COMPUTER SCIENCE e 26(2) 2025 https: //doi.org/10.7494 /csci.2025.26.2.6411

Abstract

Keywords

Citation

Copyright

MOHAMMADSADEGH MOHAGHEGHI
KHAYYAM SALEHI

USING SPLITTER ORDERING HEURISTICS
TO IMPROVE BISIMULATION
IN PROBABILISTIC MODEL CHECKING

Model checking is used to verify computer-based and cyber-physical systems,
but faces challenges due to state space explosion. Bisimulation minimization
reduces states in transition systems, easing this issue. Probabilistic bisimu-
lation further simplifies models with stochastic behaviors. Recent techniques
aim to improve the time complexity of iterative methods in computing prob-
abilistic bisimulation for stochastic systems with nondeterministic behaviors.
In this paper, we propose several techniques to accelerate iterative processes
to partition the state space of a given probabilistic model to its bisimulation
classes. The first technique applies two ordering heuristics for choosing splitter
blocks. The second technique uses hash tables to reduce the running time and
the average time complexity of the standard iterative method. The proposed
approaches are implemented and run on several conventional case studies and
reduce the running time by one order of magnitude on average.

probabilistic bisimulation, Markov decision process, model checking, splitter
ordering

Computer Science 26(2) 2025: 49-75

© 2025 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

49

https://doi.org/10.7494/csci.2025.26.2.6411
https://creativecommons.org/licenses/by/4.0/

50 MohammadSadegh Mohagheghi, Khayyam Salehi

1. Introduction

Ensuring the correctness of computer systems is a crucial issue since it may jeopardize
human life if specific safety systems fail. For example, a miscalculation in launching
a rocket can adversely affect the whole project [14]. Testing is a promising technique
to assure system correctness. Although it is a common technique, testing cannot cover
the whole behavior to verify the correctness of the system [14]. Alternatively, formal
methods like model checking provide a more thorough approach to ensuring system
correctness. This paper focuses on model checking, which automatically checks system
behaviors to confirm it meets desired properties [7].

Due to some probabilistic aspects of many computer systems, it is possible to
perform a probabilistic model checking to verify the necessary properties of those sys-
tems. Markov decision processes (MDPs) and discrete-time Markov chains (DTMCs)
are used to model such systems. In addition, a temporal logic or automaton is utilized
to propose the required properties. A model checker automatically verifies properties
in the proposed model [7,15]. DTMCs can model probabilistic systems, while MDPs
extend DTMCs with non-determinism [29]. Probabilistic computational tree logic
(PCTL) is used to express properties to verify MDP and DTMC models [7].

The main challenge of model checking is the state space explosion problem; that
is, by increasing the number of state variables, the size of the system state space grows
exponentially [7,29,39]. This challenge limits the explicit state space representation
to small ones. Moreover, due to the iterative numerical computations in probabilistic
model checking, the running time is of importance. Hence, any attempt to alleviate
state space explosion problem can also reduce the overall running time of probabilis-
tic model checking. Various techniques have been developed in recent decades to
cover this problem. Symbolic model representation [30,39], compositional verifica-
tion [20,22], statistical model checking [3,33], and reduction techniques [25, 28, 31]
are the most major techniques that are widely used in probabilistic model checking
of DTMC and MDP models.

Bisimulation minimization is one of the model reduction techniques [4]. This
approach can be applied to the verification of security protocols [1,38,42] and even
on energy games for systems of bounded resources [8]. It defines an equivalence class
on the state space of the model that can be applied to it. States of each equivalence
class are called bisimilar states and satisfy the same set of properties. For a bisimu-
lation relation, the states of any class can be collapsed to one state, and the model
will be reduced to a minimized but equivalent one. The quotient model is guaran-
teed to meet the same set of properties and can be used by a model checker instead
of the original [7]. For the case of probabilistic model checking, applying bisimula-
tion minimization can reduce memory consumption and running time of the iterative
computation methods.

Depending on the class of systems and the underlying properties, several types of
bisimulation are defined in the literature. In strong bisimulation, two states, s and ¢,
are bisimilar if and only if for each successor state of s, there is at least one bisimilar

Using splitter ordering heuristics to improve bisimulation. . . 51

successor state of ¢ and vice versa [24]. Two (strongly) bisimilar models satisfy the
same set of PCTL formulas [4]. In weak bisimulation, silent transitions are disre-
garded, and bisimilar states are defined based on a path with some silent moves and
a move with the same action [12,40]. In this paper, we focus on strong bisimula-
tion and propose several heuristic methods to reduce the running time of iterative
algorithms to compute this kind of bisimulation relation in probabilistic systems.
More information about other classes of bisimulation and their algorithms is avail-
able in [4,12].

Contributions. Briefly, the main contributions of the paper include:

e proposing a backward ordering for selecting blocks to split the states,

e proposing a size-based ordering in which the smaller a block is, the faster prob-
abilistic bisimulation is computed,

e utilizing hash tables in order to reduce the time complexity of the current
methods,

e experimentally comparing the performance of computing probabilistic bisimula-
tion using the proposed heuristics in several case studies.

To evaluate the performance of our proposed approaches to compute probabilistic
bisimulation, we implement and run them on a set of standard case study models. We
also consider state of the art tools to compare the running time of our implementations
with the running time of these tools. The results of these experiments demonstrate
that in most cases, our proposed approaches dominate them.

Paper outline. The structure of the paper reads as follows. In Section 2, some pre-
liminary definitions of MDPs, the PCTL logic, probabilistic bisimulation, and the
standard algorithm for computing a probabilistic bisimulation partition are provided.
In Section 3, the ordering heuristics are presented. Section 4 proposes the approach
utilizing hash tables for improving the standard probabilistic bisimulation algorithm.
Section 5 demonstrates the experimental results running on several classes of the stan-
dard benchmark models. Related works are presented in Section 6. Finally, Section 7
concludes the paper and defines some future work.

2. Preliminaries

In this section, the related definitions and algorithms used in probabilistic bisimulation
are provided.

2.1. General notations and definitions

For a finite set S, a distribution p over S is a function p: S — [0,1] such that
> scs 1(s) = 1. We consider S as state space and call every member s € S a state of S.
The set of all distributions over S is denoted by D(S). For any subset ' C S and
a distribution g, the accumulated distribution over T'is defined as u[T] = > 1 pu(s).

52 MohammadSadegh Mohagheghi, Khayyam Salehi

A partition of S is a set B ={B; C S |i € I} of non-empty subsets satisfying
B,NBj=0forallijel (i#}j), and UicrB; = S. The subsets B; € B are called
equivalence classes. For each partition B of S, an equivalence relation R is defined
where for each states s,t € S, we have s Rp t iff there is a block B; € B where
s,t € B;. For the sake of simplicity, if there is no ambiguity, we only denote it by
R instead of Rz. For an equivalence relation R on S, the set of equivalence classes
of R are denoted by S/R. For a state s € S, we define [s]p = {t € S | s R t} and
[slg={t€ S |3B; € B, s,t € B;}. Forasubset T'C S, we define T/R={s€ S|
Jt € T | s Rt}. A partition By is finer than By, or B; is a refinement of By iff for
every block B € Bj, there is a block B’ € By with B C B’. One can lift an equivalence
relation R on D(S) by defining pRv iff u[C] = v[C] for every block C' € S/R.

Definition 2.1 A Markov decision process (MDP) [6] is a tuple (S, so, Act,d, Q)
where S is a finite set of states, so € S is an initial state, § : S x Act — D(S)
is a (partial) probabilistic transition function, which maps a state of S and an action
to a distribution of states, and G C S is the set of goal states.

MDPs are used to model systems with both nondeterministic and stochastic be-
havior. For each state s € S, Act(s) denotes the set of all enabled actions in s. Given
a state s € S in an MDP M, an enabled action a € Act(s) is selected nondetermin-
istically and according to the induced distribution p = (s,a) the next state s’ is
probabilistically selected. We use |S| for the number of states, |Act| for the number
of actions, and |M]| for the size of the model M which is defined as |M| = |S]| x |Act|.

A path in an MDP is a sequence of states and actions of the form (s;, a;) where
si €S, a; € Act(s;), 6(si,ai)(8i+1) > 0 for each i > 0, and s¢ is the initial state of the
model. A probabilistic transition is defined as any tuple (s, a, s’) where 6(s,a)(s") > 0.
To resolve nondeterministic choices of an MDP, the notion of policies (also called
adversaries) is used. In this paper, we focus on a memory-less policy that maps each
state s € S to an enabled action a € Act(s), hence only depends on s.

This mapping may depend on the sequence of state-actions of a path before
reaching s in memory dependent policies and only depends on s in memory-less ones.

For any state s € S, we use Pre(s) and Post(s) for the set of predecessor and
successor states of s and define them as:

Post(s) = {s" € S|3a € Act(s),d(s,a)(s") > 0},

Pre(s) = {s' € S|s € Post(s")}.

For a subset of states C' C S, pre(C) is the set of predecessor states of C' and defined
as Pre(C) = Ugec Pre(s).

Reachability probability properties of probabilistic systems are defined as the
probability of reaching a set of states of the model. For MDPs, these properties are
defined as the extremal (minimal or maximal) probability of reaching a goal state G
over all possible policies.

