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Abstract One of the major challenges of document images that can hinder readability

and the analysis of information is low resolution; this is typically caused by

low-pixel density scanning or excessive compression to save storage space. This

results in a loss of fine detail in images, making it difficult to detect critical infor-

mation. To solve these problems, super-resolution techniques are used. These

techniques improve image quality by increasing the resolution while maintain-

ing the fine detail. PSO-WESRGAN is an innovative method that combines

wavelet processing, deep-transfer learning, and particle swarm optimization

(PSO). Wavelet processing analyzes image detail at diverse scales and orien-

tations, while transfer-based deep-learning advantages pre-trained models on

vast image data sets. By integrating PSO, the efficiency of the method is en-

hanced through the optimal exploration of the solution space to identify the

best parameters for the super-resolution model. The experimental results show

the effectiveness of this method and open up prospects for future improvements

in the super-resolution of document images.
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1. Introduction

Digitized documents represent a valuable source of information in many sectors; their

high resolution is essential for making text legible and illustrations visible, thus fa-

cilitating subsequent accurate automatic analysis. However, their quality can be

compromised by various forms of degradation; among these, the low resolution that

results from technical limitations during digitization compromises the accuracy of fine

details. Figure 1 shows low-resolution image examples.

Figure 1. Low-resolution image examples

This requires advanced image-processing techniques to restore the visual quality

of documents, improve their legibility, and facilitate the accurate extraction of the in-

formation they contain. This article focuses on the development of a super-resolution

approach using bio-inspired and deep pre-processing to improve document image qual-

ity and facilitate the extraction of useful information. Super-resolution aims to in-

crease the resolution of images to reveal fine details and improve their legibility. The

development of image super-resolution methods has distinct changes in levels through

the phases and the corresponding technological changes. These techniques are classi-

fied into two broad families: Single-Image Super-Resolution (SISR), and Multi-Image

Super-Resolution (MISR). The MISR methods increase image resolution by using

a series of LR image scenes. These methods take advantage of information redun-

dancy across multiple images to produce a high-resolution (HR) image. Although

multi-image super-resolution methods may offer significant improvements in high-

resolution image quality in various application fields such as medical [5, 8, 9, 42] and

satellite [3, 33, 38, 41], they face significant challenges related to computational com-

plexity, data availability, and motion-artifact management. These aspects should be

carefully assessed when choosing a super-resolution method for a given scenario. The

second family generates a high-resolution output image using a single low-resolution

input image. These methods offer considerable potential for improving image quality

and resolution – especially for super-resolution document images. In this category,
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we can identify two subcategories of techniques: interpolation-based techniques, and

learning-based techniques (using machine or deep-learning methods). Using math-

ematical techniques, interpolation techniques determine the values of missing pixels

in a LR picture. Although interpolation methods are simple, they can cause noise,

blurring, and false colors and may not capture fine details in high-resolution images

(especially thin lines of text). In our study, we compared our proposed approach with

the following interpolation methods: Bell [26], Bi-linear [36], Bspline [14], Contour

stencils [12,13], Gaussien [34], Hanning [15], Lanczos [11], neighbor [1], Mitchell [27],

and bicubic [16]. Learning-based techniques use machine-learning models’ abilities to

convert low-resolution (LR) images into high-resolution (HR) images, thus surpassing

traditional interpolation techniques in terms of quality and accuracy.

Documents often contain fine text, diagrams, and details that are essential for

their legibility and accurate interpretation. Low-resolution images frequently suffer

from noise, artifacts, and losses of detail; these can cause errors during analysis or

optical character recognition (OCR). In addition, preserving the original layout is

crucial for applications such as archiving or document reuse. The super-resolution

of document images is a major challenge due to the unique requirements of this

type of image. The difficulty is in the ability to reconstruct these textual and visual

details while maintaining the integrity of the document structure. Our method effec-

tively addresses the challenges of the super-resolution of document images by com-

bining wavelet decomposition, pre-driven ESRGAN models, and PSO optimization.

Wavelet decomposition helps preserve critical details, while ESRGAN networks im-

prove visual quality by reconstructing complex textures. PSO optimization ensures

an optimal balance between different sub-bands for a faithful reconstruction. This

approach also improves OCR performance by maximizing readability and preserving

the original layout, providing a robust solution for demanding document applications.

The next parts of the article will review existing deep-learning-based super-resolution

techniques and provide a detailed description of our approach to super-resolution doc-

ument images. In addition, we will discuss the experimental results that support the

effectiveness of our approach to improve document image resolution.

2. Deep-learning-based super-resolution techniques

Super-resolution models using deep learning have demonstrated exceptional perfor-

mance in a number of quality metrics. The most notable approaches in terms of

quality and complexity are: Super-Resolution Convolutions Neural Network (also

known as SRCNN) was developed in [7]. SRCNN is a supervised-learning tech-

nique that allows learning the non-linear correspondence between low-resolution and

high-resolution images. The main layers that define the architecture of the SRCNN

model are the convolution, pooling, and reconstruction layers. The authors of SR-

CNN demonstrated that it gives superior results by enhancing the details and quality

of the generated images. Improved Deep Super-Resolution (IDSR) (discussed in [23])

is characterized by its rather profound neural network architecture proposed to solve
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the degradation issue due to depth by using a solution known as residual connections.

