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Abstract | The increased use of IoT devices in various domains generates abundant
data traffic. Securing this data during its transfer and storage is essential.
Blockchain is now a trending technology to provide security to the data; how-
ever, it is observed that blockchain performs poorly while managing large vol-
ume data. To mitigate this issue, an advanced Optchain method to reduce
the data size before submitting it to the blockchain network is discussed in
this paper. This Optchain method optimizes IoT-generated data using data-
classification and compression techniques. The classification of data as relevant
or irrelevant is based on predefined thresholds of critical healthcare parame-
ters. Subsequently, the Optchain method employs the Z-standard algorithm
for compressing only the relevant data, ensuring efficient storage and faster
blockchain transactions. Simulation results using the iFogSim simulator and
Ethereum blockchain demonstrated improved storage costs and computational
times compared to traditional methods.
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1. Introduction

Strong security measures are required to safeguard sensitive data during transit and
storage due to the exponential growth in the data generation caused by the widespread
use of IoT devices. Blockchain technology has a decentralized and secures nature
and has emerged as a viable solution to address these security concerns [12]. With
the use of several computers and distributed ledger technology, blockchain creates a
record of transactions that cannot be changed. This technology ensures data integrity,
transparency, and security without the need for a central authority [16].

However, when applied to IoT data management, blockchain technology faces
significant challenges — particularly with scalability, storage limitations, latency, and
high energy consumption. These challenges arise due to the inherent characteris-
tics of IoT environments, where massive amounts of data are continuously generated
by various sensors and devices. Traditional blockchain architectures (designed for
smaller, more static data streams) not able to efficiently manage the volume and ve-
locity of IoT data. For example, as data accumulates, the storage requirements on the
blockchain grow exponentially, leading to performance bottlenecks and increased en-
ergy consumption due to the need for constant consensus and data replication across
nodes [5]. Additionally, the latency introduced by blockchain verification processes
can hinder real-time IoT applications that demand quick data processing and decision-
making [22]. The challenge of scalability in blockchain arises from its decentralized
nature, where each node in the network must store and validate every transaction.
As the number of transactions increases, the size of the blockchain grows, making it
difficult for the nodes to keep up with the storage and processing demands. This is
particularly problematic in public blockchain networks, where achieving a consensus
across many nodes adds further delays and computational overhead. In the context of
IoT data management, scalability becomes a critical issue because IoT systems gener-
ate massive amounts of data from various sensors in real time. Traditional blockchain
architectures are not optimized to handle such large-scale high-frequency data inputs
efficiently. As a result, the network experiences slowdowns, leading to delays in data
validation and storage; this can disrupt real-time IoT applications that require quick
decision-making and responsiveness.

Given these challenges, there is a need for innovative solutions that not only se-
cure IoT data using blockchain but also address the scalability and storage inefficien-
cies that arise from large-scale IoT deployments. This paper presents Optchain — an
advanced optimization method designed to tackle these issues. The core idea behind
Optchain is to reduce the data size before submitting it to the blockchain, thereby
improving the processing efficiency, storage management, and transaction speed.

A key motivation for the use of OptChain in the healthcare domain lies in the
need to efficiently handle and secure data generated by IoT devices used in criti-
cal medical applications. As healthcare IoT devices generate continuous streams of
sensitive patient data, it requires real-time management. These data streams are es-
sential for timely medical decisions, but they are also prone to storage and processing
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bottlenecks when using conventional blockchain architectures. OptChain addresses
these challenges by not only reducing the data size but also maintaining the integrity
and confidentiality required for healthcare data, thus enhancing the applicability of
blockchain technology in healthcare environments. In the case of remote monitoring,
for example, a diabetic patient’s glucose levels from continuous monitoring sensors can
be securely shared with healthcare providers in real-time, ensuring rapid responses
while maintaining privacy and security.

Optchain achieves this through a two-step approach. First, IoT data is classified
as relevant or irrelevant using a Random Forest machine-learning algorithm, ensuring
that only critical data is retained for blockchain processing. Second, the relevant data
undergoes compression using the Zstandard algorithm, which effectively reduces the
size of the IoT-generated data, further optimizing the storage and transmission. This
dual approach mitigates the scalability and storage limitations typically associated
with blockchain in IoT environments.

The methodology involves gathering IoT data from various sensors and devices
in a healthcare environment, classifying the data using machine-learning models, Zs-
tandard algorithms for compressing the relevant data, and submitting the compressed
data to the blockchain network for secure storage and management. Data classification
and compression are performed at the primary fog node, while the blockchain is stored
on backup fog nodes. This paper integrates fog computing into the proposed system to
address the limitations of processing large volumes of IoT data directly on blockchain
networks. Fog computing acts as an intermediary layer between IoT devices and the
blockchain, enabling data preprocessing, classification, and compression closer to the
data source. By offloading these operations to fog nodes, the system reduces its la-
tency, improves its real-time performance, and minimizes the computational burden
on blockchain networks. Evaluation metrics such as data-size reduction, storage cost,
computational time, throughput, transmission time, latency, and energy consumption
were considered to evaluate the performance of the Optchain method. This methodol-
ogy was implemented to demonstrate significant improvements in managing IoT data
with blockchain, ensuring enhanced security, efficiency, and cost-effectiveness.

The problem statement focuses on a solution to optimize the burgeoning amount
of IoT data in a secure manner. The primary objectives of this study are as follows:

e develop classification mechanism to identify relevant IoT data;
e implement compression technique to reduce data size before blockchain storage;

e evaluate performance of proposed method using healthcare IoT data in simulated
environment.