Using splitter ordering heuristics to improve bisimulation. . . 53

Example 2.2 Consider the MDP model shown in Figure 1, which consists of 8 states
including s as the initial state and G as the goal state. State sy is a dead-end and
cannot reach the goal G. When the MDP is in state ss, it can nondeterministically
choose between actions a and b. If action a is selected, the next state is determined
probabilistically, with an equal probability of 0.5 of moving to either s7 or G. In this
MDP, Pre(G) = s4, ss5, S6, G, meaning these states can precede G. There is no tran-
sition from so to G with a positive probability, so so is not in Pre(G).

Figure 1. A simple MDP

Definition 2.3 (PCTL syntax) Considering AP as the set of atomic propositions,
the syntax of PCTL is as ¢ == true | ¢ | ¢ | ¢ Ao | —d | Pop[tp] where o =
X | ¢ USFG | ¢ U@, in which c € AP, § € {<,<,>,>},pe[0,1] and k € N.

In the PCTL syntax, ¢ is a state formula and is evaluated over the states of an
MDP model M while v is a path formula and is evaluated over the possible paths of
the model. State formulae are directly used in probabilistic model checking and path
formulae can only occur inside a state formula such as Pyp[t)]. In the semantics of
PCTL, a model state s € S satisfies the formula Pgp[t)] iff for each possible policy of M
the probability of following a path from s satisfying v is in the interval determined
by 0p [32,36]. For the path operators X (next), U (until), and U=* (bounded until),
the semantics of a path formula is defined as in standard CTL [7].

Intuitively, PCTL is used to define a set of requirement properties in verification
of stochastic systems. More details about probabilistic model checking of PCTL
formula and iterative methods for computing reachability properties are available
in [7,22,29].

54 MohammadSadegh Mohagheghi, Khayyam Salehi

Definition 2.4 (Probabilistic Bisimulation) For an MDP M, an equivalence re-
lation R C S x S is a probabilistic (strong) bisimulation for M if and only if for all
pairs of states s,t € S, the property s R t implies that for every action a € Act(s),
there is an action b € Act(t) such that §(s,a) R §(t,b) [5].

In probabilistic bisimulation, the probability of going to each block is the same for
both actions. Two states s,t € S are probabilistically bisimilar (denoted by s ~, t) if
and only if there is a probabilistic bisimulation R such that s R ¢.

Figure 2. The probabilistic bisimular of MDP Fig. 1

Example 2.5 Consider the MDP illustrated in Figure 1. According to Definition 2.4,
states s5 and sg are bisimilar because they share identical probability distributions for
each action across the state models. Specifically, in state ss5, selecting action a results
in the same probability distribution for transitioning to sy and G as action a does
in state sg. However, states s; and G are not bisimilar to any other states. Due
to the bisimilarity between s; and sg, States sy and sz are also bisimilar. These
states have a single action that leads to the same cumulative probability of reaching
the bisimilar groups {ss} and {ss,se}. The initial state sy is not bisimilar to any
other states. Consequently, the partition By = {s}, sh, sk, 4, s5, G} is defined, where
sp = {s1},85 = {s2,s3},85 = {sa},84 = {s5,86},55 = {s7}. A trivial partition is
By = {{s1,s2, $3, 84, S5, 86,87, G} }. Clearly, By is finer than By because each block
in By is contained within a block of By. The probabilistic bisimulation for the MDP in
Figure 1 is shown in Figure 2.

The main characteristic of probabilistic bisimulation is that if two states s,t € S
are bisimilar, then both satisfy the same set of bounded and unbounded PCTL for-
mulae [7]. As a result, an MDP M can be replaced by a reduced bisimilar one where
all bisimilar states of any block B; € B are replaced by one state. Note that in Defini-
tion 2.4, the action names are not important to decide the bisimilarity of two states [7],
and a and b may be two different actions or the same. For probabilistic automata
(an extension to MDPs), actions names should be considered in the computation of
probabilistic bisimulation [24,45].

Using splitter ordering heuristics to improve bisimulation. . . 55

2.2. The standard algorithm for computing a probabilistic bisimulation

Partition refinement is a general algorithm to compute a bisimulation relation for
MDPs. Starting from an initial partition, the algorithm iteratively refines partitions
by splitting some blocks into smaller (i.e. finer) ones. The iterations continue until
reaching a fixed point where none of the blocks can be split anymore (Fig. 3).

Several approaches can be used to compute the first partition B C S x S (Line 1
of Algorithm 2). One can consider G (the set of goal states) and S\ G as the only
two blocks of the initial partition and use G as the first splitter. This consideration
follows the definition of bisimulation and is based on the fact that no goal state can
be bisimilar with a non-goal state. Another option can be to consider AP to compute
the first partition. In this case, two states are in the same block of the first partition
iff they have the same AP. It also includes the first case where the goal states are
considered to define the initial partition.

Initial partition: By B1 Final partition

Refine Refine Refine

Figure 3. Successive partition refinement procedure

In each iteration, a splitter block (also called splitter in this paper) is se-
lected to divide some of its predecessor blocks into finer ones. The way that the
algorithm splits a block depends on the definition of bisimulation for the under-
lying MDP. Algorithm 1 presents this approach [7]. After splitting a block B;
to several finer blocks, they are considered as new splitters for the next itera-
tions. In practice, a list can be used to keep the splitters for next computations.

Algorithm 1: Partition refinement

Input: An MDP model M

Output: bisimulation partition B

Initialize B to a first partition;

while there is a splitter for B do
Choose a splitter C' for B;

L B := Refine(B,C);

5 return B;

[N VIS

In probabilistic bisimulation, the refinement method follows Definition 2.4 and
splits the blocks by considering the probability of reaching the splitter C. This method
is explained in Algorithm 2.

56 MohammadSadegh Mohagheghi, Khayyam Salehi

Algorithm 2: The Refine algorithm

1 Hj
Input: A partition B and splitter C'
Output: A refined partition B according to splitter C'
Initialize B to a first partition;
Set @ to an empty list;
forall B; € B s.t. B; N Pre(C) # 0 do
forall s € B; do
forall a € Act(s) do
q=190(s,a)[C];
if ¢ ¢ Q then
L Add q to Q;

© 0 N O LA W N

10 Sort elements of Q;
11 B, = {Bi};
12 forall ¢ € @ do

13 forall Bi,j S Bp do

14 B' = {s € B; ;|3a € Act(s) : §(s,a)[C] = ¢};
15 if B'# B;; and B' # () then

16 Remove B; ; from By;

17 L Add B’ and B; ;\B' to By;

18 Remove B; from B;

19 | Add members of B, to B;

20 return B;

For a given splitter C', Algorithm 2 splits any block B; € Pre(C) of the current
partition B into k sub-blocks B; 1, B; 2, ..., B; j such that

1. Ui<j<ikB;; = By,

2. BiyjﬁBi,l:®f0r1§j<l§k,

3. for each 1 < j < k and every two states s,t € B, ;, it holds that for each action
a € Act(s), there is an action b € Act(t), where (s, a)[C] = 6(¢,b)[C].

For a given splitter C' and every predecessor block B;, the method considers all
incoming transitions to the states of C to compute (s, a)[C], for the related states and
actions (Line 6). After computing these values, the method stores different probability
values in the list @ (Lines 7-8). For each probability ¢ and every computed sub-block
B; ; of B;, the set of states that can reach C' via an action with the probability ¢ is
considered in B” (Line 13). Based on this computation, every sub-block B; ; is split
into two new ones (Line 16).

Using an appropriate data structure that keeps the backward information of
incoming transitions to each state, the time complexity of most parts of Algorithm 2
(except the sorting computation) is linear in the number of incoming transitions

Using splitter ordering heuristics to improve bisimulation. . . 57

to C [24]. On the other hand, the time complexity of sorting members of @ is in
O(|Q] - log(]Q])). In the worst case, for each state s € B; and action a € Act(s)
(lines 4 and 5 of Algorithm 2, we have a different probability value for (s, z)[C]. In
cases where a main part of states are in B;, we have |Q| € O(|S| x |Act|) and hence
the time complexity becomes O(|S| - |Act| - log(|S| - |Act])). More details about this
method are available in [24].

Algorithm 1 uses a list of blocks to keep them as splitters. After refining each
block, all computed sub-blocks except the largest one (based on the number of states)
are added to the list to be used as potential splitters. Following this strategy, each
state is considered in some splitters for at most log(]S|) times. As a result, the
worst case time complexity of Algorithm 1 for computing probabilistic bisimulation
is in O(|M| - (log(]S]) 4 log(|Act]))) [24]. For the case of DTMCs where |Act| = 1,
this time complexity becomes O(|M] - log(]S])). In the case of state space explosion
problem, we may have a high running time for computing (s, a)[C] (in Line 6). This
running time, however, can be much less than the overall running time of applying
iterative numerical methods that are used for probabilistic bisimulation.

3. Ordering heuristics for choosing splitters

The probabilistic bisimulation presented in [24] randomly selects blocks of B as split-
ters. In the worst case, each state is considered log(|S]|) times in the splitters. In
practice, the running time of Algorithm 1 depends on the order of selecting splitter
blocks. Thus, an optimal ordering may reduce the running time. In this section and
as one of the contributions of our work, we propose two heuristics for splitter ordering
to reduce the running time of probabilistic bisimulation. Although these heuristics do
not affect the overall time complexity of computations, our experiments demonstrate
that they accelerate the convergence to the final partition in many instances. In rare
cases, they do not change the performance dramatically (Section 5).