Using residual blocks, Very Deep Super-Resolution (VDSR) [6] is a highly accurate

super-resolution approach using a deep convolution network; this was inspired by the

VGG network for ImageNet classification. Composed of 20 layers, this model effi-

ciently exploits contextual information over large image regions in a cascade of small

filters. To speed up training, high learning rates and gradient clipping are used, en-

suring training stability. The method has shown superior performance in terms of

accuracy and visual improvements over existing methods.

In [48], the authors described the Residual Dense Network for image super-

resolution. This method attempts to employ dense residual blocks to enhance super-

resolution (SR) image quality-learning residual details. Depending on the density of

these residuals, the proposed approach envisages enhancing the details of HR images

using dense residual blocks. RCAN (Residual Channel Attention Networks) is a type

of SR-based deep learning [47]. Some of the unique features of the chosen RCAN ar-

chitecture concern the usage of residual blocks and channel attention. RCAN aims to

extract the essential features of the problem while maintaining a compact model. The

fundamental units of RCAN are deep residual blocks. Each residual block contains

multiple convolution layers, which helps in learning highly non-linear features. The

RCAN method introduces the channel-attention mechanism; this mechanism lets the

network focus on the most informative channels (or features) in each residual block. It

facilitates the identification of important channels for super-resolution and the efficient

allocation of computational resources. Fast and Accurate Image Super-Resolution

with Deep Laplacian Pyramid Networks [20] exploits information at different scales

to reconstruct detailed super-resolved images. Deep Plug-and-Play Super-Resolution

for Arbitrary Blur Kernels [46] uses neural networks to estimate and invert arbitrary

blurs, thus improving image resolution. Uformer: A General U-Shaped Transformer

for Image Restoration [45] proposes a novel method for image-restoration tasks that

makes use of the Uformer, which is an adaptable U-shaped transformer model specif-

ically designed for image-restoration tasks. Uformer is a model that includes an

encoder-decoder structure with skip links. The encoder component extracts multi-

scale information from an input image, while the decoder component reconstructs

the image. The various scales can be reconstructed through skip connections to cre-

ate the image since they help the model maintain and integrate information from

different scales. Super-resolution on a single image using a directional variance at-

tention network [2] proposes the directional variance-based attention network (or Di-

VANet) for image super-resolution. DiVANet presents a new strategy for SR that

includes an optimized attention mechanism (referred to as DiVA) and another system

known as the Residual Attention Feature Group (RAFG). This enhances the quality

of super-resolution, as it works with spatial features and ensures that fine details are

well-handled; all of this is achieved with the model being light, fast, and efficient.

Single super-resolution images by the progressive integration of orientation-sensitive

features [17] provides an SISR-PF-OA that uses an OAM feature-extraction technique

using both 1D and 2D convolution kernels with channel attention. It also presents
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progressive fusion to enhance multi-scale fusion performance, making it potential to

offer high-quality output with high accuracy and less computational complexity as

compared to the other deep-learning methods. SR-FEINR: End-to-End Video Super-

Resolution Through Feature-Enhanced Implicit Neural Representation [24] provides

a new solution for the successive SR of remote-sensing images. The technique consists

of three primary modules: an encoding module, a feature-extraction module, and a

feature-enhanced multi-layer perceptron. The authors in [22] proposed a method for

image restoration known as SwinIR, which was built on Swin Transformer. SwinIR

has three main components: surface-feature extractors, deep-feature extractors, and

HR-reconstruction modules. The model uses a series of residual Swin Transformer

(RSTB) blocks to extract deep characteristics. Each RSTB is designed with a resid-

ual connection, convolution layer, and Swin Transformer layer set to improve the

extraction of deep features in the restoration process. The authors presented a new

transformer-based technique for the super-resolution of images in [4]. They pro-

vided a hybrid attention transformer (HAT) that incorporates both window-based

self-attention models and channel attention to address geographic information. Multi-

Level Dispersion Residual Network for Efficient Image Super-Resolution [25] was de-

signed to improve the efficiency of image super-resolution (EISR). This model builds

on EADB, which has ECCA and MDSA added to it. The experiments proved the

effectiveness of these techniques. This approach achieved first place in the NTIRE

2023 Efficient SR Challenge. The Super-resolution Generative Adversarial Network

(SRGAN) is a super-resolution method that was introduced in [21]. It is based on the

GAN architecture, which involves two neural networks, a generator, and a discrimina-

tor, which train concurrently. The generator creates a high-resolution version from an

input’s low-resolution image. The discriminator looks for distinctions between images

generated by the generator and actual HR images. The capacity of the generator to

really create super-resolution images is enhanced by this adversarial training process.

Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) [44]

are composed of two opposing neural networks: discriminating, and generating neu-

ral networks. The generator is responsible for transforming an LR image into a more

accurate and detailed HR version. It analyzes large sets of high-resolution images to

identify the relationships between the pixels in an image and learns how to recon-

struct them accurately. By including dense residual blocks and increasing perceptual

loss, the ERGAN model outperformed the SRGAN model. The discriminator acts as

a binary classifier to distinguish real images from generated ones. Designed to operate

efficiently in an image-resolution context, the discriminator is built with convolution

and pooling layers that allow it to extract discriminant characteristics from input

images. Its goal is to maximize its ability to identify subtle differences between real

HR images and those generated by the generator. During the training, the discrimi-

nator and generator are adversely optimized: the discriminator adjusts its weights to

minimize its error between real and generated images. The generator tries to produce

increasingly realistic images to fool the discriminator. This dynamic leads to a grad-

ual refinement of the skills of both networks until a balance is reached, where the
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generator produces high-resolution images that are impossible to distinguish from real

ones. This process allows for the continuous improvement of image-generated quality.

