WESRGAN; (3) ESRGAN; (4) EDSR; (5) SRGAN; (6) SRCNN

Table 3
Comparison using OCR metrics

Methods OCR%
Our method 98.89
ESRGAN 79.30
EDSR 72.73
SRGAN 78.55
SRCNN 58.83
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The results obtained (illustrated in Figure 9 and Table 3) show that our method
significantly improves image quality, resulting in a significant reduction of OCR errors.
This improvement demonstrates the effectiveness of our method to preserve document
details, making automatic text extraction more reliable.
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Figure 9. Comparison using OCR metrics: (1) HR image; (2) PSO_WESRGAN;
(3) ESRGAN; (4) EDSR; (5) SRGAN; (6) SRCNN

To test the performance of our method on other types of images, we performed
a full visual comparison (Figures 11, 10, 13, and 12) and a quantitative evaluation
(Table 4) of our method compared to the best-known approaches in the literature
(which were chosen for their popularity and performance in the field of image super-
resolution). We chose well-known and widely used databases in the field of super-
resolution, such as Set5, Set14, BSD100, and Urban. These data sets contain a wide
variety of natural images covering different types of scenes and resolutions and are
used to test the robustness and effectiveness of super-resolution methods on more-
general images. The diversity of these sets allows us to evaluate the performance of
our method in various contexts and compare its results with those of other approaches
established in the field. Our super-resolution technique excelled in our extensive com-
parative study, outperforming well-known models on various key data sets. Our ap-
proach was distinguished by excellent detail preservation, strong structural similarity
to other models, and superior PSNR and SSIM values on the Seth and Set14 data sets.
Similarly, our method outperformed BSD100, delivering outstanding results in clar-
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ity and visual integrity. However, it was on the Urban100 data set that our solution
shone, outperforming all other comparative models and demonstrating its exceptional

ability to process complex images in urban environments. These promising results un-
derline the resilience and flexibility of our model in a variety of situations, positioning
our method as a first-choice option for image super-resolution in diverse contexts.

R

A\

™\

Figure 10. Visualization results for 4x super-resolution on image img-095
from BSD100 data set

Figure 11. Visualization results for 4x super-resolution on image img_044 Urban data set
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Figure 12. Visualization results for 4x super-resolution on image img_003 Set5 data set

Figure 13. Visualization results for 4x super-resolution on image img_-014 Set14 data set
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Table 4
PSNR and SSIM values using different models on benchmark
(Set5/Set14/BSD100/Urban100) data sets for 4x super resolution

Method Data Set Setb Setl4 | BSD100 | Urban
SRCNN 291 30.48 27.50 26.90 24.52
0.86 0.75 0.71 0.72

EDSR DIV2K 32.46 28.80 27.71 26.64
0.89 0.78 0.74 0.80

RCAN DIV2K 32.63 28.87 27.77 26.82
0.90 0.78 0.74 0.80

ESRGAN DF2K 32.73 28.99 27.85 27.03
0.90 0.79 0.74 0.81

MDRN DIV2K 32.33 28.75 26.43 27.66
0.89 0.78 0.79 0.73

EdgeSRGA DIV2K 31.72 | 28.30+ 27.35 25.4
0.88 0.77 0.72 0.76

HAT DIV2K 32.92 29.15 27.97 27.87
0.90 0.79 0.75 0.83

DRCT-L [18] DF2K 33.37 29.54 28.16 28.70
0.90 0.80 0.75 0.85

HMA [4] DF2K 33.38 29.51 28.13 28.69
ImageNet 0.90 0.80 0.75 0.85

CPAT+ [40] DF2K 33.19 29.51 28.04 28.22
ImageNet | 0.9069 | 0.7991 0.75 0.8408

CFAT [31] DIV2K 33.19 29.34 29.30 28.11
Flickr2K 0.90 0.79 0.79 0.83

SAFMN [37] DIV2K 32.18 28.60 27.58 25.97
Flickr2Kt 0.89 0.78 0.73 0.78

SVAN [10] DIV2K 31.76 28.30 27.41 25.56
Flickr2Kt 0.88 0.7736 0.72 0.76

Extracter-rec [32] | CUFEDb5 27.29 30.02 26.04 28.09
0.811 0.816 785 0.782

DSRNet [39] DIV2K 31.71 28.38 27.43 25.65
0.88 0.7760 0.73 0.76

SwinIR DIV2K 32.93 29.15 27.95 27.56
+Flickr2K | 0.9043 | 0.7958 0.7494 | 0.8273

PSO- DIV2K+ 33,58 30,21 29,55 28,25
WESRGAN SR 0.92 0.798 0.81 0.88

_LIMOSE

5. Conclusion

In conclusion, our article proposes an innovative method for the super-resolution of
documentary images, integrating wavelet transformation, deep-learning transfer, and
optimization by the PSO algorithm. This approach has allowed us to preserve the
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subtle details and layout of documents while optimizing parameters to significantly
improve the visual quality of images. The experimental results show significant gains
in terms of fidelity, detail, and readability.

However, several limitations should be noted. First, the approach is computa-
tionally demanding. ESRGAN networks require high GPU power for the training and
inference steps, and the PSO algorithm (by exploring a large number of parameters)
further intensifies these requirements. This constraint can make it difficult to apply
our method on devices with low computing capacities (such as embedded or portable
systems). Also, images with very low resolution, high noise, or large artifacts may not
be improved sufficiently. ESRGAN networks and PSO optimization may reconstruct
details incorrectly.

These limitations call for a thorough reflection to adapt and improve our method.
Future prospects include the development of lighter architectures to reduce compu-
tational costs. Integrating more-efficient PSO variants to limit the complexity of the
optimization and developing robust data preprocessing and enhancement techniques
would improve the performance on low-quality images. Furthermore, a thorough val-
idation on more-varied data sets would allow the application of the method to be
extended.
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