3.1. Backward ordering for choosing splitters

For acyclic models, a topological ordering is defined that can decrease the running
time of some standard computations in probabilistic model checking. For example,
unbounded reachability probabilities or expected rewards are computed in linear time
for an acyclic model if a topological ordering is used for updating state values [13].
Models with at least one non-decreasing variable are acyclic. This can happen, for
example, if the model uses one or several clock variables that never reset. These
models are typical in specifying probabilistic systems. For the case of cyclic models,
however, it is not easy to find an optimal ordering that minimizes the running time of
the iterative computations. For such models, the idea of selecting splitters according
to an appropriate ordering can reduce the overall number of iterations and the running
time of Algorithm 2.

Example 3.1 Consider three blocks of a given MDP model during the partition re-
finement steps, as shown in Figure 4. While block A is selected before block B in

58 MohammadSadegh Mohagheghi, Khayyam Salehi

Figure 4a, it splits block B into two new blocks Biesy and Brigne and considers the
smaller one as the next splitter splits C into four blocks. On the other hand, selecting
B before A splits C into two new blocks, as demonstrated in Figure 4b. However,
Ciefe and Chrigny will be split into four blocks C,...,Cy after several steps, where A
splits B into Biep, and Brigne. In the latter case, the computations for splitting C
into Clepr and Clrigny are redundant because the same computations (as in the former
case) are needed to split these two blocks into Ci,...,Cy. These redundancies can
also influence the predecessor blocks of C' and bring some other redundancies in the
computations of the selected blocks.

Figure 4. Topological ordering: a) impact of selecting A before B as splitter;
b) impact of selecting B before A as splitter

For an acyclic model, Algorithm 3 applies a topological ordering and computes
the bisimilar partition with linear time complexity in the size of the model. This
algorithm uses a list L of splitters. Each block should be added to L when all of its
successor states have been previously used in some splitters (Lines 7-9). To do so,
the incoming transitions to each selected splitter are marked, and a counter can be
used to compute the number of unmarked outgoing transitions. Marking all outgoing
transitions of a block means that no successor splitter is available for the block and all
of its states are bisimilar. The algorithm adds such a block to L to use it as a splitter
for its predecessor blocks. The correctness of Algorithm 3 relies on the fact that there
is no cycle among the states of the bisimilar blocks of the model.

Using splitter ordering heuristics to improve bisimulation. . . 59

Algorithm 3: Topological Partition Refinement
Input: An MDP model M
Output: A bisimulation partition B

1 Initialize B to a first partition;

2 L= {G}

3 while L is not empty do

4 Remove a splitter C' from L;

5 B := Refine(B, C);

6 forall new blocks D do

7 Mark all transitions between the D and C';

8 if all outgoing transitions from D are marked then
9 | Add D to L;

10 return B;

For cyclic models, there is no topological ordering. For this case, one may apply
the SCC decomposition method [13] and selects SCCs in a right order. This technique
provides an efficient ordering among SCCs of a model, but do not provide useful
ordering for the states of any SCC. Hence, it is important to consider such cases,
where the model may have some large SCCs and the current approaches do not utilize
efficient ordering for the states of these SCCs. To cover this weakness, we provide an
ordering technique to order all states of a model.

Extending the idea of Algorithm 3 to cyclic models, our first heuristic for choosing
splitters is to consider the shortest path to the set of goal states to compute the initial
block. It can use a queue to keep the new sub-blocks. A breadth-first search is applied
(as explained in the previous section). In each step, the block B; is defined as the
set of states that have not been selected yet and have a transition to some states of
predecessor block B;_1. The blocks are added to the end of the queue.

In each iteration of the partition refinement procedure, a splitter block C' is
removed from the queue, and if no sub-block of C' has been previously added, then
the partition refinement Algorithm 1 uses it as a new splitter. Otherwise, C' has been
previously split into some sub-blocks by other splitters, and because its sub-blocks
are in the queue (except the largest one), the heuristic disregards C for refinement.
For any block B; € Pre(C), all split sub-blocks B, B;a,. .., except the largest one,
are added to the end of queue. This heuristic stems from using a splitter before its
predecessors’ blocks as much as possible. This approach can be considered as an
extension to Algorithm 2 that uses a queue to select splitters in each step, whereas
Algorithm 2 does not utilize any special ordering to select splitters.

3.2. Choosing smallest blocks first

In order to minimize the average number of using each state in a splitter, redundant
computations should be avoided. Consider a large block C;. It can be split by
another splitter C; into several small blocks Cj1, Ci2, ..., Ci;. Using C; as a splitter,

60 MohammadSadegh Mohagheghi, Khayyam Salehi

Algorithm 2 may split several predecessor blocks into their sub-blocks. The algorithm
will also split these predecessor blocks into some finer sub-blocks when it considers
Cﬂ, OiQ, . ;Oik as splitters.

Considering Cj1, Cja, . . ., Cy instead of C; as splitters can avoid redundant com-

putations needed to partition predecessor blocks. To avoid such redundancies, our
heuristic method prioritizes smaller blocks to be used as splitters. This heuristic uti-
lizes the fact that larger blocks are more prone to split to smaller ones and hence, are
not suitable as a splitter. It can use a priority queue to select the smallest block as
the splitter at each iteration. This priority queue stores the identified and size of each
splitter block and prioritize smaller ones. After splitting each block, the heuristic
removes it from the queue and adds its sub-blocks to the queue.
Example 3.2 Consider Figure 5a. Block B is split into Biere and Brign: by consid-
ering C; as a splitter. In Figure 5b, the sub-blocks Ci1,Cia and C;3 are used to split
block B into sub-blocks By to Bg. While By and Bo are sub-blocks of Biesr and B3 to
Bg are sub-blocks of Brigne, the computations of Biep and Brigny are redundant and
all sub-blocks By to Bg can be computed after computing Cjq, Cio and Cys.

a)

Figure 5. Size-based splitting: refinement with large splitters (a);
refinement with small splitters (b)

Using heap as a standard data structure for a priority queue, each insert and
delete operation imposes an O(log(n)) extra computation that can affect the total
running time of the computations. For large blocks, where the number of states is
much more than log(|S]), the running time of using priority queue is negligible, and
this data structure can be useful. An alternative approach for small blocks is to use
several queues to keep blocks of different sizes. In this approach, we use a queue for the
blocks whose size is less than or equal to log, |S|, and a second queue for those blocks

Using splitter ordering heuristics to improve bisimulation. . . 61

whose size is more than log, |S| and less than c - log, |S| (for some constant ¢). In
practice, we use ¢ = 6 as a heuristic that shows promising results for most case studies.

The remaining blocks are handled by the priority queue. Hence, in this alterna-
tive, we use two queues and one priority queue to store blocks. The algorithm decides
to add each block to the related queue based on its size.

4. Using hash tables for improving partition refinement

For each splitter C, the standard version of Algorithm 2 (presented in [24]) sorts the
members of @ to use its different members for splitting the states of the predecessor
blocks. The main reason for this sorting is that the refinement algorithm for prob-
abilistic systems need to separate the states of any block to several sub-blocks with
the same probability of reaching C. These computations are required in lines 11-16
of Algorithm 2 and can be done in an efficient way if it sorts the member of Q). Using
a sorted list, determining the related sub-block can be done in O(log|Q|). Applying
an appropriate sorting algorithm, such as heap sort, the worst-case time complexity
is in O(|Q] - log(|QI))-

Consider a case where the average number of using each state as a splitter is
K (K < log(|S])), the running time of bisimulation (except sorting) becomes in
O(|M| x K). If |IM] € O(|S] x |Act|) (the model is sparse), the time complexity of
sorting dominates the running time of the other parts. To avoid sorting and alleviate
its overhead, our approach is to use a hash table to capture different members of the
set @. In this manner, the computed value d(s, a)[C] of each splitter C is assigned to
its associated entry in the hash table, i.e., for each probability d(s,a)[C] there is an
entry in the hash table. If the entry is empty or its elements differ from §(s,a)[C]
(a collision happens), this value should be added to the set @ and also to the hash
table. To have an efficient hash table and to avoid memory overhead, we consider
small and almost enough digits of 6(s,a)[C], (e.g., the four first meaningful digits is
a heuristic in this paper). For non-zero values, our hash function h is defined as:

h(6(s, @)[C]) = 1047 x 3(s,a)[C]],

where j is the number of immediate zeros after the floating point. As an example, if for
some states, actions, and a splitter, we have (s, a)[C] = 0.00013760908, then the hash
function computes h(4(s,a)[C]) = 1376. For the zero value, we define h(0) = 0. The
main aim of introducing this hash function is to have low overhead in our approach.

Considering the constant time for the computations of a hash table, the total
time complexity of Lines 9-16 of Algorithm 2 reduces to O(|Act| - |S|) which is less
than the time complexity of sorting Q, as explained in Section 2. To keep the keys
with collisions, a linked list can be used for each entry; for adding a key to its related
entry, it should be compared with all stored keys in the corresponding linked list.
Supposing a low frequency of collisions in the hash table, any state s in predecessor
of a splitter C' can be assigned to a new sub-block in constant time. Hence, the total
time complexity of Algorithm 1 is in O(|M| x K).

62 MohammadSadegh Mohagheghi, Khayyam Salehi

In the worst case for each splitter C, we may have more than log(|Act|) collisions
in the hash table that increase the time complexity of Algorithm 2, consequently, in-
creasing the time complexity of Algorithm 1 to more than O(|M|-log(]Act|)). However,

the probability of using a hash table with | Act| entries is less than 2~V (2| 4¢tl-log(lAct])
For this case, the hash function is defined as

h(6(s,a)[C]) = ||Act| x 1077* x 8(s,a)[C]].