With its more advanced architecture, ESRGAN is better than the SRGAN model

at capturing fine features and producing high-quality images in super-resolution. The

ESRGAN model uses dense connections within the RRDB block to improve overall

system performance when generating high-resolution images. ESRGAN has proven

to produce better results than existing super-resolution techniques. It can produce

high-resolution images that look more realistic and natural by capturing details. Bi-

ESRGAN: A New Approach for Document Image Super-Resolution Based on Dual

Deep Transfer Learning [19] is a new approach to the super-resolution images of low-

resolution documents. This method uses two ESRGAN networks on separate image

cards (the original image, and the contours of the image using the Laplacian filter); it

preserves the texture and graphic properties of document images. The experimental

results demonstrate the superiority of ”Bi-ESRGAN” over several other approaches on

a variety of document images, demonstrating significant progress in super-resolution

of document images. Recent advances in deep-learning-based super-resolution models,

which surpass traditional methods in terms of quality and accuracy, have led to the

active exploration of these methods. Our approach is an improvement of the ESRGAN

method by integrating information from wavelet transformations and using the PSO

algorithm. This combination allows us to find the best data balance for optimizing

the resolutions of document images.

3. Proposed approach

Our approach is a super-resolution technique for images of documents that use deep-

learning and bio-inspired methods. Figure 2 demonstrates our technique’s architec-

ture and procedures.

3.1. Wavelet transfer

Wavelet transformation divides an image into several sub-bands; the LL (Low-Low)

sub-band contains the low frequencies of the image. It represents the overall detail

and structure of the image. In general, this is the component that retains the most

information from the original image. The LH (Low-High) sub-band combines low

frequencies in the horizontal direction and high frequencies in the vertical direction,

capturing the horizontal details of the image. In contrast, the HL (High-Low) sub-

band combines horizontal high frequencies with vertical low frequencies; it represents

vertical image detail. The HH (High-High) sub-band contains horizontal and vertical

high frequencies; it represents fine image details such as contours and textures [28,30].

Figure 3 illustrates a wavelet transformation example.

In our method, we chose a decomposition level of 1; this means that the image

was decomposed once, thus generating an approximation sub-band and three detailed

sub-bands. This choice of decomposition was a strategic compromise between the
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amount of information retained in the image and computational efficiency. By reduc-

ing the complexity of the decomposition to a single level, we were able to maintain

the most important details while optimizing the resources needed for processing. By

using wavelets for document images, we separated the fine details from the coarse

components, thus improving the readability of the characters and small structures;

this facilitated the processing of multi-scale information, reduced noise, and optimized

image reconstruction. By independently processing the different frequencies, wavelets

helped to preserve details while minimizing artifacts, resulting in a high-quality super-

resolution image and better preservation of the document structure.

Figure 2. Processes and architecture of our SR technique for document images
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Figure 3. Wavelet transformation example

3.2. Training of ESRGAN networks

We used the ESRGAN model pre-trained on nature images (DIV2K, Flickr2K, and

ImageNet) and trained it on the document image database SR VISIONṪhis database

was designed at the LIMOSE laboratory of the University of Boumerdes (UMBB) in

order to meet the specific needs of research on super-resolution applied to document

images. It provided a practical framework for the training and evaluation of various

approaches, taking into account the particularities of documentary images such as the

presence of texts, diagrams, and fine details.

The data set was carefully structured into two subsets: TRAIN, and TEST –

each consisted of 757 separate images. This organization ensured a robust learning

process and an independent evaluation of the model’s performance on unseen data.

The images included in this database covered a variety of structures and qualities,

thus providing a realistic challenge for super-resolution models and contributing to

reliable assessments in practical scenarios.

Figure 4 shows an illustration from the SR VISION data set.

The SR VISION data set is not public, and access to it is restricted. Due to

confidentiality considerations and internal policy, this data set is for internal use only

and cannot be shared with external parties.
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Figure 4. Illustration from our SR VISION LIMOSE data set

In our method, we opted for partitioning the data, where 50% was used for

training, and 50% split between the validation and the testing. This allocation was

intended to ensure optimal model training while maintaining a rigorous assessment

of its performance on independent data. It achieved a balance between learning and

assessment while ensuring that the model could be effectively generalized to new

data. We used pre-trained ESRGAN models on natural images for several reasons

(even though our main target was document images). Firstly, pre-trained models

benefit from transfer learning, capturing a wide range of useful features applicable

to various types of images. This technique significantly reduces the need for specific

training data and computational resources. Natural images also possess textures/pix-

els, objects/backgrounds, etc., which helps the model learn very effectively how to

generalize. This will let it support other kinds of images like document images out

of the box with little extra adjustment. Natural images are easier to collect since

extensive high-quality data sets of such can be found compared to specialized docu-

ment images. Pre-trained models allow one to mitigate such challenges in smaller or

worse quality data sets made for document images. The use of pre-trained models

gave us an initial performance advantage because the model already understood many

common image features. To make it even better, this model was fine-tuned by incor-

porating information from document images, which outperformed training everything

from scratch. Deep-learning models are also computationally expensive to train from

scratch, and it takes a lot of time. When one uses pre-trained models, the training

time is significantly shortened, and far fewer resources are needed while still being

able to realize excellent results. This way, the features learned by training on a large
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base of images can be fine-tuned on our sets and adjusted to better suit document

image specifics, combining broad generality with focused specialization. For training

ESRGAN networks, parallel training was performed on five types of resulting images.