2. Literature review

In recent years, the integration of blockchain technology with IoT systems has gar-
nered significant attention from researchers aiming to enhance data security, privacy,
and efficiency.
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2.1. Blockchain technology

In [12], the authors proposed a system to ensure secure IoT data transmission us-
ing blockchain and also used hybrid consensus mechanisms that combined the fea-
tures of Delegated Proof of Stake (DPoS) and Practical Byzantine Fault Tolerance
(PBFT), further enhancing the scalability and reliability of IoT-blockchain systems.
This hybrid model supports scalable IoT systems, providing privacy, security, and
data efficiency across diverse industries.

In [16], Puneet et al. addressed medical information security and privacy us-
ing a lightweight cryptographic system with blockchain. In healthcare systems, data
security and connectivity are crucial for effective patient data management, where
blockchain improves secure data storage and transmission. The proposed work inte-
grated the Intuitionistic Derivative Symmetrical Encryption (IDSE) algorithm with
blockchain using a Differential Hashing Pattern (DHP) for key generation to enhance
the security, reduce the data size, and improve the transmission speed.

In [5], the authors integrated a blockchain protocol with the Multi-Objective
Squirrel Search Optimization Algorithm (MOSSA) to enhance security and scalability
in healthcare data management. By optimizing blockchain parameters such as block
size, transaction size, and channels, MOSSA improves throughput, efficiency, and
reduces delay and computational overhead. The experimental results demonstrate
significant performance gains compared to existing methods, making the proposed
solution highly effective for securing healthcare systems.

In [22], the authors introduced the concept of BlockCloud, which leverages
blockchain as a cloud service to enhance security and efficiency in smart systems.
Known for its scalability and cost-effectiveness, cloud computing faces several secu-
rity concerns. By integrating blockchain technology, this paper addressed these risks
by ensuring data integrity through cryptographic methods and electronic wallets. The
paper also provided a detailed overview of blockchain applications in cloud computing,
highlighting its potential to solve key challenges.

In [14], the authors conducted a survey on blockchain applications, challenges,
and opportunities across various domains. Their research emphasized the diverse
applications of blockchain technology beyond cryptocurrencies, including its use in
securing IoT data. They discussed technical and performance-related challenges of
integrating blockchain with IoT such as transaction speed and scalability, which were
the critical issues that the proposed method aimed to mitigate.

In [17], the authors explored the integration of blockchain technology with IoT
systems, identifying numerous challenges and opportunities. While revolutionary,
blockchain must be applied cautiously to IoT systems due to potential risks like high
costs and operational challenges. This paper analyzed key points where blockchain
could enhance IoT applications and examined existing platforms, emphasizing the
importance of addressing challenges such as scalability, security, and privacy to ensure
their successful integration.
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2.2. Data classification

In [10], the authors proposed a system to enhance data integrity and reduce compu-
tational load on cloud servers in IoT environments. By employing data-classification
techniques such as k-nearest neighbor and Complement Naive Bayes, the proposed
system ensured that only relevant data was transmitted to the cloud, thereby improv-
ing the efficiency and security in data transmission.

In [26], the authors conducted a performance analysis and comparison of machine-
learning and deep-learning algorithms for classifying IoT data. The authors evalu-
ated various algorithms to determine their effectiveness and efficiency in handling the
large and complex data sets generated by IoT devices. Their findings highlighted the
strengths and limitations of different approaches.

In [19], the authors examined IoT and big-data categorization in the healthcare
industry, focusing on the significance of effective data-classification methods in man-
aging large volumes of healthcare data. The authors investigated how the large-scale
data generated by IoT devices can be effectively classified and analyzed to improve
healthcare outcomes. They discussed various classification techniques and their ap-
plications in managing and interpreting healthcare data.

In [21], ANN and Naive Bayes classification algorithms were subjected to a per-
formance analysis, which shed light on their suitability for various data-classification
tasks. This analysis aided in placing the performance of several machine-learning
algorithms for the Internet of Things data in context.

In [18], the authors focused on the classification of glucose data for monitoring
diabetic patients. The authors presented a method to enhance the accuracy and
reliability of glucose level predictions using advanced classification techniques. This
approach aimed to improve patient monitoring and management by providing more
precise and timely data analysis.

In [13], the author utilized the random forest algorithm for the classification of
big IoT, demonstrating its suitability for handling large data sets and optimal feature
selection. By applying the random forest algorithm, the authors aimed to efficiently
manage and analyze the vast amounts of data generated by IoT devices.

In [9], the authors offered an empirical evaluation of supervised machine-learning
algorithms for IoT data, including information about how well different algorithms
performed. This paper conducted a comprehensive analysis of five supervised
machine-learning algorithms: KNN, Naive Bayes, Decision Tree, Random Forest, and
Logistic Regression-on IoT data sets. The Decision Tree algorithm outperformed the
others with 97% accuracy, while Random Forest and KNN showed similar results;
Naive Bayes and Logistic Regression performed the worst.