Lemma 4.1 Consider k different keys and a positive integer t. For a hash table with
k entries and a function h with a uniform distribution of mapping any key to each
entry, the probability of having at least k - t collisions is bounded by 2~ V2Ft,

proof. First, consider a case that some states collide with only one entry. In this case,
for I keys that are mapped to the same entry, we have 0+1+2+---+(1—1) =1-(I1—1)/2
collisions in total. To have at least k -t collisions, in this case, we should have
1-(1-—1)/2> k-t that results in | > V2 -k - ¢.

Next, consider a case where some keys have at least 2-¢ collisions; that is, they are
mapped to some entries that already have 2-¢ different keys with the same hash value.
This condition is necessary to have at least k - ¢t collisions. On the other hand, the
maximum number of entries with a collision is g Hence, the probability of mapping
a key to an entry with more than one collision is at most % As aresult, the probability
of having v/2 -k -t keys in the entries with more than one collision (as a necessary

condition for having at least k - ¢ collisions) is at most 27 V2%,

Using Lemma 4.1, one can control the probability of reaching the worst-case time
complexity of Algorithm 1. This probability can be reduced by increasing the size of
the hash table. For instance, consider a case where there are k = 10° different keys
(i.e. |Act] = 10°% in MDPs) and t = 2 as the expectation of collisions per key. This
consideration makes sense according to the MDPs analyzed in experimental results
and in Table 1. Applying Lemma 4.1, we have the probability of having in average
more than 2 collisions per state is less than 272000,

5. Evaluation

In this section, the performance of computing probabilistic bisimulation using the
proposed heuristics in several case studies is experimentally compared (Section 5.2).
Furthermore, the impact of bisimulation reduction on probabilistic model checking is
investigated in Section 5.3.

5.1. Experimental setup

To show the applicability and scalability of the proposed approaches, we consider nine
classes of standard models from the PRISM benchmark suite [32]. These classes in-
clude Coin, Wian, firewire, Zeroconf, CSMA, mer, brp, leader, and Israeli-Jalfon case
studies. Except for the brp class, which includes DTMC models, the others are MDP

Using splitter ordering heuristics to improve bisimulation. . . 63

ones. In Coin, Zeroconf, and CSMA cases, K is considered as the parameter to have
different models. In firewire, Wlan, mer, and Israeli-Jalfon cases, we, respectively,
consider ddl (deadline), TTM (Trans_ Time_Mazx), n, and m as parameters. More
details about these case studies are available in [6,9,32]. To compare our implemen-
tation of the proposed heuristics for probabilistic bisimulation with the other tools,
we select two state-of-the-art tools, mCRL2 [10] and STORM [16], that provide the
most recent approaches [23].

Some information on the selected models, the experimental results for our im-
plementation, and the results for the mCRL2 and STORM tools are demonstrated
in Table 1. We implemented the proposed bisimulation algorithm. The provided
information includes the number of states, actions, and transitions of the original
case study models and the number of states after applying the bisimulation reduc-
tion technique. The experiments have been performed on a machine running Ubuntu
22.04 LTS with Intel(R) Core(TM)i7 CPU Q720@1.6 GHz with 8 GB of memory.
The results include the running time and memory consumption.

We implemented the proposed approaches as an extension of PRISM, using its
sparse engine that is mainly developed in C language. The implementations and log
files of experiments are available online at the GitHub repository of the paper [35].

It should be noted that the current version of PRISM does not support proba-
bilistic bisimulation for MDPs. While PRISM and STORM use 8-bytes floating-point
representation for storing probabilities, mCRL2 uses fractions of 4-bytes integers. In
this way, mCRL2 compensates for the running time and memory consumption for
precise computations. On the other hand, STORM follows the proposed algorithm
in [5] with O(|M] -S| - (log |M|+ log |S])) time complexity. It supports sparse and
BDD-based data structures. For each case study, the lower running times of these
two STORM engines are reported. While STORM supports the PRISM modeling
language, mCRL2 follows a probabilistic labeled transition system (plts) and consid-
ers action labels to distinguish bisimilar states. For a correct comparison between
mCRL2 and others, we translated the PRISM plain text models to a corresponding
plts, which is executable by the mCRL2 tool. For the initial partition, our imple-
mentation considers the sets G and S\ G as the first class of blocks. We disable
graph-based pre-computations for qualitative reachability analysis in our experiments
because different approaches with different impacts on the overall running times are
used in the selected tools.

5.2. Performance analysis for tools and heuristics

The results of our experiments are demonstrated in Tables 1 and 2. All times are
reported in seconds, and are the average of 5 runs. In Table 1, we report some
information about the selected models and running the tools on them. The running
times of our implementation in PRISM are based on a random splitter ordering, where
the splitters are selected randomly. In our implementation and mCRL2, the reported

64 MohammadSadegh Mohagheghi, Khayyam Salehi

times include the running time for writing the result bisimilar blocks to the files. In
mforost cases, our implementation outperforms both the mCRL2 and STORM tools.

Table 1
Comparing the performance of computing bisimulation in three tools
for the selected MDP and DTMC models

Model Parameter |S] |Act| [Trns| | |S] after PRISM STORM mCRL2
name Val x107% | x107® | x10™% | reduction | time mem time mem time mem
K =200 2050 5534 6918 91218 1.13 420 MB 1139 3.9 GB 9.02 | 2398 MB
Coin K =300 3074 8300 10374 136818 1.52 608 MB 2223 4GB 12.8 | 3672 MB
(N=4) K =400 4098 11064 13830 182418 2.07 760MB | >1h | 4.1GB 21 4803 MB
K =500 5122 13829 17286 228018 2.43 890MB | >1h | 42GB 27.7 | 6119 MB
K =30 2341 7832 9787 33825 1.71 513 MB 112 3.8 GB 18.9 | 3225 MB
Coin K =50 3890 13016 16267 56325 2.98 796 MB 303 3.9 GB 31.4 | 5410 MB
(N =5) K =170 5439 18200 22747 78825 4.1 1127 MB 554 3.9 GB 45.2 | 7202 MB
K =100 7762 25976 32467 112575 6.1 1620 MB | 1178 4 GB — Killed
Coin K=5 2936 11727 14635 12212 2.88 703 MB 19.9 3.4 GB 38.9 | 4725 MB
(N =6) K =10 5731 22924 28632 24212 5.9 1329 MB 853 309 MB killed
K =12 3753 6898 8467 1393850 8.13 895 MB - Killed 22.7 | 4020 MB
Zeroconf K=14 4426 8144 9988 1666790 10.3 962 MB - Killed 25.9 | 4843 MB
(N = 1500) K =16 5010 9223 11307 1905323 11.9 987 MB - Killed 30.8 | 5626 MB
K =18 5476 10085 12359 2097569 13.2 | 1214 MB - Killed 37 | 5978 MB
K =20 5812 10711 13124 2237272 14 1530 MB Killed 39.3 | 6522 MB
CSMA K=4 1460 1471 2397 23538 0.8 246 MB 20.3 3.9 GB 4.5 880 MB
(N =3) K=5 12070 12108 20215 119440 7.96 1508 MB 143 4 GB 43.1 | 6834 MB
CSMA K=2 762 826 1327 9183 0.3 161 MB 9.2 3.6 GB 2.5 510 MB
(N =4) K=3 8218 8516 15385 45793 5.42 | 1197 MB | 52.9 3.9 GB 37.4 | 4311 MB
firewire ddl = 3000 1634 1853 1919 622127 1.24 115 MB 1532 4GB 3.43 | 1376 MB
(dl =3) ddl = 10000 | 5911 6711 6945 2421127 5.95 924 MB | >1h 4 GB 14.6 | 4813 MB
ddl = 15000 | 8966 10181 10535 3706127 962 | 1715MB | >1h | 41GB - Killed
firewire ddl = 3000 2238 3419 4059 999607 217 | 439 MB 2283 3992 6.9 | 2209 MB
(dl = 36) ddl = 10000 7670 11742 13936 3491643 9.54 1323 MB | >1h 4 GB 27 6030 MB
ddl = 15000 | 11550 17687 20991 5271643 14.8 2142MB | >1h 4.1 GB Killed
m =17 131 1114 19497 4112 0.4 100 MB 4.3 3.8 GB 6.6 730 MB
Tsracli- m =18 262 2359 4129 7685 1.05 202 MB 9 3825 MB | 15.2 | 2840 MB
Jalfon m =19 524 4981 8716 14310 2.81 401 MB 18.5 | 3937 MB | 34.1 | 3288 MB
m =20 1049 10486 18350 27012 7.31 798 MB 55.6 3.9 GB 79.2 | 6887 MB
m =21 2097 22020 38535 50964 17.76 | 1620 MB 153 4 GB Killed
n = 1000 5909 22688 23273 560048 234 | 693MB | >1h | 39GB - Killed
n = 2000 11816 | 45302 46540 1120048 501 | 1217MB | >1h | 39GB - Killed
mer n = 3000 17723 | 68052 69807 1680048 8.2 1812MB | >1h 4 GB - Killed
n = 4000 23630 | 90734 93074 2240048 | 10.73 | 2447 MB | >1h 4GB - Killed
n = 5000 29537 | 113416 | 116341 2800048 1298 | 2935 MB | >1h 4.1 GB Killed
brp max = 150 787 787 1087 422554 0.44 169 MB 2.9 210 MB 2.4 606 MB
(N = 400) max = 300 1567 1567 2167 842704 1.24 292 MB 12.5 37 MB 5.1 1342 MB
max = 600 3127 3127 4327 1683004 2.66 500 MB 51.4 691 MB | 10.6 | 2732 MB
brp mazx = 150 1573 1573 2174 844954 0.84 232 MB 6.2 373 MB 5 1371 MB
(N = 800) max = 300 3133 3133 4334 1685104 2.13 446 MB 26.7 692 MB 10.7 | 2606 MB
max = 600 6253 6253 8654 3365404 6.17 954 MB 103 1.3 GB 22.5 | 5232 MB
Wian ttm = 1500 3635 6351 7635 35768 0.27 181 MB 490 3.9 GB 8.1 | 3420 MB
(N =5) ttm = 3000 5989 11088 12372 65768 0.54 | 365 MB 1792 4 GB 14.4 | 5167 MB
ttm = 4500 8345 15825 17109 95768 0.8 539 MB | >1h | 41GB 20.9 | 7212 MB
Wian ttm = 1000 8093 12543 17668 36006 0.75 290 MB 320 3.9 GB Killed
(N =6) ttm = 2500 12769 21925 27051 72006 1.15 355 MB 1900 4GB - Killed