The LL, LH, HL, and HH sub-bands, representing low frequencies, horizontal details,

vertical details, and diagonal details, respectively, were bicubically interpolated to in-

crease their resolution. Each type of image is then used to train a distinct ESRGAN

network:

• ESRGAN ORJ: trained on original image;

• ESRGAN LL: trained on interpolated LL sub-band;

• ESRGAN LH: trained on interpolated LH sub-band;

• ESRGAN HL: trained on interpolated HL sub-band;

• ESRGAN HH: trained on interpolated HH sub-band.

These networks are designed to produce high-resolution reproductions of input

images, reducing reconstruction losses and optimizing the visual quality of generated

images. The computational cost associated with driving multiple ESRGAN networks

(one for each sub-band of wavelets as well as for the original image) can be high. This

computational load results from the fact that each network requires significant GPU

resources to be efficiently trained – especially with complex networks like ESRGAN

(which are already very time-consuming). However, our method was eased by using

pre-model training, which had significantly reduced the time and resources required

for training. Using pre-existing models minimizes the need to recalculate parameters

from zero. In addition, we used powerful GPUs, which allowed us to further reduce

the processing time (thus, improving the overall efficiency of the process). We formed

our models using the following configurations: the model was formed for a total of

20 epochs to ensure sufficient convergence and avoid overfitting. Batch size: to guar-

antee strong generalization and effective use of computing resources, a batch size of

32 was used for each training iteration. Learning rate: to ensure steady and progres-

sive learning, we chose a starting learning rate of 0.001. This allowed us to balance

the convergence speed and stability of the model while avoiding oscillations. This

choice was based on proven practices for ESRGAN architecture. The loss function

used was the mean square error (MSE); it calculates the difference in the mean square

between the predicted values of the model and the actual values. This allows us to

measure the gap between the model output and the reference image. MSE is com-

monly used in regression and super-resolution tasks, as it promotes rapid convergence

while improving the accuracy of results.

The optimization function we used was Stochastic Gradient Descent (SGD). It

is called ”stochastic” because it randomly samples data at each iteration to estimate

gradients, making training more effective on large data sets.

By adjusting these parameters, we obtained satisfactory super-resolution quality while

maintaining an efficient and robust model formation.

Transfer learning is used to enhance the efficiency of training and the quality

of the results by reusing the weights of a pre-trained model on a large data set.
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Consequently, specialized ESRGAN networks improve the resolution and quality of

images by leveraging the unique characteristics of each frequency sub-band.

3.3. Particle Swarm Optimization (PSO)

The PSO algorithm was inspired by the collective behavior of swarms of birds or

schools of fish. It is an optimization algorithm that is implemented to solve certain

types or formats of problems. A search space is explored using a population of

elements (called ’particles’ in PSO). Each particle corresponds to a possible solution

of the problem and is defined by its location and speed in the search space. Each

particle in the PSO algorithm updates its speed based on its individual experience

(pbest solution) and collective memory value (gbest solution) within iterations. The

particles are oriented to a new better position according to these two optimal values.

The particles use their current speed and direction to move in the direction of the

place that has produced the best results [29, 35, 43]. In the PSO algorithm, the

velocity of particle ”i” at time V t
i depends on the velocity of the particle at time

V t−1
i (”pbest” and ”gbest,” respectively) representing the best position reached so

far by an individual particle and by the whole swarm. Once these two best values are

found, the particle updates its velocityV t
i and position using the following equations:

V t
i ; = c1× V t−1

i︸ ︷︷ ︸
Current movement

+ c2× (pbestti −Xt
i )︸ ︷︷ ︸

Particle local search

+ c3× (gbestt −Xt
i )︸ ︷︷ ︸

Swarm influence

Here, Xt
i denotes the particle’s actual location in the search area, where c1 is the

inertia weight of the particle. When c1 is close to 0, the particle tends to follow its

own best position more (pbest), which can lead to rapid convergence to a suboptimal

(poor) solution. On the other hand, when c1 approaches 1, the search space is better

explored, but the rate of convergence slows down. Constants c2 (individual confi-

dence) and c3 (swarm confidence) influence the movement of the particle to a better

position. c2 represents the coefficient that determines the influence of the best individ-

ual position reached by a particle, while c3 regulates the influence of the best overall

position reached by the entire swarm. These values are usually selected randomly at

the moment by a function like rand(0.1). In addition to cmax, a gravitational coeffi-

cient attracts particles to gbest (the best overall position) or pbest (the best personal

position) to improve the search efficiency. However, an excessive value of cmax can

lead to a divergence of the algorithm. It is crucial to emphasize that the optimal

performance of the optimization is achieved when inertia and gravity work together.