Table 1 provides a concise overview of each classification algorithm, highlighting
their respective advantages and disadvantages. Random Forest reduces overfitting and
provides robust performance by aggregating predictions from individual trees. Also,
Random Forest offers a well-balanced combination of accuracy, robustness, and inter-
pretability, making it a strong contender for healthcare IoT data-classification tasks.
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Table 1

Comparison of data-classification algorithms

IS\Ir(;. Algorithn Advantages Limitations Squ:) [:[?rt
1 E]ec[;l(ﬁllﬁfgl Easy to interpret | Prone to overfitting Yes
Random Forest Reduces Computationally
2 . . Yes
[8] [9] [12] [13] overfitting expensive
K-Nearest Simple and Sensitive to
3 Neigbor . noisy or irrelevant Yes
8] [9] [11] [13] intuitive features
Loglst%c . Provides Limited to linear
4 Regression interpretable decision boundaries No
[8] [13] results
Naive Bayes Fast training and Assumes
5 (8] [9] [10] .. independence No
[11] [13] prediction among features
6 Gaussian Naive | Speedy .execution Less delay No
Bayes [12] time
;| Swport Veetor | SR ot | ot | s
Machine [9] [11]
data parameters
Artificial Neural Suitable for Requires large
8 Network complex, amounts of data No
[8] [11] [13] non-linear data and computation
Convolutional Better execution Requires large
9 Neural time amounts of No
Network [9] [13] labeled data

2.3. Data compression

In [7], the authors utilized the Zstandard compression technique to significantly reduce
the data sent from IoT devices to the fog server, achieving a compression ratio of 70%
with minimal resource consumption. Raspberry Pi 4 and sensors like DS18B20 and
MAX30102 were used to gather data, and Python was employed for programming,
making the system highly efficient for healthcare applications in terms of compression
ratio, throughput, and latency. For future improvements, combining data compres-
sion with cryptographic techniques is suggested to enhance security and transmission
speed.

In the digital era, medical records are stored electronically, and the growing
population significantly increases the need for storage space. Since lossy compression
cannot be applied due to the need for full data recovery, [25] proposed a fast and
efficient lossless data-compression technique using LZW. The method leveraged data



Optchain: an advanced optimization method for enhancing IoT data. . . 111

redundancy to compress records and ensured quick and complete recovery, being
implemented using Python and HADOOP for storing compressed data.

In [27], the authors carried out a comparison of lossless text-compression tech-
niques and presented a Tamil compression method. By introducing a novel ap-
proach tailored to Tamil script characteristics, the authors contributed to advanc-
ing language-specific compression methodologies. Their research aimed to improve
data-storage efficiency and transmission speeds for Tamil language applications.

In [24], the authors introduced the Tiny Anomaly Compressor (TAC) — a novel
data-compression algorithm that leveraged the TinyML approach to enable real-time
data analysis on small devices without needing predefined mathematical models. TAC
achieved a high compression rate of 98.33% and outperformed other algorithms like
Swing Door Trending (SDT) and Discrete Cosine Transform (DCT) in terms of com-
pression error and signal-to-noise ratio.

In [8], the authors addressed the energy-consumption challenge in wireless sen-
sor networks by exploring data-compression techniques to improve network lifetime.
The proposed adaptive lossless data-compression algorithm (ALDC) reduced data-
transmission size significantly, achieving energy savings between 67.8 and 73.2%.
A further optimized algorithm encoding residue samples demonstrated even better
energy efficiency, with a 76.8% energy saving and zero redundancy.

In [20], the study focused on optimizing data transmission over constrained net-
works. The Internet of Things (IoT) plays a crucial role in modern autonomous
systems but faces challenges due to limited resources, making data compression es-
sential. For sensitive data transmitted over the low bandwidths IoT networks like
narrowband IoT (NBIoT) and LTE-M, lossless compression techniques are preferred
to maintain data integrity. This paper discussed the need for such techniques in
these networks and highlighted the challenges and recent compression methods used
in low-power wide-area networks.

In [3], the authors conducted a comparative study of various compression tech-
niques used in IoT environments. With the rapid growth of connected devices gener-
ating large amounts of data, resource limitations like memory, processing power, and
battery life have become critical. Applying data-compression techniques can help re-
duce energy consumption, storage needs, and transmission costs. This paper surveyed
and compared popular IoT compression techniques, analyzing their attributes (such
as lossless or lossy compression, limitations, and implementation locations).

In [1], the authors investigated edge-computing methods for lossless compression
in critical IoT applications. Data compression at smart Edge/Fog-based gateways
is essential for reducing transmission latency and increasing network bandwidth in
time-sensitive IoT applications like healthcare. This paper analyzed various lossless
data-compression algorithms run on Edge/Fog gateways, evaluating their performance
in terms of latency and compression rate. It provided insights to help select the
appropriate compression algorithm for time-critical IoT use cases.
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In [2], the authors introduced a lightweight lossless-compression method for multi-
sensor systems, focusing on N-dimensional data with multi-sensor systems. The re-
search addressed the need for efficient data handling in sensor networks by proposing
methods that reduced data size while preserving data integrity. Table 2 provides a con-
cise overview of each compression algorithm, highlighting their respective advantages
and disadvantages. Depending on the specific requirements of the compression task
(such as compression ratio, speed, and resource constraints), the proposed system
chooses a Z-standard algorithm for data-compression needs.

Table 2
Comparison of data-compression algorithms
Sr. . .
No Algorithm Advantages Limitations
1 Z-standard [14] .ngh compressm.n . Limited Adoptlon
ratios, Memory efficiency | in some environments
9 Lempel-Ziv-Welch (LZW) High compression Requires dictionary
[15] [16][18] [20] [21] ratios initialization
Assigning shorter Requires predefined
frequency table;
Huffman codes to more frequent . .
3 . inefficient for small
[16] [18] [19] symbols, reducing .
. or dynamically
overall file size .
changing data sets
Slower
4 Deflate (ZIP) Widely supported compression
[15] [18] (e.g., ZIP file format) compared to
LZ77 alone
Run-Length Encoding Simple and . ﬁgéﬁifieiss
b (RLE) efficient for for non-repetitive
18] [19] [2 -length .
[18] [19] [20] run-length data data
Burrows-Wheeler Effective for Regglres
6 Transform compressin additional
(BWT) to Iz datag encoding for
[16] [20] * data storage
Arithmetic Coding .Handles nonj . ngh.
7 [17] [19] uniform probability computational
distributions complexity
Lempel-Ziv-Markov . Higher
. . High .
3 chain algorithm compression computational
(LZMA) rz‘cios complexity than
[20] [21] Lz77
Pr(lechctlon b;y Adapts to Slower.
9 Partial Matching chaneine data compression
(PPM) fttegrns compared to
[15] [16] [20] P simpler methods
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2.4. Fog computing

In [11], the authors explored the integration of fog computing into the cloud to secure
data, highlighting the advantages of using fog computing for data processing and
security. The authors discussed how fog computing was useful in securing the data
generated by IoT devices and delivered to the cloud.