In the Coin cases, the running time of our implementation outperforms mCRL2
by one and STORM by two orders of magnitude. In some cases, the mCRL2 process is
killed due to the out-of-memory run-time errors. For example, for the case whenn =5
and k = 100, our implementation in PRISM computes the bisimulation in 6.1 seconds

Using splitter ordering heuristics to improve bisimulation. . . 65

and consumes 1620 MB, while STORM computes the same bisimulation in 1178 sec-
onds and consumes 4 GB memory, and mCRL2 is killed by out-of-memory error.

In Zeroconf models, the running time and memory consumption of our imple-
mentation are around 50% and 20% of the ones for mCRL2, respectively. In these
models, STORM encounters the memory exception.

For all the reported CSMA models, our implementation is faster than mCRL2
and STORM. However, for larger values of the parameter K (that are not reported
here), all tools terminate because of memory limitation. In firewire and Wlan mod-
els, our implementation outperforms STORM by around three orders of magnitude.
For large models of these two classes, mCRL2 terminated because of memory limi-
tation, but STORM is able to continue the computations in its BDD-based engine.
For Israeli-Jalfon models, STORM outperforms mCRL2 in both running-time and
memory computations for large models. For the mer models, our implantation pro-
poses promising results, while the STORM model checker needs more than one hour
for all cases. The mCRL2 tool encounters the segmentation fault error for our given
plain-text models.

In most cases, the memory consumption of the proposed implementation in
PRISM is less than the other tools, e.g., STORM reports around 4 GB as the peak of
memory consumption regardless of the size of the models (except the brp ones). For
the PRISM and mCRL2, memory consumption depends on the size of the models.
Because mCRL2 uses integer value fractions to store probability values, it consumes
more memory than the PRISM implementation, and in some cases, it terminates due
to memory exceptions while PRISM can compute the bisimulation.

In Table 2, we compare the impact of our proposed methods implemented in
PRISM on the performance of the probabilistic bisimulation algorithm. We propose
the running time and memory overhead of our methods for the selected case study
models. The running times only include the computations of bisimulation blocks,
excluding the time for writing reduced models to the files and computing quantita-
tive properties. Moreover, the average number of using each state in a splitter is
considered as a criterion to compare the performance of the applied methods. Let
SPLITTERS be the set of all blocks that are used as a splitter during partition re-
finement computations (Algorithm 2). We define the average number of using each
state in a splitter as SplAvg = (X ccsprirrers |Cl)/|S| and report this value for
each approach in the table.

We recall the running times for our implementation of the proposed method
in [24] based on a random ordering for selecting splitter blocks in the column “Ran-
dom ordering". For the proposed ordering heuristics, memory overhead includes the
maximum extra memory usage for keeping the states in the related lists and priority
queues. In our implementation, the hash tables contain 10000 entries, which need at
least 40 KB of memory to point to the related elements. Because each splitter C is
used only once during the computations, our approach needs one hash table for all
computations.

66 MohammadSadegh Mohagheghi, Khayyam Salehi

Table 2
Comparing the impact of the proposed heuristics implemented in PRISM on the performance
of the partition refinement algorithm for the selected MDP classes

random ordering topological ordering size-based ordering hash-table
Model Parameter running . running | memory . running | memory . running .
name Val time AvgSpl time overhead AveSpl time overhead AveSpl time AvgSpl
K =200 0.42 2.43 0.38 2.3 KB 1.69 0.22 245 KB 1.02 0.22 1.02
Coin K =300 1.32 2.48 0.98 2.3 KB 1.69 0.66 373 KB 1.02 0.66 1.02
(N =4) K =400 1.77 2.48 1.73 2.3 KB 1.69 0.9 497 KB 1.02 0.86 1.02
K =500 2.26 2.49 1.65 24 KB 1.69 1.14 621 KB 1.02 1.09 1.02
K =30 1.55 2.42 1.35 17.8 KB 1.99 1 80 KB 1.14 0.87 1.14
Coin K =50 2.72 2.52 2.12 17.8 KB 1.99 1.45 132.3 KB 1.14 1.3 1.14
(N =5) K =170 3.72 2.5 2.92 17.8 KB 2 2.05 186.5 KB 1.14 1.85 1.14
K =100 5.53 2.51 4.19 17.8 KB 2 2.96 266.3 KB 1.14 2.62 1.14
Coin K=5 2.64 2.31 3.1 135.7 KB 2.13 1.82 40.3 KB 1.13 1.57 1.14
(N =6) K =10 5.53 2.38 6.36 135.7 KB 2.17 3.73 80.2 KB 1.14 3.16 1.14
K =12 7.7 3.09 3.15 206 KB 2.5 1.4 9.67 MB 0.7 1.32 0.72
Zeroconf K=14 9.8 3.1 3.9 218 KB 2.54 1.58 11.5 MB 0.73 1.49 0.73
(N = 1500) K =16 11.8 3.14 4.5 227 KB 2.58 1.39 13 MB 0.73 1.79 0.73
K =18 12.6 3.04 5.03 233 KB 2.6 2.11 14.1 MB 0.72 2.04 0.72
K =20 13.3 3.36 5.38 239 KB 2.6 2.26 15.7 MB 0.7 2.15 0.72
CSMA K=4 0.7 2.36 0.66 0.27 MB 2.47 0.38 85.8 KB 1.05 0.38 1.06
(N=3) K=5 7.06 2.55 7.44 2.48 MB 2.2 5.11 425 KB 1.26 5.87 1.26
CSMA K=2 0.25 2.09 0.28 53.5 KB 2.13 0.18 31.9 KB 1 0.16 1
(N =4) K=3 4.87 2.27 5.6 931 KB 2.66 3.22 160 KB 1.09 3.03 1.1
firewire ddl = 3K 34 2.33 291 0.51 MB 1.64 2 2.29 MB 0.65 1.87 0.65
(dl = 3) ddl = 10K 5.4 2.33 4.89 1.88 MB 1.64 2.01 9.43 MB 0.65 1.87 0.65
ddl = 15K 8.74 2.39 7.95 1.95 MB 1.64 3.26 14.5 MB 0.63 3.01 0.64
firewire ddl = 3K 1.97 2.71 1.6 2.05 MB 1.88 0.64 3.52 MB 0.67 0.59 0.67
(‘dl — 36) ddl = 10K 8.76 2.82 7.27 7.12 MB 1.89 2.8 12.5 MB 0.66 2.62 0.66
ddl = 15K 13.6 2.79 11.6 10.7 MB 1.89 4.43 34.7 MB 0.66 4.25 0.66
m =17 0.4 2.12 0.42 0.15 MB 2.17 0.32 19.3 KB 0.97 0.2 0.97
Isracli- m =18 1.03 2.09 1.15 0.32 MB 2.24 0.79 35.8 KB 0.97 0.53 0.97
Jalfon m =19 2.78 2.08 2.85 0.64 MB 2.25 2.01 66.6 KB 0.97 1.46 0.97
m = 20 7.24 2.1 7.43 1.26 MB 2.3 5.49 124.6 KB 0.97 3.99 0.97
m =21 17.6 2.1 18.6 2.50 MB 2.28 13 234 KB 0.98 9.94 0.98
n = 1000 1.92 1.39 1.85 14.9 MB 1.23 0.8 1.42 MB 0.96 0.81 0.96
n = 2000 4.13 1.25 4.19 29.9 MB 1.23 1.64 2.86 MB 0.96 1.68 0.96
mer n = 3000 6.87 1.29 6.64 44.9 MB 1.24 2.54 4.29 MB 0.96 2.53 0.96
n = 4000 8.96 1.18 9.23 59.86 MB 1.23 3.5 5.73 MB 0.96 3.43 0.96
n = 5000 10.79 1.33 11.78 74.84 MB 1.23 4.31 7.16 MB 0.96 4.32 0.96
brp maz = 150 0.34 2.35 0.31 - 1.64 0.26 - 0.64 0.34 0.64
(N = 400) max = 300 0.98 2.33 0.61 - 1.65 0.54 - 0.63 0.67 0.63
max = 600 2.31 2.32 1.4 1.65 1.28 0.63 1.29 0.63
brp max = 150 0.67 2.45 0.54 - 1.65 0.48 - 0.55 0.46 0.55
(N = 800) max = 300 1.68 2.38 1.22 - 1.65 1.06 - 0.55 1.05 0.55
maz = 600 5.46 2.36 3.5 — 1.65 2.95 - 0.55 2.84 0.55
Wian TTM = 1500 0.09 1.03 0.09 10.9 MB 1.01 0.08 90.5 KB 0.99 0.08 0.99
(N=5) TTM = 3000 0.14 1.03 0.15 12.4 MB 1.01 0.14 172 KB 0.99 0.15 0.99
0.23 1.02 0.21 15.3 MB 1.01 0.21 270.5 KB 0.99 0.23 0.99
Wlan TTM = 1000 0.22 1.01 0.17 26.5 MB 1 0.17 75.1 KB 1 0.18 1
(N =6) TTM = 2500 0.29 1.01 0.28 38.8 MB 1 0.26 183 KB 1 0.33 1

In most cases, our proposed methods reduce the running time of the original
probabilistic bisimulation algorithm. Experimental results are promising for size-
based ordering where, in most cases, reduce the running time to half or less compared
to the random ordering approach.

