
Ea
rly
bi
rd

Computer Science • 25(3) 2024 https://doi.org/10.7494/csci.2024.25.3.6360

Krzysztof Ostrowski
Grażyna Starzec
Mateusz Starzec

THE ANT COLONY
OPTIMIZATION ALGORITHM
APPLIED IN TRANSPORT LOGISTICS

Abstract The Vehicle Routing Problem belongs to graph optimization and its goal is to

find shortest routes visiting a given set of customers with additional constraints

present. The article presents the ant colony optimization metaheuristic which

solves vehicle routing problems and its real-life application in transport logistics

(finding routes for delivery companies). The metaheuristic generated high-

quality solutions (superior to compared methods). Our tool is flexible and

enables us to solve various variants of routing problems so it is well suited to

specific needs of transportation companies.

Keywords ant colony optimization, ACO, metaheuristic, routing problems, transport

logistics, delivery

Citation Computer Science 25(3) 2024: 1–20

Copyright © 2024 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

1

https://doi.org/10.7494/csci.2024.25.3.6360
https://creativecommons.org/licenses/by/4.0/


Ea
rly
bi
rd

2 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

1. Introduction

Routing in transportation networks is a daily task for transport industry companies

(i.e. transportation, delivery planning or waste collection). Constructing efficient

routes can be challenging (especially for larger fleets of vehicles and with multiple

additional constraints) but is necessary to minimize costs (i. e. fuel consumption and

work time). Routes optimization can be regarded as a part of green logistics, which

is an activity aiming to reduce the environmental impact of companies logistics. Con-

structing efficient routes that visit a given set of customers usually have additional

constraints i. e. associated with vehicles capacity, customers opening-times or vehi-

cles distance/work-time limit. Optimization problems arising from practical needs of

transportation companies belong to the family of Vehicle Routing Problems (VRP).

The problem’s computational difficulty (impractical execution time of exact methods

for larger instances) triggered the search for efficient metaheuristic solutions.

The authors’ previous research was focused mostly on metaheuristics and graph

problems [23, 27]. The authors propose the ant-colony optimization metaheuristic

(ACO) as a part of a web application, which solves various problems from VRP fam-

ily (dependent on the needs of transportation companies). The presented algorithm

is a combination of techniques and variants of ACO and local optimizations. This

is a result of comprehensive tests conducted on tens of real-life optimization tasks.

We collected this data from companies that are interested in implementation of our

solution in their daily work. Our work was associated with a project named “TRASA

– development and validation of algorithms for routes optimization and resources

allocation” [13]. The article is organized as follows: Section 2 presents VRP fam-

ily, Section 3 includes mathematical formulations, Section 4 outlines some existing

solutions, Section 5 describes the algorithm, Section 6 presents real-life results and

conclusions are included in Section 7.

2. VRP family

The Vehicle Routing Problem is a multiple route generalization of the well-known

Travelling Salesman Problem (TSP) [5], where the goal is to find a Hamiltonian cy-

cle (a path in a graph visiting all vertices), which minimizes the total cost of visited

edges. VRP is a family of combinatorial optimization problems, which has many real-

life applications (i. e. those mentioned above) and dates back to 1959 [9]. In the basic

version of the problem there is a graph of n customer locations and a fleet vehicle

consisting of m cars. There is also one or more depots: special locations represent-

ing start and end of cars routes. The graph is weighted (costs associated with edges

between locations). The goal is to visit all customers (using at most m cars) while

minimizing the total cost of all routes (each route starts and ends in given depots).

VRP has many variants, which add constraints to the basic optimization prob-

lem and were defined to address practical routing problems. In Capacitated Vehicle

Routing Problem (CVRP) [15] each vehicle has a limited capacity for goods that are



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 3

delivered to clients (each client has some demand) and therefore routes sizes are lim-

ited by max. capacity. In this case, number of vehicles used can be also optimized

(as the first optimization criterion - the second being total routes cost). In Vehicle

Routing Problem with Time Windows (VRPTW) each client has a time-window [7].