In [6], the authors proposed a reinforcement learning-based technique for cutting
the latency in cloud-fog gaming. Their research emphasized the importance of reduc-
ing latency in cloud-fog environments for improving transaction speeds and processing
efficiency in blockchain networks.

In [23], the authors presented a model integrating fog computing and blockchain
for identification and authentication in healthcare IoT systems. Their approach
enhanced security and efficiency by leveraging fog nodes for local processing and
blockchain for secure immutable data storage. This combined model addressed key
challenges in healthcare IoT such as data integrity and real-time authentication, pro-

viding a robust solution for secure healthcare data management.

In [15], the authors discussed fog computing architectures, applications, and se-
curity issues, providing a detailed overview of fog computing’s role in enhancing IoT
system performance and security. While fog computing offers many advantages, this
article highlighted the security, privacy, and safety challenges due to its distributed
architecture and proposed solutions to address these concerns for further development.

Table 3 shows an analysis of existing study in terms of the techniques and method-
ologies used as well as their strengths and weaknesses.

Table 3
Analysis of existing study
Sr. Citation Technique Methodology Merits Limitation
No. used
1 [2] Intuitionist Integration of Enhanced security, Not tested in
Derivative IDSE with reduced data size, large-scale
Symmetrical blockchain using improved real-world
Encryption Differential transmission speed scenarios
(IDSE), Hashing Pattern in healthcare
Blockchain (DHP) for key systems
generation
2 [3] Multi- Optimization of Improved scalability, High
Objective blockchain throughput, and complexity of
Squirrel parameters (block | efficiency in securing optimization
Search size, transaction healthcare data process
Optimization size) using
Algorithm MOSSA for
(MOSSA) healthcare data
management
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Table 3 cont.
Sr. Citation Technique Methodology Merits Limitation
No. used
3 [9] J48 Applied IoT Improves IoT-based Security and
Classification healthcare data healthcare data privacy
algorithm classification decision-making risk
using
machine-learning
techniques for
better patient
monitoring
4 [17] Tiny Local machine- High compression Data
Anomaly learning-based rates (up to 98.33%) granularity
Compressor data compression with low error, may be lost
(TAC), on constrained enabling local
TinyML IoT devices analysis and
without real-time
predefined performance on
mathematical constrained devices
models
5 [18] Adaptive MATLAB coding Demonstrated Does not
Lossless Data | and simulation of | energy savings of up scale well in
Compression residue encoding to 73.2%, efficient more
(ALDC) to reduce data data compression, complex IoT
and improved networks
network lifetime

The review studies reveal several limitations, such as data overload, lack of opti-
mization, security and privacy concerns, and insufficient data granularity. To address
these challenges, the proposed Optchain method has been developed, offering a more
efficient solution by optimizing data management while ensuring security and main-
taining data relevance.

3. System architecture

Figure 1 depicts the system architecture of the proposed Optchain method for securing
TIoT data via blockchain. The system architecture comprises several interconnected
components to facilitate the secure handling and processing of IoT data. With fog
computing with a blockchain layer, the process initiates with data generated from
IoT, which are then channeled into a data classifier. The fog computing is used in
this architecture to process data at the local level. The proposed system leverages
fog nodes to enhance the performance of the blockchain-IoT ecosystem. IoT devices
send raw data to nearby fog nodes, which handle data classification (relevant vs.
irrelevant) and apply Zstandard compression. Only the compressed relevant data is
forwarded to the blockchain network for secure storage. This layered approach ensures
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low latency, reduces network traffic, and enhances scalability by offloading intensive
data-processing tasks to fog nodes, making the system more efficient for real-time IoT
applications.

A ;g S G S I A N S I I G A e S T S S O A S S S S G S S A -

Fog
Compuring
with
Blochehain
Layer

Sensors Layer

Figure 1. Proposed system architecture

The classifier employs the Random Forest algorithm to effectively segregate rele-
vant data from irrelevant data, ensuring efficient data management. Once identified,
the relevant data undergoes further processing through a data compressor. Utilizing
the Zstandard algorithm, the data is compressed to optimize the storage and transmis-
sion efficiency while maintaining its integrity. Subsequently, the compressed sensitive
data is encapsulated into a block — ready for integration into the existing blockchain
ledger. Before its incorporation, the newly formed block undergoes rigorous validation
to ensure its accuracy, consistency, and compliance with predefined protocols. Upon
successful validation, the block is seamlessly appended to the blockchain ledger, thus
contributing to the immutable record of transactions and events within the system.
For long-term storage, the blockchain will be stored on the cloud.