The topological ordering approach reduces the running time of bisimulation min-
imization for most cases of Zeroconf, firewire, brp, and Coin models, although it
is not as good as the size-based approach. For these cases, the value of Splduvg is
reduced when the topological ordering is used for selecting the splitters. For most

Using splitter ordering heuristics to improve bisimulation. . . 67

models of the CSMA and Israeli-Jalfon cases, the value of SplAvg is increased when
our topological-based approach is applied. For the Mer and Wlian cases, the value
of SplAvg and the running times are near each other for the random and topological
ordering approaches. While for most cases, Spldvg is more than two, this value is
near one for the Mer and Wlan cases. For these two classes, a large part of states are
either in G, or cannot reach this set. Hence, a small part of S remains for the itera-
tive partition refinement computations. The size-based ordering method reduces the
value of SplAvg to around one or less in most cases. It shows that the running time
of the partition refinement approach with this heuristic is approximately linear in the
size of MDP models and one can expect to have similar performance of the larger
models of the selected case studies. On the other hand, this value is independent
of the size of MDPs among the same models of most classes. The only exception is
for the CSMA models. As a result, the running time of the bisimulation method with
size-based ordering is near linear in the size of models for the selected benchmark sets.

The proposed technique in Section 4 for using the hash table to improve the time
complexity of the bisimulation algorithm proposes a slight improvement in practice
in the performance of the bisimulation algorithm. Note that the main benefit of using
a hash table is to reduce the probability of reaching the worst-case time complexity
of Algorithm 1 for MDP models, as is described in Lemma 4.1. However, this method
may work faster or slower than the others in practice. In all cases, memory overheads
are less than 100 MB and less than 5% of the memory consumption of the original
implementation, which shows that the proposed heuristics are completely feasible.
While the size-based ordering approach is faster than the topological ordering, for
some cases, its memory overhead is more than memory overhead of the topological
ordering approach, and for other cases, it is less. The main reason that the memory
overhead of these approaches is different from one class to the other is that it depends
on the structure of the model and the maximum number of splitters that are kept in
the related list or priority queue. In all cases, the memory overhead of applying hash
table is less than 50 KB because of rare collisions in its entries in our experiments.

5.3. Impact of bisimulation in probabilistic model checking

To study the impact of bisimulation reduction on the running time of probabilistic
model checking, we consider seven classes of case study models, including Coin, Zero-
conf, Israeli-Jalfon, firewire, Wlan, mer, and brp. For each class, we consider a set of
models by setting different values to their parameters. For models of each class, we
follow three approaches: (1) running the standard probabilistic model checking with-
out bisimulation, (2) running with the random ordering bisimulation, and (3) running
with size-based bisimulation. For an iterative computation method to approximate
reachability probabilities, the Gauss—Seidel version of the value iteration method is
used. The results of these experiments are demonstrated in Figures 6-7. In each
figure, the vertical axis shows the parameter value for the models, and the horizontal
axis determines the running time in seconds.

68 MohammadSadegh Mohagheghi, Khayyam Salehi

Figure 6 for the Israeli-Jalfon class shows that the running times are reduced to
around half when the bisimulation minimization is applied. In this case, the bisim-
ulation method reduces the size of models to less than 10% of the original models.
Size-based bisimulation reduces around 25% of the overall running times comparing
to the random ordering approach.

—— Standard VI
120 VI with Bisimulation (random-based)

"""""" VI with Bisimulation (size-based)
100

80

Running Time (sec)

0 ».....-..v..-...........4......,.....w-----.-..-..,.....,._‘......«.
17 18 19 2 o1
Parameter m

o}
6}

Figure 6. Standard model checking vs. applying bisimulation
for the Israeli-Jalfon models in seconds

The best results are for the class of Coin models in Figure 7a. In this case,
the running time of computing bisimulation is negligible compared to the running
time of the other numerical computations, and applying this minimization approach
reduces the overall running times by one order of magnitude. The number of states
of these models after applying bisimulation minimization is less than 10% of the
number of states of the original models, as reported in Table 2. In this case, due
to the significant difference between running time of model checking with/without
probabilistic bisimulation, the overall times using different splitter ordering are not
depicted in the figure.

In the case of Zeroconf (see Fig. 7b), there is a meaningful difference among the
applied bisimulation heuristics. Using bisimulation with the random splitter ordering,
the computation overhead is more than its benefit, and the overall running times are
increased. In this class, iterative computations for reachability probabilities converge
fast. Using the proposed size-based heuristic improves the performance such that the
running time of applying standard value iteration on the original Zeroconf models is
near the overall running time of computing bisimulation and applying value iteration
on the reduced models. For this class, the size of the reduced models is around 40%
of the size of the original ones, which prohibits bisimulation from reducing the overall
running time.

Using splitter ordering heuristics to improve bisimulation. . . 69

a) b)

1000 —— Standard VI —— Standard VI en
= V1 with Bisimulation 30 T VI with Bisimulation (random-based) L7

- VI with Bisimulation (size-based) e

800
25

600

4

=

Running Time (sec)

200

8 10 12 14 16 18 20

Parameter K .
Parameter K

—— Standard VI 95 T Standard VI
5
350 T VI with Bisimulation -=-= VI with Bisimulation

E15
&
=
Z10
0 1 1 [1 | __L JE—
I ——— -
0
4000 6000 8000 10000 12000 14000 0
Parameter deadline 1000 1200 1400 1600 1800 2000 2200 2400
Parameter TTM
e) f)
—— Standard VI e 45 —— Standard VI
35—~ VI with Bisimulation (random-based) ol VI with Bisimulation (random-based)
- - = VI with Bisimulation (size-based)

- VI with Bisimulation (size-based) e

5 & .
1000 1500 2000 2500 3000 3500 4000 4500 5000 300 350 400 150 500 550 600 650 700
Parameter n Parameter Param

Figure 7. The running time of model checking with/without applying bisimulation:
a) Coin models; b) Zeroconf models; ¢) firewire models; d) Wian models; e) Mer models;
f) brp models

70 MohammadSadegh Mohagheghi, Khayyam Salehi

In Figure 7c for the set of firewire models, bisimulation reduces overall running
times by 30%. Because the running times of the iterative computations are high, there
is no significant difference in the overall times when using different splitter ordering
approaches. The results of our experiments for the Wian class of models are proposed
in Figure 7d. Although bisimulation results in a significant reduction in the model
in these cases, the overall running times are reduced to less than 40% after applying
bisimulation because a large part of the states are in the goal states G.

The results for the Mer cases show that the overall running time is increased
when the bisimulation minimization methods are applied (Fig. 7e). For this class, as
provided in the logs of the repository of the codes, more than 60% of states are in G
and disregarded for the iterative computations.

In Figure 7f for the brp DTMC models, applying bisimulation reduces the running
times to less than 30% of the running time of the standard iterative method without
using bisimulation. Although the number of states of the reduced models is around
50% of the number of states of the original ones, applying bisimulation reduces the
number of iterations for computing reachability probabilities.

As a meta-heuristic, size-base ordering is preferred than topological ordering.
Furthermore, hash-table approach is more efficient where the model is more dense or
the transition probability functions have various distributions.

6. Related works

Several techniques have been proposed to compute probabilistic bisimulation in the
literature. The first work to define bisimulation for MDPs returns to [34,44]. Defini-
tions of strong and weak bisimulation for probabilistic systems with non-determinism
and their related algorithms were first proposed in [45]. Baier et al. proposed an
iterative algorithm for computing probabilistic bisimulation with a time complexity
of O(|M| -|S| - log(|M] - |S])), where |S| is the number of states and |M]| is the num-
ber of transitions of the model [5]. Although several algorithms have been developed
for other types of probabilistic systems (such as discrete-time and continuous-time
Markov chains or Markov reward models), they rarely consider nondeterministic sys-
tems with probabilistic transitions. An efficient algorithm with O(|M|-log(|M|+1S]))
time complexity has been proposed in [24]. It is a special case of a more generic par-
tition refinement algorithm, proposed in [18], that has the O(|M] - log(|M]| + |S]))
time complexity. This generic algorithm can be used for a wide class of transition
systems, including nondeterministic and probabilistic ones. Also recently, explicit
Hopcroft’s tricks are applied on categorical partition refinement [43]. In [27], an effi-
cient implementation and tool are presented to handle large automata for co-algebraic
bisimilarity minimization. A scalable method has been proposed in [11] that defines
a bisimulation metric to approximate the bisimulation relation on a given MDP model.
Based on the provided metric, any two states that are close to each other are consid-
ered bisimilar and are in the same equivalent class. The computed partition may or
may not coincide with the exact bisimulation relation.