In hard TW version goods can be delivered only in this time slot: arriving too early

means waiting for a TW opening while arriving too late means delivery is impossi-

ble. In VRP versions with soft time-windows (VRPSTW) delivery time bounds can

be violated but at a penalty [4]. In time-window versions of the problem edge also

have assigned travel times and there are also service times assigned to each client. In

Distance Constrained Capacitated Vehicle Routing Problems (DCVRPs) the dura-

tion of each vehicle route (defined as the sum of travel time, service times and depot

load/unload time) is limited [2]. Depending on version, capacity constraints can be

applied to the whole vehicle route or only to a route section between subsequent de-

pots (if we allow for vehicle’s multiple comebacks to depots, where it is unloaded). In

the Time-dependent Vehicle Routing Problem (TDVRP) travel times between clients

depend on the moment of travel start. This problem version can model traffic in road

networks (i.e. lower speeds in peak hours) [12]. In stochastic versions of VRP clients

demands or travel times are not known beforehand (they are random variables) [20].

In the article we deal mostly with VRP variants including capacity, drivers work

time and time-windows constraints: they can be classified as DCVRPTW (Distance

Constrained Capacitated Vehicle Routing Problems with Time Windows). Both strict

time-windows as well as soft time-windows versions are implemented in our algorithm.

3. Problem formulation as mixed-programming problem

The definition of DCVRPTW with strict time windows we use here is based on the flex

version of DCVRP [2] (multiple comebacks to depots are allowed) but with additional

time-windows constraints added. Let K be the set of vehicles. Let N be the set of

customers, H0 the set of original depots, H1...HB−1 sets of intermediate depots (which

vehicles can come back to inside their routes), HB the set of final depots and V the

set of all nodes (the union of all previously defined sets). Let di be nonnegative

demand of customer i ∈ N . Let cij be the cost of travelling from node i to node j

and tij its travel time. Let si be service time of customer i. Let oi be time-window

opening of customer i and cli its closing time. Let Q be the maximal vehicle load

while R be the maximal vehicle route time. Let xijk be a binary variable indicating

if vehicle k travels from node i to node j. Let eik be an auxiliary, binary variable

indicating if customer i is visited by vehicle k. It is defined as
∑

j∈V xijk. Let yk be

a binary variable indicating if vehicle k is used in the solution. Let zik be the total

load served by vehicle k between its last visit to depot and visit to node i (including

the load of node i). It is set to 0 at depot nodes. Let wik be the arrival time of vehicle

k at node i. It is initialized to 0 at original depot nodes (that start vehicle’s route).



Ea
rly
bi
rd

4 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

The goal is to minimize formula (1)∑
i∈V

∑
j∈V \{i}

∑
k∈K

xijkcij +
∑
k∈K

ykm (1)

subject to constraints: ∑
j∈V \{i}

∑
k∈K

xijk = 1 ∀i∈N (2)

∑
i∈V \{j}

xijk −
∑

i∈V \{j}

xjik = 0 ∀j∈N,k∈K (3)

∑
i∈H0

∑
j∈N

xijk − yk = 0 ∀k∈K (4)

∑
i∈Hb−1

∑
j∈N

xijk −
∑
i∈Hb

∑
j∈N

xijk = 0 ∀k∈K,Hb∈{H1,...,HB} (5)

∑
i∈N

xijk −
∑
i∈N

xjik ≥ 0 ∀j∈{H1,...,HB−1},k∈K (6)

xijk = 0 ∀i∈HB ,j∈N,k∈K (7)

(zik + dj − zjk) ≤M(1− xijk) ∀i∈V,j∈N\{i},k∈K (8)

(zik + dj − zjk) ≥ −M(1− xijk) ∀i∈V,j∈N\{i},k∈K (9)

(wik + si + tij − wjk) ≤M(1− xijk) ∀i∈V,j∈{N,H1,...,HB}\{i},k∈K (10)

(wik + si + tij − wjk) ≥ −M(1− xijk) ∀i∈V,j∈{N,H1,...,HB}\{i},k∈K (11)

0 ≤ zik ≤ Q ∀i∈N,k∈K (12)