Therefore, the values of c1 cmax should not be selected independently for effective

convergence. The following formula is then used to update particle position Xt+1
i at

time (t+ 1):

Xt+1
i ; = Xt

i × vti (1)

A particle j may leave the originally set search space [Xmin,Xmax]D at any

point during the swarm’s development. According to this process, the value of the



16 Zakia Kezzoula, Djamel Gaceb

nearest boundary point is then allocated. In practice, this means that Equation (1)

must be changed to the following equation:

Xt+1
i = MIN(MAX(Xt

j × V t
j , Xmin), Xmax) (2)

In addition, this mechanism is often supplemented by a gear change or by the

replacement of the problematic component by its opposite (usually weighted by a co-

efficient less than 1 or by simply by canceling it). In our method, the parameters

of the PSO algorithm were chosen to optimize the balance between the exploration

and the exploitation of the solutions. Inertia factor w = 0.5 favors initial exploration,

then rapid convergence. Coefficient c1 = 1 ensures a balance between individual

and collective particle searches, thus limiting their overdependence on past solutions.

Coefficient c2 = 2 encourages particles to focus more on the best overall solution,

thus accelerating the convergence. A swarm of 15 particles and a range of initial

velocities between −2 and 2 enable controlled exploration, while 50 iterations en-

sure rapid convergence and efficient optimization while minimizing computational

costs. These choices offer an optimal compromise among exploration, exploitation,

and computational efficiency. The PSO algorithm seeks to find optimal position

X∗ = (α1, α2, α3, α4, α5). Using these coefficients found by PSO, the results of the

ESRGAN networks are merged to produce a final high-resolution image. This com-

bination is expressed by the following formula:

I = α1 × IESRGAN ORJ + α2 × IESRGAN LL + α3 × IESRGAN LH

+ α4 × IESRGAN HL + α5 × IESRGAN HH (3)

where α1, α2, α3, α4, α5, is a weighting generated by PSO algorithm, and

IESRGAN ORG, IESRGAN LL, IESRGAN LH , IESRGAN HL, and IESRGAN HH are the

image results of the ESRGAN ORG, ESRGAN LL, ESRGAN LH, ESRGAN HL, and

ESRGAN HH models, respectively.

These coefficients play a crucial role in optimizing the balance between each

sub-band’s contribution and the original image, aiming to enhance the visual quality

of the final image significantly. During the optimization process, different values of

coefficients are examined to find those that maximize a chosen fidelity metric. The

purpose of this was to maximize the Peak Signal to-Noise Ratio (PSNR) between

the high-resolution output image and the reference image, indicating that the super-

resolution process adequately keeps elaborately small detail and intactness in refining

the quality images. The PSO in our PSO-WESRGAN method of super-resolution for

document images is crucial. PSO is an optimization technique well-suited to our prob-

lem because it allows us to determine the optimal coefficients that weigh the different

sub-bands of the super-resolved image. These coefficients are essential to balance the

contribution of each sub-band and the original image to maximize the visual quality

of the final image. The experiments demonstrated the effectiveness of our approach,

showing significant improvements in terms of the sharpness, preservation of details,

and overall visual quality of the super-resolved documentary images. These results
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confirmed the ability of our method to meet the high demands of documentary image

processing.

A PC running Windows 11 with an Intel i7-10750H CPU, 32 GB of RAM, 512 GB

hard drive, and an Intel (R) UHDaphics card with an NVIDIA GeForce RTX 2060

graphics card was used to create our technique.

4. Evaluation and results

To assess the accuracy and effectiveness of our super-resolution technique for doc-

ument images, it is essential to carefully examine its quality. We use PSNR and

the Structural Similarity Index (SSIM) as two main indicators. PSNR is a popular

measure to assess the quality of an over-resolved image against a high-resolution ref-

erence. It allows us to evaluate the performance of our super-resolution methods by

quantifying the noise level in the super-resolution image compared to the reference.

Calculated using the logarithm of the maximum pixel range (typically 255 for RGB

images) divided by the square root of the mean deviation between the corresponding

pixels in the super-resolution and reference images, PSNR is expressed in decibels

(dB). A higher PSNR value indicates better super-resolution image quality.

PSNR(I1, I2) = 10 log

(
2552√

MSE(I1, I2)

)
(4)

where:

MSE(I1, I2) = (
1

RC

R−1∑
X=0

C−1∑
Y=0

||I1(x, y)− I2(x− y)||2 (5)

The SSIM measure examines image quality in three key aspects: luminance sim-

ilarity (L), contrast similarity (C), and structure similarity (S). These factors are

combined to provide an overall assessment of the structural similarity between two

images (I1 and I2). SSIM is considered more advanced than PSNR because it takes

into account how humans perceive images. It is often considered a better indicator of

perceived image quality and is calculated by the following formula:

L(I1, I2) =
2uI1uI2 + c1

u2
I1 + uI22 + c1

(6)

C(I1, I2) =
2σI1σI2 + c1

σ2
I1 + σ2

I2 + c1
(7)

S(I1, I2) =
2σI1I2 + c2/2

σI1σI2 + c2/2
(8)

SSIM(I1, I2) = L(I1, I2)
α × C(I1, I2)

β × S(I1, I2)
γ (9)