A detailed description of each component of the system architecture is as follows:

1. IoT Layer (Sensors):
e The system starts with IoT devices (e.g., healthcare sensors) that gather
data such as patient vitals.

e These sensors continuously collect raw data and send it to the primary
fog node.
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2. Primary Fog Nodes:

e The primary fog nodes classify data collected from the sensors. It separates
relevant data from irrelevant data, reducing the amount of unnecessary in-
formation to be processed.

e After classification, the Compression module further reduces the size of the
relevant data. Compression is essential for optimizing storage and transmis-
sion before data is sent to the blockchain network.

e The compressed data is passed to the Block Creation module, which orga-
nizes the data into blocks for inclusion in the blockchain network.

3. Backup Fog Nodes:

e Once the block is created, it is distributed across multiple fog nodes (Node
1, Node 2, ..., Node N) — each performing a validation process to verify the
integrity and authenticity of the data.

e These fog nodes are part of a decentralized network that performs consensus
operations to ensure that the stored data is valid and immutable. Backup
fog nodes ensure fault tolerance and redundancy.

4. Cloud-Computing Layer:

e After validation in the fog-computing layer, the verified data blocks are sent
to the cloud for long-term storage, deeper analysis, or additional processing.

This comprehensive architecture ensures the secure, efficient, and transparent han-
dling of sensitive data from IoT devices, providing a robust foundation for data man-
agement and integrity within the ecosystem. Also, this architecture bridges the gap
between resource-constrained IoT devices and blockchain networks, ensuring faster
transactions, improved data management, and seamless system performance.

4. Implementation
The proposed method is implemented by using the following steps:

4.1. 10T data collection and transmission

The healthcare data set used in this research was sourced from Kaggle [4] and was
comprised of patient-monitoring data generated by IoT healthcare devices, includ-
ing temperature sensors, pulse oximeters, blood pressure monitors, ECGs, EMGs,
and glucometers. It featured various attributes such as device type, operational
metrics, security events, and potential threats. The data set description is https:
/ /www.kaggle.com /datasets / faisalmalik /iot- healthcare- security- dataset ?resource=
download.

4.2. Classification phase (using Random Forest algorithm)

The classification process involves categorizing the IoT data using the Random For-
est (RF) algorithm, distinguishing between relevant and irrelevant data. Subse-
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quently, the relevant data is selected as input for the data-compression model. The
random forest operates as an ensemble-learning algorithm, relying on a fundamental
principle: the construction of small decision trees with minimal features is compu-
tationally economical. Many small and weak decision trees are generated in parallel
and combined by majority voting or averaging to produce a robust learner. Random
forests have been shown to be among the most accurate learning algorithms available
empirically.

Algorithm 1 Random Forest

1: Precondition: A training set S:=(x1,y1),...,(xn,yn), features F, and numbers of trees in
forest B

Function RandomForest(S,F)

H<+ 0

foriel,...,Bdo

S(i) < A bootstrap sample from S

hi < RandomizedTreeLearn (S(i), F)

H +— HUhi

end for

return H

end Function

: Function RandomizedTreeLearn(S,F)
: At each node:

: f 4 very small subset of F

: Split on best feature in F

: return The learned tree

: Output code for P

e e e e e

The provided pseudo-code in Algorithm 1 outlines the Random Forest algorithm.
The random forest algorithm consists of two functions: RandomForest, and Random-
izedTreeLearn. In the RandomForest function, a set of decision trees H is built by
repeatedly creating bootstrap samples by taking the data from s (which is a train-
ing set). The Randomized Tree Learn function is used for learning a randomized
decision tree for each sample. By choosing a small subset of features f at each node
and splitting on the best features in f, the Randomized TreeLearn function constructs
a decision tree.

Consider an example of a pulse oximeter —an IoT healthcare device that measures
blood oxygen levels (SpO2) and heart rate (BPM). Along with these primary metrics,
the device may collect additional data such as device temperature, battery status,
signal strength, time stamps, and error flags; it also sometimes generates null values or
redundant values. However, not all of these features are equally important for clinical
decision-making. The Random Forest model evaluates the importance of each feature
based on how well it contributes to predicting health outcomes, such as detecting low
oxygen levels or abnormal heart rates. For example, SpO2 and heart rate are ranked as
high-priority features due to their direct relevance to patient monitoring, while signal
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strength and frequent time stamps receive lower scores and are excluded to reduce the
data size. By keeping only relevant features like SpO2, heart rate, and occasional error
flags, the system ensures that essential healthcare information is retained without
unnecessary overhead. This selective feature reduction optimizes storage, improves
processing efficiency, and allows for faster real-time analysis — critical for time-sensitive
healthcare applications.

4.3. Compression phase (using Zstandard algorithm)

The Zstandard algorithm is employed in the compression process to reduce the size
of the input IoT data, producing compressed data (CD). This compressed data is
then transmitted to generate a block and is subsequently appended to the existing
blockchain.

Algorithm 2 Zstandard algorithm

: Initialize table with single character strings
: P=first inout character

: WHILE not end of input stream
C=next input character

IF P+C is in the string table
P=P+C

ELSE

: output the code for P

: add P+C to the string table
P=C

: END WHILE

: Output code for P

e =

Algorithm 2 shows the Zstandard algorithm, which starts by initializing a table
containing single-character strings. It then reads the input stream character by char-
acter, building up sequences, and adding them to the string table as it encounters
new combinations. If a combination is already present in the table, it continues to
build on the current sequence. When a new combination is encountered, it outputs
the code for the previous sequence, adds the new combination to the table, and resets
the current sequence to the latest character. This procedure keeps going until the
input stream ends and the final code for the last sequence is outputted.

To understand how the Zstandard algorithm functions, let us consider a simple
example involving healthcare IoT data. Imagine a heart-rate-monitoring device that
continuously records heart-rate measurements and transmits them to the healthcare
system for real-time analysis and storage.