0 ≤ wik ≤ R ∀i∈{N,H1,...,HB},k∈K (13)

eik · oi ≤ eik · wik ≤ eik · cli ∀i∈N,k∈K (14)

zik = 0 ∀i∈{H0,...,HB},k∈K (15)

wik = 0 ∀i∈H0,k∈K (16)

xijk ∈ {0, 1} ∀i,j∈V,k∈K,i̸=j (17)

yk ∈ {0, 1} ∀k∈K (18)

In Equation (1) constant m set to 0 means that only total routes cost is minimized

while setting it to a sufficiently large value will minimize number of cars used and

then total cost. Constraint (2) means that each customer must be visited exactly once

by exactly one vehicle. Equation (3) is a flow conversion constraint (vehicle arriving

at a given customer node has to leave it afterwards). Equation (4) is a relation

between variables x and y. Equations (5) and (6) are conversion of flow through

depots constraints. Constraint (7) eliminates any flow outcoming from final depots.

Constraints (8) and (9) define relations between load variables and customer demands.



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 5

Constraints (10) and (11) define relations between time variables, travel times and

customers service times. In those constraints we assume sufficiently large constant M

(i.e. larger than the sum of client demands in Equations (8) and (9)). Constraint (12)

represents the load limits and constraint (13) the route time limits. Constraint (14)

forces time window obedience but only for customers visited by vehicle k (therefore

e variable is introduced in the formula). Constraints (15) and (16) reset load and

time variables in depots (in all depots in case of load and in starting depots in case

of time). Constraint (17) and (18) forces variables x and y to be binary.

In DCVRPTW with soft time windows we allow vehicles to arrive after customers

closing time. Equation (14) from the above definition is replaced with

eik · oi ≤ eik · wik ∀i∈N,k∈K (19)

In this variant we also try to minimize the total time-windows delay of all visited

customers. A delay is non-zero for a customer visited after its TW close time and is

defined as the difference between vehicle arrival time and TW close time. Therefore it

is a bi-objective optimization with two optimization criteria (for total cost and total

time windows delay): ∑
i∈V

∑
j∈V \{i}

∑
k∈K

xijkcij +
∑
k∈K

ykm (20)

∑
i∈N,k∈K

eik ·max(0, wik − ci) (21)

4. State of the art

The VRP is an NP-hard optimization problem [18] and no polynomial-time exact

algorithms are known. Branch-and-cut solutions [3] are among most effective exact

approaches for problems from TSP and VRP family. However, for large problem

instances their computation time is usually impractically long. Therefore the main

focus of researchers has been on heuristics and metaheuristics, which can find satis-

factory solutions (but usually not optimal) in shorter execution time. One of the first

heuristic for VRP was savings algorithm [8], where initially each route includes only

one customer and routes are merged according to a criterion maximizing distance re-

duction until no further merges are feasible regarding the problem constraints. Meta-

heuristics have been successfully applied to solve many optimization problems and

they include exploration (discovering new regions in solutions space) and exploitation

(searching promising regions intensely) phases. Some of them operate on single solu-

tions (i.e. iterated local search (ILS) [1] or tabu search (TS) [11]) and some of them

maintain a population of solutions: i.e. nature-inspired methods like evolutionary al-

gorithms (EA) [24], particle swarm optimization (PSO) [16] and ACO metaheuristics.

Some researchers also tried the combination of state-of-the art metaheuristics with

machine learning [25,26].



Ea
rly
bi
rd

6 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

5. Algorithm description

The authors proposed the ACO metaheuristic [10] to solve routing problems. This

approach is inspired by the behaviour of ants and is well suited to solve graph op-

timization problems. It is a probabilistic, multi-agent approach, which belongs to

swarm intelligence methods. Each ant (an agent) moves between various states and

constructs a solution. The probability of a transition between states depends on a pri-

ori knowledge (desirability) and on pheromone levels (swarm intelligence – knowledge

gathered during the algorithm search). The procedure of solutions construction is re-

peated multiple times allowing the colony to learn more about the problem instance.