By setting weights alpha, beta, and gamma, we simplify the formula. The c1 and c2

parameters stabilize the division by keeping the denominator high. The average and

standard deviations of the image are represented by u and sigma, respectively.
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To show the importance of each wavelet sub-band in the super-resolution process,

we performed several comparative studies using various sub-band configurations. We

first simply used the LL sub-band. This allowed us to watch how well the model

performed when a high-resolution image was predicted using only the global infor-

mation from the low-resolution image. Then, we included the HH sub-band, which

contains diagonal details. However, this last step did not provide a significant im-

provement over the use of the LH and HL sub-bands, as the details of the other bands

can sometimes overlap. This redundancy may explain why the PSNR improvement

was not as significant as when we focused on the LH sub-band alone. Finally, we

used all of the available sub-bands, including LL, LH, HL, and HH; this allowed us

to integrate all of the information contained in these different sub-bands for super-

resolution. Each of these sub-bands contributes to capturing specific image details,

whether coarse or fine and horizontal or vertical. These steps show how important

it is to choose the right sub-bands or the right weighting of sub-bands according to

the information they contain to get the best super-resolution results. This demon-

strates the strategic and methodical approach needed to optimize the super-resolution

process using PSO. Table 1 shows the average PSNR values for each LIMOSE-based

configuration.
Table 1

Representative table of PSNR values on LIMOSE database

Configuration PSNR (dB)

ORJ + LL 32,84903

ORJ + LL + LH 33,61347

ORG+LL + LH + HL 33,63208

ORG + LH 33,64842

ORG + LH + HL 33,50335

ORG + LH + HL+ HH 32,9637

Our method (ORG + LL + LH + HL + HH) 33,65108

We observe a significant improvement in PSNR as more wavelet sub-bands are

included in the super-resolution model. The configuration that uses all of the sub-

bands shows the best performance in terms of predicted image quality on this specific

database. The curves in Figures 5 and 6 show the evaluation of our approach with

the different methods using the PSNR and SSIM measures. It should be noted that

the specific PSNR values for each method depend on the parameters used, the data

set, and the specific images to be evaluated. The PSNR values measure the quality

of the super-resolved image compared to the high-resolution reference image; higher

values indicate better image quality in terms of pixel fidelity.

From Figure 5 and Table 2, we can see that our method has the highest PSNR

score, indicating better super-resolved image quality in terms of fidelity to the refer-

ence image details. ESRGAN comes in second, closely followed by SRGAN, SRCNN

and Bell, Bilinaire, Bspline, Contour stencils, Gaussien, Hanning, Hermite, Lanczos,

Neighbor, and Mitchell obtaining the lowest scores. It is important to note that PSNR

is a quantitative metric that does not take into account certain aspects of the visual
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quality perceived by the human eye. It is therefore recommended to complete the

evaluation with SSIM and human observation to better evaluate the image quality.

Figure 6 shows that our approach tends to obtain better SSIM values, indicating bet-

ter structural similarity between super-resolved images and high-resolution reference

images compared to the other methods.

Figure 5. Representative PSNR curves obtained by applying different methods

on LIMOSE database

Table 2
Representative table of PSNR and SSIM values on LIMOSE database

Methods PSNR (dB) SSIM

Our method 33,65108 0,849795998

Bell 29,42585 0,797391499

Bi linaire 25,81925 0,796938341

Bspline 29,04785 0,698770523

Contour stencils 27,569125 0,788846099

Gaussien 29,523 0,753854316

Hanning 29,661825 0,798700025

Lanczos 29,678475 0,795954727

Neighbor 28,47185 0,796712643

Mitchell 29,8833 0,798971884

Bicubic 33,3849918 0,799521700

ESRGAN 33,30121989 0,761439613

EDSR 29,43117478 0,802635148

SRCNN 26,94576659 0,805519466

SRGAN 27,09932406 0,762026427

Bi-ESRGAN 33,50647544 0,840099273
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Figure 6. Representative SSIM curves obtained by applying different methods

on LIMOSE database

Figures 7 and 8 present an example of how our method performs when compared

to classic techniques (Bicubic, Biliniar, Lanactoz, and Nearest Neighbor) and deep-

learning methods (SRCNN, EDSR, SRGAN, ESRGAN).

Deep-neural-network-based image super-resolution techniques ESRGAN,

SRGAN, SRCNN, and EDSR vary in their architectures and image quality perfor-

mance. Figures 5, 6, 7, and 8 illustrate how our method more accurately traced the

characters and defined their shapes.

Figures 5, 6, and 7 show that other methods demonstrate good performance in

image accuracy and quality but have limitations in rendering extremely fine details

or complex textures – sometimes resulting in the loss of subtleties. Comparing the

results of our algorithm with classical methods such as Bicubic, Bilinear, Lanczos, and

Nearest Neighbor showed that PSO-WESRGAN outperforms these methods in terms

of PSNR and SSIM, thus indicating better image quality and preservation of image

structures. Visually, our method produces images that are sharper and more faithful

to the details of the reference image, with fewer artifacts and better readability of

documents. SRCNN and EDSR focus on learning nonlinear relationships, showing

good performance but with limitations for very fine details. ESRGAN and SRGAN

significantly improve super-resolved image quality but may be sensitive to artifacts

and irregularities in generated images. Due to the complexity of generative adversarial

networks (GANs), there may be cases where ESRGAN and SRGAN results contain

visible defects, such as blurred contours, halos around objects, and artificial textures.

These artifacts can affect the perceived quality of an image and make the results less

natural.