Using splitter ordering heuristics to improve bisimulation. . . 71

To avoid storing the entire state space and transitions of a model, several symbolic
bisimulation approaches have been proposed and implemented [17,26]. The STORM
model checker employs a decision diagram-based data structure as a standard symbolic
approach and reports promising results in reducing the running time and consumed
memory [26]. However, symbolic approaches for bisimulation minimization bring
several challenges that may influence their performance [21]. STORM also supports
the multi-core bisimulation minimization approach to accelerate the computation of
bisimilar partitions [19)].

Due to the increasing application of machine learning, recently, some approaches
are developed to use machine learning in probabilistic bisimulation. In [37], the
authors use support vector machine to classify the state space of a given MDP model to
its bisimulation classes. In [2], a learning-based approach for bisimulation is proposed
that can be used on very large transitions systems. It applies a data-driven technique
to compute bisimilar blocks from sample states and transitions of a given system.

7. Conclusion

In this paper, two approaches to improve the performance of the standard algorithms
for computing probabilistic bisimulation in MDPs were proposed. In the first ap-
proach, two heuristics, including topological and size-based ordering, were proposed
to determine the ordering of splitters. The second approach used hash tables to
reduce the number of comparisons for splitting the blocks of states. Experimental
results demonstrated that, in the majority of cases, our approaches outperform the
previous algorithms and the other state-of-the-art tools. The impact of bisimulation
minimization on the running time of probabilistic model checking was reported as
well. For future work, the applicability of the proposed techniques can be studied on
other classes of transition systems, such as probabilistic automata or continuous-time
Markov chains. Also, we aim to apply these approaches to other fields, for example,
protocol security and probabilistic programs [41].

Disclosure statement
The authors declare that they have no conflict of interest.

References

[1] Abadi M., Gordon A.D.: A bisimulation method for cryptographic protocols.
In: C. Hankin (ed.), Programming Languages and Systems. ESOP 1998, Lecture
Notes in Computer Science, vol. 1381, pp. 12-26, Springer, Berlin, Heidelberg,
1998. doi: 10.1007/bfb0053560.

[2] Abate A., Giacobbe M., Schnitzer Y.: Bisimulation Learning. In: A. Gurfinkel,
V. Ganesh (eds.), 36th International Conference, CAV 2024 Montreal, QC,
Canada, July 24-27, 2024 Proceedings, Part III, pp. 161-183, Springer, Cham,
2024. doi: 10.1007/978-3-031-65633-0_8.

https://doi.org/10.1007/bfb0053560
https://doi.org/10.1007/bfb0053560
https://doi.org/10.1007/978-3-031-65633-0_8
https://doi.org/10.1007/978-3-031-65633-0_8

72 MohammadSadegh Mohagheghi, Khayyam Salehi

[3] Agha G., Palmskog K.: A survey of statistical model checking, ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), vol. 28(1), 6, 2018.
doi: 10.1145/3158668.

[4] Baier C., D’Argenio P.R., Hermanns H.: On the probabilistic bisimulation
spectrum with silent moves, Acta Informatica, vol. 57(3), pp. 465-512, 2020.
doi: 10.1007/s00236-020-00379-2.

[5] Baier C., Engelen B., Majster-Cederbaum M.: Deciding bisimilarity and sim-
ilarity for probabilistic processes, Journal of Computer and System Sciences,
vol. 60(1), pp. 187-231, 2000. doi: 10.1006/jcss.1999.1683.

[6] Baier C., Hermanns H., Katoen J.P.: The 10,000 facets of MDP model checking.
In: B. Steffen, G. Woeginger (eds.), Computing and Software Science: State of
the Art and Perspectives, pp. 420-451, Springer, 2019. doi: 10.1007/978-3-319-
91908-9 21.

[7] Baier C., Katoen J.P.: Principles of model checking, MIT Press, 2008.

[8] Bisping B.: Process Equivalence Problems as Energy Games. In: C. Enea, A. Lal
(eds.), Computer Aided Verification. 85th International Conference, CAV 2023,
Paris, France, July 17-22, 2023, Proceedings, Part I, pp. 85-106, Springer Nature
Switzerland, Cham, 2023. doi: 10.1007/978-3-031-37706-8 5.

[9] Budde C.E., Hartmanns A., Klauck M., Kfetinsky J., Parker D., Quatmann T.,
Turrini A., Zhang Z.: On correctness, precision, and performance in quantitative
verification: QComp 2020 competition report. In: T. Margaria, B. Steffen (eds.),
Leveraging Applications of Formal Methods, Verification and Validation: Tools
and Trends. 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part IV, pp. 216-241, Springer, 2020. doi: 10.1007,/978-3-030-83723-5 15.

[10] Bunte O., Groote J.F., Keiren J.J.A., Laveaux M., Neele T., de Vink E.P.,
Wesselink W., et al.: The mCRL2 toolset for analysing concurrent systems. In:
T. Vojnar, L. Zhang (eds.), Tools and Algorithms for the Construction and Anal-
ysis of Systems. 25th International Conference, TACAS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II, pp. 21-39,
Springer, 2019. doi: 10.1007,/978-3-030-17465-1 2.

[11] Castro P.S.: Scalable methods for computing state similarity in deterministic
Markov decision processes. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34(06), pp. 10069-10076, 2020. doi: 10.1609/aaai.v34i06.6564.

[12] Cattani S., Segala R.: Decision algorithms for probabilistic bisimulation. In:
L. Brim, M. Kfetinsky, A. Kucera, P. Jancar (eds.), CONCUR 2002 — Con-
currency Theory. 13th International Conference, Brno, Czech Republic, Au-
gust 20-23, 2002. Proceedings, pp. 371-386, Springer, 2002. doi: 10.1007/3-
540-45694-5 25.

[13] Ciesinski F., Baier C., Grofer M., Klein J.: Reduction techniques for model check-
ing Markov decision processes. In: 2008 Fifth International Conference on Quan-
titative Fvaluation of Systems, pp. 45-54, IEEE, 2008. doi: 10.1109/qest.2008.45.

https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1007/s00236-020-00379-2
https://doi.org/10.1007/s00236-020-00379-2
https://doi.org/10.1007/s00236-020-00379-2
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-031-37706-8_5
https://doi.org/10.1007/978-3-031-37706-8_5
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1609/aaai.v34i06.6564
https://doi.org/10.1609/aaai.v34i06.6564
https://doi.org/10.1609/aaai.v34i06.6564
https://doi.org/10.1007/3-540-45694-5_25
https://doi.org/10.1007/3-540-45694-5_25
https://doi.org/10.1007/3-540-45694-5_25
https://doi.org/10.1109/qest.2008.45
https://doi.org/10.1109/qest.2008.45
https://doi.org/10.1109/qest.2008.45

Using splitter ordering heuristics to improve bisimulation. . . 73

[14] Clarke E.M., Henzinger T.A., Veith H.: Introduction to model checking. In:
E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem (eds.), Handbook of Model
Checking, pp. 1-26, Springer, 2018. doi: 10.1007/978-3-319-10575-8 1.

[15] Clarke E.M., Henzinger T.A., Veith H., Bloem R. (eds.): Handbook of model
checking, Springer, 2018.

[16] Dehnert C., Junges S., Katoen J.P., Volk M.: A STORM is coming: A modern
probabilistic model checker. In: R. Majumdar, V. Kuncak (eds.), Computer Aided
Verification. 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II, pp. 592-600, Springer, 2017. doi: 10.1007/
978-3-319-63390-9 31.

[17] Dehnert C., Katoen J.P., Parker D.: SMT-based bisimulation minimisation of
Markov models. In: R. Giacobazzi, J. Berdine, I. Mastroeni (eds.), Verifica-
tion, Model Checking, and Abstract Interpretation. 14th International Confer-
ence, VMCAI 2013, Rome, Italy, January 20-22, 2013, Proceedings, pp. 28-47,
Springer, 2013. doi: 10.1007,/978-3-642-35873-9 5.

[18] Deifel H.P., Milius S., Schréder L., Wikmann T.: Generic partition refine-
ment and weighted tree automata. In: M.H. ter Beek, A. Mclver, J.N. Oliveira
(eds.), Formal Methods — The Next 30 Years. Third World Congress, FM 2019,
Porto, Portugal, October 7-11, 2019, Proceedings, pp. 280-297, Springer, 2019.
doi: 10.1007,/978-3-030-30942-8 18.

[19] Dijk van T., Pol van de J.: Multi-core symbolic bisimulation minimisation,
International Journal on Software Tools for Technology Transfer, vol. 20(2),
pp. 157-177, 2018. doi: 10.1007/s10009-017-0468-z.

[20] Feng L., Kwiatkowska M., Parker D.: Compositional verification of probabilistic
systems using learning. In: 2010 Seventh International Conference on the Quanti-
tative Fvaluation of Systems, pp. 133-142, IEEE, 2010. doi: 10.1109/qest.2010.24.

[21] Fisler K., Vardi M.Y.: Bisimulation minimization and symbolic model checking,
Formal Methods in System Design, vol. 21(1), pp. 39-78, 2002. doi: 10.1023/a:
1016091902809.

[22] Forejt V., Kwiatkowska M., Norman G., Parker D.: Automated verification tech-
niques for probabilistic systems. In: M. Bernardo, V. Issarny (eds.), Formal Meth-
ods for Eternal Networked Software Systems. 11th International School on For-
mal Methods for the Design of Computer, Communication and Software Systems,
SEM 2011, Bertinoro, Italy, June 153-18, 2011, Advanced Lectures, pp. 53—113,
Springer, 2011. doi: 10.1007/978-3-642-21455-4 3.