In graph optimization problems each ant traverses edges until a feasible solution is

constructed, desirability is directly associated with edge costs (i.e. travel time or dis-

tance) while edges pheromone levels are updated according to the quality of solutions

they form. Due to the fact that each ant constructs its solution independently ACO

parallelization can be efficiently implemented [19,28], which is also an important qual-

ity of this metaheuristic. In addition, the specificity of ACO solution construction

makes adaptation to various optimization targets and creation a flexible tool solv-

ing real-life problems easier. The algorithm pseudocode is shown at the end of this

section.

5.1. Solution construction

The algorithm consists of n main iterations. In every iteration each of k ants builds

a solution beginning from a given starting vertex. To preserve solutions feasibility

(regarding constraints like max. work time, time-windows or car capacity) ants can

only choose edges that do not cause constraint violations. The probability of choosing

edge ij is given by the following formula:

pij =
ταij · η

β
ij∑

ik∈feasibleMoves τ
α
ik · η

β
ik

(22)

In the above formula ηij represents desirability of a given edge, which is inversely

proportional to its cost (distance or travel time, depending on optimization criteria),

τij represents colony knowledge regarding a given edge, while α and β parameters

control the influences of colony knowledge and desirability knowledge.

If a solution being built is still not complete and no new vertex can be visited

without violating constraints then an ant goes back to the depot vertex and a new

subpath is constructed (in a new work time slot, if necessary).

5.2. Local optimization

After a feasible solution is build it undergoes a series of local optimizations. ACO per-

forms an exploration of solution space and finds promising regions while local search

methods enable for a better exploitation of those regions. Local search operators

include 2-opt, insert and delete methods.



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 7

5.2.1. 2-opt

Two-opt is an operator that chooses two non-adjacent edges in a path: (pipi+1) and

pjpj+1 and replaces them with edges (pipj) and (pi+1pj+1). In other words, it inverts

a given path fragment (pi+1...pj). In our solution we apply a hill climbing version,

which modifies a path as long as there exists an improving move (regarding our

optimization criterion or criteria). The operator is presented in Figure 1.

v1 (START)

v2

v3

v4

v5

v6 v6

v1 (START)

v2

v3

v4

v5

v7
v7

v8 (END) v8 (END)

2-opt

Figure 1. An example of 2-opt local search. First move inverts path fragment v2-v3-v4 and

the second move inverts fragment v6-v7. As a result a local optimum is reached

5.2.2. Insert and delete

Another local search procedure used involves insert and delete operators. After delet-

ing a given group of vertices (they can be chosen randomly or according to a heuristic)

they are inserted back into a solution in such places that the solution cost increase is

minimized. This procedure can be applied multiply for varying number of modified

vertices until no further improvement is found.

5.2.3. Generalized move – path look improvement and final optimization

The best final paths undergo an additional local search, which moves groups of points

between paths in order to maximize a certain criterion. In commercial applications,

besides meeting optimization goals, a visual aspect of solutions can be important

(how clients perceive visualization of solutions). For example it is visually better if

one route serves mostly a certain area/city district without serving too many clients

from other districts. Normally even high-quality solutions do not guarantee this as

clients from various districts are often on vehicles’ way to other areas. This operator



Ea
rly
bi
rd

8 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

can improve compactness of paths without deteriorating solutions quality. It is based

on mean square error (MSE) measure known from clustering.

Alternatively, this operator can serve as the last optimization of the resulting

solution (improving distance instead of MSE) if the only goal is to optimize path cost.

5.3. Pheromones update

After solutions are constructed and optimized it is time for pheromones update. Ini-

tially, all pheromones undergo the procedure of evaporation (their value decrease at

the end of an iteration). Afterwards, the best solutions (from the current iteration and

from the whole algorithm run) are used and the edges they consist of have pheromone

levels increased. In this way the colony updates its knowledge regarding the solved

problem instance. The update procedure is given by the following formula:

τij ← τij · (1− ρ) + l · γ (23)

In the formula ρ is an evaporation coefficient, γ is an update coefficient and l is

the number of solutions (among the best ones) including edge ij. Parameters ρ

and γ control the rate of colony knowledge change. The bigger those values the faster

knowledge update takes place. Pheromone amounts on edges are limited to an interval

[τmin, τmax] as it is in the min-max ant system (MMAS).