The raw data stream is shown as follows:

Raw Data (Heart Rate Readings):
78, 78, 80, 80, 80, 81, 82, 82, 82, 82, 83, 83, 83, 83, 83.
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Since IoT data often contains repetitive patterns, Zstandard leverages these rep-
etitions to efficiently compress the data. The Zstandard algorithm compresses data
by building a dictionary of repeating patterns and encoding the data using shorter
codes for frequently occurring values.

Step 1: Dictionary Construction
The algorithm first scans the data to identify frequent patterns or sequences. In this
example, repeated sequences like (78, 78), (80, 80, 80), and (83, 83, 83, 83, 83) are
detected.
Step 2: Encoding Using Shorter Codes
Zstandard assigns shorter codes to these repeating patterns to replace the origi-
nal data:
e 78, 78 — Code A;
e 80, 80, 80 — Code B;
e 83, 83, 83, 83, 83 — Code C.
After encoding, the data stream might look something like this:
Compressed Data:
A, B, 81, 82, 82, C.
Step 3: Decompression (Reconstruction)
When the data needs to be retrieved, Zstandard decompresses the codes back into
their original values using the dictionary.
Decompressed Data:
78, 78, 80, 80, 80, 81, 82, 82, 82, 82, 83, 83, 83, 83, 83

5. Experimental setup

The problem of handling and safeguarding the enormous volumes of data generated by
IoT devices in the healthcare industry was tackled in this experiment. The iFogSim
simulator was used in the experimental setup to simulate an IoT environment for
healthcare, where a variety of sensors produced continuous data streams. Sorting this
data according to predetermined healthcare parameters into groups that were useful
and not useful was the first stage. The pertinent data was subjected to a compression
method after classification in order to greatly minimize its size.

Key performance parameters were monitored during the experiment, such as
the percentage decrease in data size, processing effectiveness, transaction speed, and
blockchain-transaction cost. The anticipated results encompassed a significant de-
crease in the data dimensions and enhanced the processing effectiveness as a result of
the diminished data volume, expedited blockchain transactions, and decreased trans-
action expenses. This configuration showed the potential for improved performance
and cost-effectiveness in managing healthcare data as well as the viability of utilizing
blockchain technology to secure IoT data.

The integration of an Ethereum blockchain ensured the security of the com-
pressed data. Using Ganache, a local Ethereum network and a connection to a test
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network were established. Solidity was used to create smart contracts that managed
data submission and retrieval while maintaining data security and integrity. The
web3.py module was used in the Python scripts to enable communication between
the Ethereum blockchain and the iFogSim simulation. This module enabled the sim-
ulation to send transaction requests to the blockchain. The Python code was used to
create a Web3 object and connect to the Ganache instance via HTTP (as shown in
Figure 2).

ganache_url =

web3 = Web3(Web3.HTTPProvider(ganache_url))

web3.isConnected():

t(

Figure 2. Code of Web3 object

Once connected, the web3.py module allowed the simulation to deploy smart
contracts and send IoT-data transactions. For instance, the simulation triggered
smart-contract functions like storeData() and retrieveData() through web3.py API
calls, ensuring secure and efficient data management.

In terms of the iFogSim configuration, the simulation was set up with various
fog nodes — each simulating different healthcare facilities. These nodes handled data
streams from sensors deployed in a hospital environment. The healthcare parameters
used for the data classification included thresholds for temperature (37°C), blood
pressure (120/80 mmHg), heart rate (60-100 BPM), glucose level (90-130 mg/dL),
and oxygen saturation (95-100%). Each sensor’s data was monitored in real-time,
processed at the fog nodes, and then sent to the blockchain for secure storage.

Moreover, specific simulation scenarios included testing the system’s response to
varying data loads, simulating critical healthcare events, and analyzing the latency
and throughput of the blockchain-based data management. By adjusting the number
of sensors, the scalability of the system was tested, providing insights into how well
the system could manage increasing amounts of healthcare data.

6. Evaluation metrics

The parameters that were considered for the measurement of results were as follows:

e Compression Ratio (CR)
This is used to measure the amount of data that is compressed; it is the ratio of
the size of the compressed data to the uncompressed data.
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_ Size of Uncompressed Data

CR =

Size of Compressed Data

e Compression Factor (CF)
This is given by the following formula:

CF = ! 2)

Compression Ratio

e Saving percentage
This is given by the following formula:

Uncompressed Data-Compressed Data

3)

Uncompressed Data

e Storage cost
Storage cost refers to the expense associated with storing the data. In the context
of blockchain and IoT systems, the storage cost is crucial, as it can significantly
impact the scalability and economic viability of the system (especially when
dealing with large volumes of data).

e Computational Time
Computational time is the amount of time required to perform a computational
task or process a set of operations.

e Throughput
Throughput is the rate at which a system can process and transmit data over a
given period.

e Compression Ratio:
This measures the effectiveness of the data compression by comparing the size
of the original data with the compressed data; a higher ratio indicates better
compression, reducing storage and transmission overhead.

e Transmission Time:
This refers to the time required to transmit data from one point to another across
a network; optimizing the transmission time ensures faster communication and
reduces delays.

e Latency:
Latency measures the delay between a request and the corresponding response;
lower latency ensures real-time data processing, which is crucial for healthcare
IoT applications.

e Energy Consumption:
This indicates the total energy used by devices or systems during the data pro-
cessing and transmission. Reducing the energy consumption improves the sus-
tainability and efficiency of IoT systems.
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7. Results

The results of this study showed that the suggested approach was more effective than
traditional compression techniques such as Run Length Encoding (RLE), Shannon-
fano, Huffman Coding, and Lempel-Ziv-Welch (LZW) in the context of reducing the
data size. These methods were tested on healthcare IoT data sets, which included
time-sensitive and sensitive patient data gathered from various sensors. The experi-
ments were conducted using the iFogSim simulator for data generation and processing
as well as the Ethereum blockchain for securing the compressed data. The perfor-
mance metrics were evaluated and normalized to provide a comprehensive comparison,
highlighting the advantages and limitations of each method. The experiments were
carried out for varying sizes of healthcare IoT data (21,527, 43,527, and 68,574 KB).