[23] Garavel H., Lang F.: Equivalence Checking 40 Years After: A Review of Bisim-
ulation Tools. In: N. Jansen, M. Stoelinga, P. van den Bos (eds.), A Journey
from Process Algebra via Timed Automata to Model Learning. Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday, pp. 213-265, Springer,
2022. doi: 10.1007/978-3-031-15629-8 13.

[24] Groote J.F., Rivera Verduzco J., De Vink E.P.: An efficient algorithm to deter-
mine probabilistic bisimulation, Algorithms, vol. 11(9), 131, 2018. doi: 10.3390/
al11090131.

https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/s10009-017-0468-z
https://doi.org/10.1007/s10009-017-0468-z
https://doi.org/10.1109/qest.2010.24
https://doi.org/10.1109/qest.2010.24
https://doi.org/10.1109/qest.2010.24
https://doi.org/10.1023/a:1016091902809
https://doi.org/10.1023/a:1016091902809
https://doi.org/10.1023/a:1016091902809
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-031-15629-8_13
https://doi.org/10.1007/978-3-031-15629-8_13
https://doi.org/10.1007/978-3-031-15629-8_13
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131

74 MohammadSadegh Mohagheghi, Khayyam Salehi

[25] Hansen H., Kwiatkowska M., Qu H.: Partial order reduction for model checking
Markov decision processes under unconditional fairness. In: 2011 Eighth Inter-
national Conference on Quantitative Fvaluation of SysTems, pp. 203-212, IEEE,
2011. doi: 10.1109/qest.2011.35.

[26] Hensel C., Junges S., Katoen J.P., Quatmann T., Volk M.: The probabilistic
model checker STORM, International Journal on Software Tools for Technology
Transfer, vol. 24(4), pp. 589-610, 2022.

[27] Jacobs J., Wiimann T.: Fast coalgebraic bisimilarity minimization, Proceedings
of the ACM on Programming Languages, vol. 7(POPL), pp. 1514-1541, 2023.
doi: 10.1145/3571245.

[28] Kamaleson N.: Model reduction techniques for probabilistic verification of Markov
chains, Ph.D. thesis, University of Birmingham, 2018.

[29] Katoen J.P.: The probabilistic model checking landscape. In: LICS ’16: Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
pp. 3145, 2016. doi: 10.1145/2933575.2934574.

[30] Klein J., Baier C., Chrszon P., Daum M., Dubslaff C., Kliippelholz S., Marcker S.,
Miiller D.: Advances in symbolic probabilistic model checking with PRISM. In:
M. Chechik, J.-F. Raskin (eds.), Tools and Algorithms for the Construction and
Analysis of Systems. 22nd International Conference, TACAS 2016, Held as Part
of the FEuropean Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pp. 349-366,
Springer, 2016. doi: 10.1007/978-3-662-49674-9 20.

[31] Kwiatkowska M., Norman G., Parker D.: Symmetry reduction for probabilistic
model checking. In: T. Ball, R.B. Jones (eds.), Computer Aided Verification.
18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, pp. 234-248, Springer, 2006. doi: 10.1007/11817963 _23.

[32] Kwiatkowska M., Norman G., Parker D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: G. Gopalakrishnan, S. Qadeer (eds.), Computer Aided
Verification. 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011, Proceedings, pp. 585-591, Springer, 2011. doi: 10.1007/978-3-
642-22110-1_47.

[33] Larsen K.G., Legay A.: Statistical model checking: Past, present, and future. In:
T. Margaria, B. Steffen (eds.), Leveraging Applications of Formal Methods, Veri-
fication and Validation: Foundational Techniques. Tth International Symposium,
ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I,
pp. 3-15, Springer, 2016. doi: 10.1007/978-3-319-47166-2 1.

[34] Larsen K.G., Skou A.: Bisimulation through probabilistic testing, Information
and computation, vol. 94(1), 1991. doi: 10.1016,/0890-5401(91)90030-6.

[35] Mohagheghi M.: Probabilistic Bisimulation, https://github.com /sadeghrk /
prism/tree/improved-bisimulation.

[36] Mohagheghi M., Karimpour J., Isazadeh A.: Improving modified policy it-
eration for probabilistic model checking, Computer Science, vol. 23(1), 2022.
doi: 10.7494 /csci.2022.23.1.4139.

https://doi.org/10.1109/qest.2011.35
https://doi.org/10.1109/qest.2011.35
https://doi.org/10.1109/qest.2011.35
https://doi.org/10.1145/3571245
https://doi.org/10.1145/3571245
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1007/978-3-662-49674-9_20
https://doi.org/10.1007/978-3-662-49674-9_20
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://github.com/sadeghrk/prism/tree/improved-bisimulation
https://github.com/sadeghrk/prism/tree/improved-bisimulation
https://doi.org/10.7494/csci.2022.23.1.4139
https://doi.org/10.7494/csci.2022.23.1.4139
https://doi.org/10.7494/csci.2022.23.1.4139

Using splitter ordering heuristics to improve bisimulation. . . 75

[37] Mohagheghi M., Salehi K.: Improving Probabilistic Bisimulation for MDPs
Using Machine Learning, Mathematics Interdisciplinary Research, vol. 9(2),
pp. 151-169, 2024. doi: 10.22052/mir.2023.253367.1431.

[38] Noroozi A.A., Karimpour J., Isazadeh A.: Bisimulation for Secure Information
Flow Analysis of Multi-Threaded Programs, Mathematical and Computational
Applications, vol. 24(2), 64, 2019. doi: 10.3390,/mca24020064.

[39] Parker D.A.: Implementation of symbolic model checking for probabilistic systems,
Ph.D. thesis, University of Birmingham, 2003.

[40] Philippou A., Lee 1., Sokolsky O.: Weak bisimulation for probabilistic systems.
In: C. Palamidessi (ed.), CONCUR 2000 — Concurrency Theory. 11th Interna-
tional Conference, University Park, PA, USA, August 22-25, 2000 Proceedings,
pp. 334-349, Springer, 2000. doi: 10.1007/3-540-44618-4 25.

[41] Salehi K., Noroozi A.A., Amir-Mohammadian S.: Quantifying information leak-
age of probabilistic programs using the PRISM model checker. In: Proceedings
of the 15th International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE 2021), pp. 47-52, 2021.

[42] Salehi K., Noroozi A.A., Amir-Mohammadian S., Mohagheghi M.: An Auto-
mated Quantitative Information Flow Analysis for Concurrent Programs. In:
E. Abraham, M. Paolieri (eds.), Quantitative Evaluation of Systems. 19th In-
ternational Conference, QEST 2022, Warsaw, Poland, September 12-16, 2022,
Proceedings, pp. 43—63, Springer, 2022. doi: 10.1007/978-3-031-16336-4 3.

[43] Sanada T., Kojima R., Komorida Y., Muroya K., Hasuo I.. Explicit
Hopcroft’s Trick in Categorical Partition Refinement. In: B. Ko6nig, H. Urbat
(eds.), Coalgebraic Methods in Computer Science. 17th IFIP WG 1.3 Interna-
tional Workshop, CMCS 2024, Colocated with ETAPS 2024, Luzxembourg City,
Luzembourg, April 6-7, 2024, Proceedings, pp. 135-155, 2024. doi: 10.1007/978-
3-031-66438-0_7.

[44] Segala R.: Modeling and verification of randomized distributed real-time systems,
Ph.D. thesis, Massachusetts Institute of Technology, 1995.

[45] Stoelinga M.I.A.: Alea jacta est: verification of probabilistic, real-time and para-
metric systems, Ph.D. thesis, Radboud University, Nijmegen, 2002.

Affiliations

MohammadSadegh Mohagheghi
Vali-e-Asr University of Rafsanjan, Department of Computer Science, Rafsanjan, Iran,
mohagheghi@vru.ac.ir

Khayyam Salehi
Shahrekord University, Department of Computer Science, Shahrekord, Iran,
kh.salehi@sku.ac.ir

Received: 8.07.2024
Revised: 6.09.2024
Accepted: 21.09.2024

https://doi.org/10.22052/mir.2023.253367.1431
https://doi.org/10.22052/mir.2023.253367.1431
https://doi.org/10.22052/mir.2023.253367.1431
https://doi.org/10.3390/mca24020064
https://doi.org/10.3390/mca24020064
https://doi.org/10.3390/mca24020064
https://doi.org/10.1007/3-540-44618-4_25
https://doi.org/10.1007/3-540-44618-4_25
https://doi.org/10.1007/978-3-031-16336-4_3
https://doi.org/10.1007/978-3-031-16336-4_3
https://doi.org/10.1007/978-3-031-16336-4_3
https://doi.org/10.1007/978-3-031-66438-0_7
https://doi.org/10.1007/978-3-031-66438-0_7
https://doi.org/10.1007/978-3-031-66438-0_7
https://doi.org/10.1007/978-3-031-66438-0_7
mohagheghi@vru.ac.ir
kh.salehi@sku.ac.ir

	Introduction
	Preliminaries
	General notations and definitions
	The standard algorithm for computing a probabilistic bisimulation

	Ordering heuristics for choosing splitters
	Backward ordering for choosing splitters
	Choosing smallest blocks first

	Using hash tables for improving partition refinement
	Evaluation
	Experimental setup
	Performance analysis for tools and heuristics
	Impact of bisimulation in probabilistic model checking

	Related works
	Conclusion