5.4. Construction of pareto set approximations

In some problem versions, more than one optimization criteria is applied. Each solu-

tion can be then described by a criterion vector (y1, y2, ..., yn) ∈ Rn. Let y′ ≻ y′′ mean

that solution y′ dominates solution y′′. The definition of domination is as follows:

y′ ≻ y′′ ⇐⇒ ∀1≤i≤n (y′i ≤ y′′i ) ∧ ∃1≤i≤n (y′i < y′′i ) (24)

This means that y′ is not worse than y′′ in any optimization criterion but is better

in at least one (assuming a minimization problem). A set of all non-dominated solu-

tions is called pareto front. The algorithm maintains a set of pairwise non-dominated

solutions (approximation of the pareto front). Let Y be the set of all feasible solutions

(their optimization criteria results). Pareto front P definition is given below:

P = {y ∈ Y : ¬ ∃y′∈Y (y
′ ≻ y)} (25)

In case of multiple criteria optimization each ant has pseudorandom weights

assigned (from [0, 1] interval), which signal the importance of each optimization tar-

get. Then pheromones and desirability computations are based on those weights and

optimization targets properties. Let (η1, ..., ηn) and (τ1, ..., τn) represent vectors of

desirability and colony knowledge for all optimization targets and for one particu-

lar move and let (w1, ..., wn) be a vector of optimization target weights of a given



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 9

ant. Then composite desirability and colony knowledge for all optimization targets is

calculated as follows:

τ =
∏

1≤i≤n

(τi · wi) (26)

η =
∏

1≤i≤n

(ηi · wi) (27)

Pseudorandom distribution of weights among ants lets the algorithm to approximate

various fragments of the pareto front.

Algorithm 1 ACO

1: bestSolutions = ϕ

2: for i ⇐ 1...n do

3: solutions = ϕ

4: for j ⇐ 1...k do

5: currentSolution = (startV ertex)

6: while currentSolution is not complete and there are feasible moves do

7: choose a vertex w (probability based on desirability and pheromones)

8: append vertex w to currentSolution

9: end while

10: optimize locally currentSolution

11: add currentSolution to solutions

12: end for

13: update bestSolutions with solutions

14: update pheromones based with top solutions from solutions and bestSolutions

15: end for

16: return bestSolutions

6. Experiments

The algorithm was applied to solve practical optimization problems for a few trans-

portation companies. Our tool is flexible and enables us to solve various versions

of VRP family (regarding constraints and optimization targets) and therefore it is

well suited to meet specific needs of the companies. Experiments were conducted on

a computer with 3.5 GHz processor (4 cores), 16 GB of RAM and Linux operation sys-

tem. The application was written in Scala programming language. The algorithm’s

parameters values are given in Table 1. Real distances and approximate travel times

between client addresses were obtained from Open Route Service [21]. For compar-

ison purposes we decided to use OR optimization tool [22] for some companies test

instances. We compared our method with Greedy Descent (GD) and Guided Local

Search (GLS) metaheuristics [30]. The metaheuristics time limit was set to the same

values as ACO execution times. In addition, we executed our algorithm on VRPTW

benchmarks with known optimal solutions (Solomon instances) and compared with



Ea
rly
bi
rd

10 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

other metaheuristics. The results presented are average of multiple runs (to obtain

some statistics) but usually in our web application one run is performed (it can be

reconfigured to choose the best of n runs too).

Table 1
ACO parameters values

Parameter Name Value

n Iterations count 150

k Ants count 25

α Colony knowledge coefficient 20

β Desirability coefficient 40

ρ Evaporation coefficient 0.01

γ Pheromone update coefficient 0.03

6.1. Parameters tuning and analysis

Iterations count and ants count were set in a way to reach high-quality solutions in

reasonable execution times. For a given ants number iterations count was determined

empirically. In Table 2 there is a comparison of algorithm results for various ants and

iterations count. Due to increase of exploration power ACO generates better results

with ants count increase. We chose 25 ants as for larger count the increase of solution

quality is getting smaller while execution time grows significantly. In Figure 2 an

exemplary algorithm run is presented (iterations vs best result). The result before

final local optimization (in post-ACO phase) is given.