Table 4
Comparison of compression techniques and proposed method for different data sizes

Data Shannon- | Huffman Optchain
size Parameters RLE Fano Coding Lzw Method
Compressed Data Size | 10,978 8179 4736 3874 3014
21,527 Compression Ratio 0.51 0.38 0.22 0.18 0.14
KB Compression Factor 1.96 2.63 4.54 5.56 7.14
Saving Percentage 49% 62% 78% 82% 86%
Compressed Data Size | 34,973 26,058 15,086 12,343 5457
43,527 Compression Ratio 0.51 0.38 0.22 0.18 0.13
KB Compression Factor 1.96 2.63 4.54 5.56 1.98
Saving Percentage 49% 62% 78% 82% 87%
Compressed Data Size | 35,173 25,258 14,324 11,587 9150
68,574 Compression Ratio 0.51 0.38 0.22 0.18 0.13
KB Compression Factor 1.96 2.63 4.54 5.56 7.49
Saving Percentage 49% 62% 78% 82% 87%

Table 4 shows that the output values of the parameters for the different data
sizes varied in the proposed system, as the incoming data may consist of different
amounts of relevant and irrelevant data. The proposed method first categorized the
data and then applied the compression to the relevant data only. In contrast, the
values remained the same for the other techniques, as they solely applied compression
to all incoming data. These outcomes demonstrated how well the suggested strategy
worked to get the greatest possible decreases in the data sizes, compression ratios,
and saving percentages across the various data sets.

The results obtained after the implementation of the proposed Optchain method
were compared with those of the existing Blockchain-MOSSOA and FC-with-
Blockchain systems. This evaluation aimed to demonstrate the improvements in
storage cost, computational time, and throughput in an IoT-based healthcare en-
vironment.
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Figure 3 presents a line graph that illustrates the storage costs for Blockchain-
MOSSOA, FC-with-Blockchain, and the proposed Optchain method across the differ-
ent numbers of IoT devices. These values depict the storage costs in terms of memory
usage for each approach when managing the different numbers of IoT devices. The
proposed Optchain method consistently demonstrated lower storage costs compared
to Blockchain-MOSSOA and FC-with-Blockchain, highlighting its efficiency in pro-
cessing IoT data. On average, the proposed Optchain method reduced storage costs
by approximately 27.41% when compared to Blockchain-MOSSOA and by 20.00%
when compared to FC-with-Blockchain.
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Figure 3. Storage cost comparison of proposed method with existing methods

Figure 4 presents a line graph illustrating the computational time for Blockchain-
MOSSOA, FC-with-Blockchain, and the proposed Optchain method across the dif-
ferent numbers of IoT devices. The performance of the computing time for each
method is shown by these values. The proposed Optchain method consistently demon-
strated lower computational costs as compared to Blockchain-MOSSOA and FC-
with-Blockchain, highlighting its efficiency in processing IoT data. On average, the
proposed Optchain method reduced computational time by approximately 39.05%
when compared to Blockchain-MOSSOA and by 29.89% when compared to FC-with-
Blockchain.

Figure 5 illustrates the throughput comparison for Blockchain-MOSSOA, FC-
with-Blockchain, and the proposed Optchain method across the varying numbers of
IoT devices. The hroughput (measured in transactions per second) indicates the
system efficiency in handling data. The proposed Optchain method consistently ex-
hibited higher throughput than both Blockchain-MOSSOA and FC-with-Blockchain
for all of the device counts.
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Figure 4. Computational time comparison of proposed method with existing methods
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Figure 5. Throughput comparison of proposed method with existing methods

To provide a more detailed analysis, we included quantitative comparisons among
the proposed Optchain method and traditional compression techniques such as Huff-
man coding, Run-Length Encoding (RLE), and Zstandard. These comparisons were
based on key performance metrics: compression ratio, transmission time, latency, and
energy consumption. The data collected from the healthcare sensors contained a mix-
ture of both low- and high-frequency data, making it an ideal scenario for evaluating
the efficiency of the compression methods.
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Scenario 1: High-Frequency Data Transmission

For high-frequency data transmission where the amount of data generated was large,
Optchain demonstrated a significant reduction in the transmission time and energy
consumption as compared to traditional techniques like Huffman coding and Run-
Length Encoding (RLE). The performance improvement in such scenarios was primar-
ily attributed to Optchain’s ability to intelligently classify relevant and irrelevant data
before applying compression. This resulted in reduced data size, faster transmission,
and less computational overhead. The high-frequency data set included continuous
readings from multiple sensors.

Table 5
Comparative analysis of compression techniques for high-frequency data transmission

Compression | Transmission | Latency Energy
Method
ratio [%)] time [ms] [ms] consumption [J]
Proposed
70 45 15 3.2
Optchain
Huffman 60 68 20 4.5
Run-Length
Hn-heng 55 75 25 5.1
Encoding
Zstandard 65 58 18 3.8

Table 5 shows that Optchain outperformed the existing methods by achieving
a 70% compression ratio with a 45 ms transmission time, and it significantly reduced
energy consumption of 3.2 J; this was approximately 28% lower than the next best
method (Zstandard). The key factor in Optchain’s superior performance was its ability
to classify irrelevant data before applying the compression, which minimized the total
data size that needed to be transmitted.