To evaluate our method effectively, we measured its impact on the accuracy of

OCR systems by comparing it with other super-resolution methods. This comparison

was performed using a set of low-resolution documentary images processed by our
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approach as well as competing techniques (SRGAN, SRCNN, and other reference

methods). The super-resolved images were then analyzed by a standard OCR tool.

Figure 7. Visual comparison between our method and traditional methods: (1) LR image;

(2) PSO WESRGAN; (3) Bicubic; (4) Biliniar; (5) Lanactoz; (6) Nearest Neighbor
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Figure 8. Comparison of efficacy of our method compared to deep-learning methods:

(1) LR image; (2) PSO WESRGAN; (3) ESRGAN; (4) EDSR; (5) SRGAN; (6) SRCNN

Table 3
Comparison using OCR metrics

Methods OCR%

Our method 98.89

ESRGAN 79.30

EDSR 72.73

SRGAN 78.55

SRCNN 58.83
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The results obtained (illustrated in Figure 9 and Table 3) show that our method

significantly improves image quality, resulting in a significant reduction of OCR errors.

This improvement demonstrates the effectiveness of our method to preserve document

details, making automatic text extraction more reliable.

Figure 9. Comparison using OCR metrics: (1) HR image; (2) PSO WESRGAN;

(3) ESRGAN; (4) EDSR; (5) SRGAN; (6) SRCNN

To test the performance of our method on other types of images, we performed

a full visual comparison (Figures 11, 10, 13, and 12) and a quantitative evaluation

(Table 4) of our method compared to the best-known approaches in the literature

(which were chosen for their popularity and performance in the field of image super-

resolution). We chose well-known and widely used databases in the field of super-

resolution, such as Set5, Set14, BSD100, and Urban. These data sets contain a wide

variety of natural images covering different types of scenes and resolutions and are

used to test the robustness and effectiveness of super-resolution methods on more-

general images. The diversity of these sets allows us to evaluate the performance of

our method in various contexts and compare its results with those of other approaches

established in the field. Our super-resolution technique excelled in our extensive com-

parative study, outperforming well-known models on various key data sets. Our ap-

proach was distinguished by excellent detail preservation, strong structural similarity

to other models, and superior PSNR and SSIM values on the Set5 and Set14 data sets.

Similarly, our method outperformed BSD100, delivering outstanding results in clar-
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ity and visual integrity. However, it was on the Urban100 data set that our solution

shone, outperforming all other comparative models and demonstrating its exceptional

ability to process complex images in urban environments. These promising results un-

derline the resilience and flexibility of our model in a variety of situations, positioning

our method as a first-choice option for image super-resolution in diverse contexts.

Figure 10. Visualization results for 4× super-resolution on image img 095

from BSD100 data set

Figure 11. Visualization results for 4× super-resolution on image img 044 Urban data set
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Figure 12. Visualization results for 4× super-resolution on image img 003 Set5 data set

Figure 13. Visualization results for 4× super-resolution on image img 014 Set14 data set
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Table 4
PSNR and SSIM values using different models on benchmark

(Set5/Set14/BSD100/Urban100) data sets for 4× super resolution

Method Data Set Set5 Set14 BSD100 Urban

SRCNN 291 30.48 27.50 26.90 24.52

0.86 0.75 0.71 0.72

EDSR DIV2K 32.46 28.80 27.71 26.64

0.89 0.78 0.74 0.80

RCAN DIV2K 32.63 28.87 27.77 26.82

0.90 0.78 0.74 0.80

ESRGAN DF2K 32.73 28.99 27.85 27.03

0.90 0.79 0.74 0.81

MDRN DIV2K 32.33 28.75 26.43 27.66

0.89 0.78 0.79 0.73

EdgeSRGA DIV2K 31.72 28.30+ 27.35 25.4

0.88 0.77 0.72 0.76

HAT DIV2K 32.92 29.15 27.97 27.87

0.90 0.79 0.75 0.83

DRCT-L [18] DF2K 33.37 29.54 28.16 28.70

0.90 0.80 0.75 0.85

HMA [4] DF2K 33.38 29.51 28.13 28.69

ImageNet 0.90 0.80 0.75 0.85

CPAT+ [40] DF2K 33.19 29.51 28.04 28.22

ImageNet 0.9069 0.7991 0.75 0.8408

CFAT [31] DIV2K 33.19 29.34 29.30 28.11

Flickr2K 0.90 0.79 0.79 0.83

SAFMN [37] DIV2K 32.18 28.60 27.58 25.97

Flickr2Kt 0.89 0.78 0.73 0.78

SVAN [10] DIV2K 31.76 28.30 27.41 25.56

Flickr2Kt 0.88 0.7736 0.72 0.76

Extracter-rec [32] CUFED5 27.29 30.02 26.04 28.09

0.811 0.816 785 0.782

DSRNet [39] DIV2K 31.71 28.38 27.43 25.65

0.88 0.7760 0.73 0.76

SwinIR DIV2K 32.93 29.15 27.95 27.56

+Flickr2K 0.9043 0.7958 0.7494 0.8273

PSO- DIV2K+ 33,58 30,21 29,55 28,25

WESRGAN SR 0.92 0.798 0.81 0.88

LIMOSE

5. Conclusion

In conclusion, our article proposes an innovative method for the super-resolution of

documentary images, integrating wavelet transformation, deep-learning transfer, and

optimization by the PSO algorithm. This approach has allowed us to preserve the
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subtle details and layout of documents while optimizing parameters to significantly

improve the visual quality of images. The experimental results show significant gains

in terms of fidelity, detail, and readability.