Table 2
Tuning results for ants count – results for catering company network (Gdansk)

ants iterations result % gap execution time

10 75 440.8 2.8 19

15 100 436.2 1.7 35

25 150 428.9 - 78

40 250 426.7 -0.5 207

To finetune the remaining parameter values of the ACO we ran the algorithm with

four possible values of α (10, 20, 40, 80), four values of β (10, 20, 40, 80), three values

of ρ (0.01, 0.03 and 0.1) and three values of γ (0.01, 0.03 and 0.1). Therefore, 144

combinations of parameter values were tested on two instances (Catering company

instance – Gdansk and one of Solomon VRPTW benchmark instances). For each

combination in 4-dimensional space of parameter values ACO was run 10 times for

both test instances and we computed average gap (to the optimal solution in case of

Solomon instance and to the best known solution in case of Gdansk instance). In this

way we determined the best set of parameter values.



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 11

Figure 2. Exemplary algorithm runs: best result so far vs iteration number, Gdansk network

In Table 3 we present averaged tuning results for slow evaporation and moderate

pheromone update rate configuration. It can be seen that configurations with the

smallest utilization of the colony knowledge (α = 10) produced the worst result while

there are minor differences between configurations varying in desirability coefficient.

The best configuration has moderate values of desirability and pheromone coefficients

and most of them are within 0.5 percent of the best one. Small differences indicate

the algorithm’s robustness regarding parameter values change and can be also associ-

ated with strong influence of local search procedures on the final result (they exploit

solution space areas searched by the metaheuristic).

Table 3
Results of parameter tuning for slow evaporation (ρ = 0.01) and moderate pheromone update

rate (γ = 0.03). Average results for given α and β values as well as the best configuration

are in bold. Combined average gap of both tuning test instances is presented

α/β 10 20 40 80 avg.

10 2.5 2.8 2.0 1.9 2.3

20 1.2 1.5 1.0 1.6 1.3

40 1.2 1.3 1.4 1.5 1.3

80 1.2 1.4 1.3 1.7 1.4

avg. 1.5 1.8 1.4 1.7 –

In Table 4 tuning results for moderate evaporation and fast pheromone update

rate are presented. Generally, differences between various α and β value sets are

smaller than in the previous configuration. With faster pheromone evaporation and

update even configurations with smaller colony knowledge utilization (α = 10) have

reached high-quality solutions.



Ea
rly
bi
rd

12 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

Table 4
Results of parameter tuning for moderate evaporation (ρ = 0.03) and fast pheromone update

rate (γ = 0.1). Average results for given α and β values as well as the best configuration are

in bold. Combined average gap of both tuning test instances is presented

α/β 10 20 40 80 avg.

10 2.0 1.2 1.3 2.0 1.6

20 1.4 1.2 1.4 1.6 1.4

40 1.9 1.5 1.2 1.8 1.6

80 1.4 1.3 1.7 2.3 1.7

avg. 1.6 1.3 1.4 1.8 -

In Table 5 there are tuning results for high evaporation and moderate pheromone

update rates. This time the best results are reached for smaller α values. It seems

that increasing evaporation and update rates compensates for a lower pheromone trail

coefficient. On the other hand, the algorithm consistently generates worse results for

the highest value of desirability coefficient (β = 80). This can be associated with

extensive local search methods, which already utilize the problem-specific knowledge

so there is no need to overuse the heuristic component during paths construction.

Table 5
Results of parameter tuning for high evaporation (ρ = 0.1) and moderate pheromone update

rate (γ = 0.03). Average results for given α and β values as well as the best configuration

are in bold. Combined average gap of both tuning test instances is presented

α/β 10 20 40 80 avg.