Scenario 2: Low-Frequency Sensitive Data

In contrast, for low-frequency but highly sensitive data such as heart rate monitoring,
the proposed method provided an additional layer of security through its blockchain-
based framework while maintaining a competitive compression ratio. While capable
of reducing the data size, the traditional techniques often did not address security con-
cerns as efficiently as Optchain. This makes Optchain highly suitable for healthcare
environments where data integrity and security are critical.

For low-frequency sensitive data such as heart-rate readings, the security of the
data transmission and integrity are critical. Here, both compression and security
performance were evaluated.

Table 6 shows that Optchain provided a competitive 68% compression ratio while
maintaining a transmission time of 50 ms. Importantly, Optchain (with a blockchain-
based security mechanism) added an additional layer of data integrity, which was
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absent in the traditional methods. Despite this added security, Optchain still achieved
an energy consumption of 3.5 J, outperforming Huffman and RLE by reducing the
energy consumption by 25-30%.

Table 6
Comparative analysis of compression techniques for low-frequency sensitive data

Method Compression | Transmission Security Energy
ratio [%)] time [ms] consumption [J]
. Blockchain
Optchain 68 50 3.5
Integrated
Huffman 58 72 None 4.7
Run-Length
t-heng 52 80 None 5.3
Encoding
Zstandard 63 65 None 4.0

These scenarios demonstrated that Optchain significantly outperformed the
traditional methods in both high-frequency data transmission and low-frequency
security-sensitive contexts. These insights validated its applicability in various health-
care IoT environments — particularly where security and efficient data handling are
essential.

8. Discussion

The research presented in this paper proposed an advanced method for managing IoT
data within blockchain networks, achieving significant improvements over existing
methodologies — particularly in terms of scalability, storage, and processing efficiency.
While previous studies have attempted to address these challenges by optimizing
blockchain protocols or integrating cloud and fog computing, many solutions have
still struggled with the issue of efficiently reducing the massive volume of IoT data.

In real-world IoT environments, the proposed method holds strong potential for
practical application. IoT systems generate vast amounts of data, and managing
this in a blockchain network often becomes cumbersome. The proposed method has
the ability to classify data into relevant and irrelevant categories before compression
offers an efficient solution — particularly for environments like healthcare, smart cities,
and industrial IoT systems (where data volume and sensitivity are paramount). The
method can easily be applied in these practical IoT environments by incorporating
it into existing IoT-fog-blockchain architectures, ensuring that only pertinent data is
processed and stored; this leads to faster and more efficient transactions as well as
reduced storage needs.

A key comparative advantage of this approach is its use of the Zstandard com-
pression algorithm for relevant data. Unlike other existing blockchain-IoT systems
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(which often try to store all data on-chain), the proposed method smartly reduces
the data size before storage, significantly enhancing the blockchain’s performance
in handling IoT data. The results showed that the proposed method outperformed
traditional methods such as standard compression algorithms like Huffman and Real
length Encoding in terms of compression ratio and processing speed — especially when
tested on healthcare IoT data sets.

During the implementation, however, some limitations were encountered. Even
though the classification and compression process drastically reduced the data size,
it introduced some complexity in the classification phase; this required fine-tuning
for different IoT use cases. Additionally, the initial processing overhead for classify-
ing the data may have affected real-time applications in some resource-constrained
IoT environments. Nonetheless, these challenges do not detract from the proposed
method’s overall applicability and scalability, making it a robust solution for IoT-
based blockchain systems.

9. Conclusion

In conclusion, many IoT applications are under increasing pressure to bolster secu-
rity measures and protect data in the face of growing cyber security threats. While
blockchain technology offers a promising solution, its effectiveness in managing the
vast volume of healthcare IoT data is constrained by inherent limitations. To address
this challenge, an advanced method for combining data-classification and compression
techniques has been proposed. Through the systematic classification and compres-
sion of IoT data, this method effectively reduces data sizes and minimizes network
delays during data transmission. The findings presented in this research underscore
the substantial improvements achieved in terms of the reductions in data sizes, pro-
cessing efficiency, transaction speeds, and transaction costs. Notably, the observed
saving percentages of approximately 86 to 87% highlighted the significant reduction
in data size, affirming the efficacy of the proposed method. These results suggested
that leveraging machine-learning-based classification and advanced compression tech-
niques can greatly enhance network performance and scalability in IoT applications.
Additionally, the proposed method effectively addresses the challenge regarding han-
dling large amounts of data faced by blockchain networks. Moving forward, further
research and development efforts should focus on optimizing the proposed system
for diverse IoT deployment scenarios and exploring additional avenues for improving
data-processing efficiency and resource utilization. Overall, this study contributes
valuable insights into addressing the inherent challenges of IoT data management
and lays the foundation for future advancements in this rapidly evolving field. Im-
plementing the proposed method in real-world IoT environments requires integrating
it with the existing IoT infrastructure, ensuring its compatibility with diverse sen-
sor types and communication protocols. Additionally, deploying the blockchain and
compression techniques at fog nodes can help manage data locally, reducing latency
and improving the overall efficiency of the data processing and security. This method
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can be further applied to various domains such as smart cities, agriculture, industrial
IoT, and environmental monitoring, where the efficient management, processing, and
secure transmission of large volumes of IoT data are critical for improving operational
performance, scalability, and decision-making.
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