However, several limitations should be noted. First, the approach is computa-

tionally demanding. ESRGAN networks require high GPU power for the training and

inference steps, and the PSO algorithm (by exploring a large number of parameters)

further intensifies these requirements. This constraint can make it difficult to apply

our method on devices with low computing capacities (such as embedded or portable

systems). Also, images with very low resolution, high noise, or large artifacts may not

be improved sufficiently. ESRGAN networks and PSO optimization may reconstruct

details incorrectly.

These limitations call for a thorough reflection to adapt and improve our method.

Future prospects include the development of lighter architectures to reduce compu-

tational costs. Integrating more-efficient PSO variants to limit the complexity of the

optimization and developing robust data preprocessing and enhancement techniques

would improve the performance on low-quality images. Furthermore, a thorough val-

idation on more-varied data sets would allow the application of the method to be

extended.
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S. Roth (eds.), Computer Vision – ECCV 2018 Workshops, pp. 63–79, Springer,

Cham, 2019. doi: 10.1007/978-3-030-11021-5 5.

https://doi.org/10.1109/cvpr52733.2024.02468
https://doi.org/10.1109/cvpr52733.2024.02468
https://doi.org/10.1109/cvpr52733.2024.02468
https://doi.org/10.1109/cvpr52733.2024.02468
https://arxiv.org/abs/2310.01379
https://arxiv.org/abs/2310.01379
https://doi.org/10.2139/ssrn.5347487
https://doi.org/10.3390/rs12142207
https://doi.org/10.3390/rs12142207
https://doi.org/10.3390/rs12142207
https://doi.org/10.1109/tit.1970.1054397
https://doi.org/10.1109/tit.1970.1054397
https://doi.org/10.1109/tit.1970.1054397
https://doi.org/10.1016/0304-3991(81)90061-9
https://doi.org/10.1016/0304-3991(81)90061-9
https://doi.org/10.1109/iccv51070.2023.01213
https://doi.org/10.1109/iccv51070.2023.01213
https://doi.org/10.1109/iccv51070.2023.01213
https://doi.org/10.1109/iccv51070.2023.01213
https://doi.org/10.3390/rs13122269
https://doi.org/10.3390/rs13122269
https://doi.org/10.3390/rs13122269
https://doi.org/10.1049/cit2.12297
https://doi.org/10.1049/cit2.12297
https://doi.org/10.1049/cit2.12297
https://doi.org/10.3390/s23041863
https://doi.org/10.3390/s23041863
https://doi.org/10.3390/s23041863
https://doi.org/10.1007/978-3-030-11021-5_5
https://doi.org/10.1007/978-3-030-11021-5_5
https://doi.org/10.1007/978-3-030-11021-5_5


PSO-WESRGAN: A novel document image super resolution 31

[45] Wang Z., Cun X., Bao J., Zhou W., Liu J., Li H.: Uformer: A General U-

Shaped Transformer for Image Restoration. In: 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 17662–17672, 2022.

doi: 10.1109/CVPR52688.2022.01716.

[46] Zhang K., Zuo W., Zhang L.: Deep Plug-And-Play Super-Resolution for Ar-

bitrary Blur Kernels. In: 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1671–1681, 2019. doi: 10.1109/cvpr.2019.00177.

[47] Zhang Y., Li K., Li K., Wang L., Zhong B., Fu Y.: Image Super-Resolution Using

Very Deep Residual Channel Attention Networks. In: V. Ferrari, M. Hebert,

C. Sminchisescu, Y. Weiss (eds.), Computer Vision – ECCV 2018, pp. 286–301,

Springer, Cham, 2018. doi: 10.1007/978-3-030-01234-2 18.

[48] Zhang Y., Tian Y., Kong Y., Zhong B., Fu Y.: Residual Dense Network for Im-

age Super-Resolution. In: 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2472–2481, IEEE, 2018. doi: 10.1109/cvpr.2018.00262.

Affiliations

Zakia Kezzoula
University M’Hamed Bougara of Boumerdes, LIMOSE Laboratory, Algeria,
z.kezzoula@univ-boumerdes.dz

Djamel Gaceb
University M’Hamed Bougara of Boumerdes, LIMOSE Laboratory, Algeria,
d.gaceb@univ-boumerdes.dz

Received: 30.07.2024

Revised: 23.01.2025

Accepted: 04.05.2025

https://doi.org/10.1109/CVPR52688.2022.01716
https://doi.org/10.1109/CVPR52688.2022.01716
https://doi.org/10.1109/CVPR52688.2022.01716
https://doi.org/10.1109/cvpr.2019.00177
https://doi.org/10.1109/cvpr.2019.00177
https://doi.org/10.1109/cvpr.2019.00177
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1109/cvpr.2018.00262
https://doi.org/10.1109/cvpr.2018.00262
https://doi.org/10.1109/cvpr.2018.00262

	Introduction
	Deep-learning-based super-resolution techniques
	Proposed approach
	Wavelet transfer
	Training of ESRGAN networks
	Particle Swarm Optimization (PSO)

	Evaluation and results
	Conclusion 