10 2.0 1.2 1.3 2.0 1.6

20 1.8 1.7 1.9 2.0 1.8

40 1.6 1.9 1.9 2.1 1.9

80 1.8 1.9 2.6 3.1 2.3

avg. 1.8 1.7 1.9 2.3 -

In Table 6 tuning results for various pheromone evaporation and update rates are

presented (global average). It can be seen that the best results are generated when

update rate is three times higher than evaporation rate. The differences are small but

higher values of update rates generally are associated with better average results.

Table 6
Tuning results for various values of pheromone evaporation and update rates averaged over

all values of α and β. The best configurations in bold

ρ/γ 0.01 0.03 0.1

0.01 2.0 1.6 1.8

0.03 2.0 2.0 1.5

0.1 1.8 1.9 1.9



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 13

6.2. Catering company results

The algorithm was applied to help a Polish catering company with their route plan-

ning in Polish cities and regions (Warsaw, Gdansk and north-eastern Poland). The

transport of goods was scheduled for one night. Clients time windows (of sizes: 4–11

hours) were the main constraint on vehicles’ routes size. No time limit on routes

exists in this instance. There were 1539 clients in Warsaw and 16 vehicles available.

In NE Poland there were 2117 clients and 29 vehicles available. In Gdansk there were

345 clients and 4 vehicles available. The goal of the optimization was to minimize the

total distance covered by all vehicles without violating time-windows constraints. We

tested networks for two versions of the algorithm: a commercial variant (improving

paths look as final optimization) and performance variant (further distance improve-

ment in the final optimization). The results are given in Table 7. It can be seen that

the version which incorporates further distance improvement is on average 4–5 per-

cent better than the commercial version. In Table 8 there is a comparison of ACO

with metaheuristics from the OR tool. ACO clearly outperforms other metaheuristics

for Warsaw and NE Poland data sets. Average advantage over GLS is 3.2 percent

and over GD 4.8 percent.

Table 7
Catering company results. Results are the average of 30 algorithm runs. The version with

path look improvement is marked as ACO P while the version with final distance improve-

ment is marked as ACO D. Solution distances are given in kilometers while execution times

in seconds

ACO P ACO D

Instance Vehicles no Distance Ex. time Vehicles no Distance Ex. time

Warsaw 12 1231.7 108 12 1211.3 131

Gdansk 4 437.4 70 4 428.1 78

NE Poland 28 7388.7 650 28 7180.4 755

Table 8
Comparison of ACO with GD and GLS (catering company results). Results are the average

of 30 runs. Confidence intervals (alfa = 0.05) given in +/- column

ACO D GD GLS

Instance Distance +/– Distance +/– % Gap Distance +/– Gap

Gdansk 428.1 1.0 460.3 3.9 7.5 442.8 3.7 3.4

Warsaw 1211.3 5.7 1210.8 4.3 0.0 1223.3 5.1 1.0

NE Poland 7180.4 35.1 7675.4 70.6 6.9 7558.2 63.2 5.2

Avg. – – – – 4.8 – – 3.2



Ea
rly
bi
rd

14 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

Figure 3. Algorithm run results for the catering company displayed in the application window

(for the city of Warsaw)

6.3. Pharmaceutical wholesaler company results

The algorithm was applied to generate solutions for a pharmaceutical company. In one

version a depot was located in Krakow (301 client addresses to visit and 15 vehicles)

and in the other version in Rzeszow (131 client addresses to visit and 8 vehicles).

There were two distinct capacity limits: one was a standard truck capacity and the

other was a maximal capacity for cold products (that have to be transported in low

temperatures). Drivers work hours were 6–18 (12 hour route time limit) for 5 days

a week but some of them did not have a fixed limit. Therefore, this is a generalization

of DCVRPTW, where drivers work hours replace standard route time limit. In this

version there are soft time windows and one of the objectives was to minimize total

violation of time windows (some clients were served later than its time-window close

time). Therefore we have two optimization targets (total time windows delay and

total distance). In this configuration, depending on clients flexibility, one can choose

any of the generated solutions in our application (clients TWs were usually narrow

and mostly in the first half of the day).

In Figure 4 the results of ACO bi-objective optimization are compared with GLS

and GD algorithms. To generate various solutions in the OR tool (which has one

optimization target) a few values of penalties (for exceeding soft time window upper

bound) were used and each configuration was executed a few times. ACO outper-

formed other metaheuristics regarding total TW delay reaching the lowest values on

pareto front approximations. All three metaheurisics were very similar regarding total

distance (GD had on average 1 percent longer routes than GLS and ACO).



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 15

Figure 4. Comparison of ACO, GLS and GDmetaheuristics results, bi-objective optimization

for the pharmaceutical company (depot in Krakow)

Figure 5. Algorithm run results for the pharmaceutical company (Krakow and Rzeszow

combined results)



Ea
rly
bi
rd

16 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

6.4. Delivery company results

We also planned routes for a delivery company. The goal was to plan delivery in

Warsaw and surrounding towns. There were 5090 clients and 116 available vehicles.

Deliveries were planned for one day and the work time limit for every vehicle was 10

hours. It was a multi-objective optimization as there were two optimization targets:

total distance and total work time. The best results by each objective are presented

in Table 9 The approximate pareto-front is not wide due to both criteria results being

correlated with each other.

Table 9
Delivery company results. Results are the average of 10 algorithm runs

Criterion Vehicles used Total distance (km) Total work time

Best by distance 104 10940.1 1005 h 35 min

Best by total work time 104 11130.2 1001 h 45 min

Figure 6. Algorithm run results for the delivery company (Warsaw and surroundings)

6.5. Benchmark instances results

To compare the solutions of our algorithm to known optimal solutions we executed it

on some VRPTW benchmarks (Solomon C instances [31]). The results are presented

in Table 10. It can be seen that the algorithm reaches optimal or nearly optimal

results in short execution times. Only for two test instances the algorithm generated

non-optimal solutions.



Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 17

In Table 11 a comparison of ACO and other metaheuristics is presented. The

compared metaheuristics are local search (LS) [6], tabu search (TS) [17], evolutionary

algorithm (EVO) [14] and hybrid of TS and simulated annealing (HYB) [29]. Their

results are among the best achieved by heuristic solutions for VRPTW instances. It

can be seen that ACO produced the best results on average.

Table 10
Solomon C instances results. The average of 30 algorithm runs, standard deviations and

gaps to optimal solutions are presented. Execution time is given in seconds

Instance Vertex Vehicles Max. Distance St. dev. Gap Vehicles Execution

count count capacity % used time

C101 101 25 200 827.3 0.0 0.0 10 4.9

C102 101 25 200 827.3 0.0 0.0 10 2.1

C103 101 25 200 826.3 0.0 0.0 10 2.2

C104 101 25 200 828.7 2.9 0.7 10 2.1

C105 101 25 200 827.3 0.0 0.0 10 2.1

C106 101 25 200 827.3 0.0 0.0 10 1.9

C107 101 25 200 827.3 0.0 0.0 10 1.7

C108 101 25 200 827.3 0.0 0.0 10 2.0

C109 101 25 200 827.3 0.0 0.0 10 2.2

C201 101 25 700 589.1 0.0 0.0 3 1.8

C202 101 25 700 589.1 0.0 0.0 3 2.2

C203 101 25 700 588.7 0.0 0.0 3 2.4

C204 101 25 700 593.2 2.6 0.9 3 2.4

C205 101 25 700 586.4 0.0 0.0 3 2.0

C206 101 25 700 586.0 0.0 0.0 3 2.1

C207 101 25 700 585.8 0.0 0.0 3 2.0

C208 101 25 700 585.8 0.0 0.0 3 1.8

Table 11
Average results for Solomon C instances - comparison of the ACO and other metaheuristics.

Algorithm C1 instances C2 instances

ACO 827.3 588.1

LS 832.9 593.5

TS 832.1 589.9

EVO 828.4 589.8

HYB 841.9 612.4

7. Conclusion

In the paper we presented the ant-colony optimization metaheuristic for the Vehicle

Routing Problems family. The algorithm can be applied to solve various variants of

VRP and is a part of a web application, which meets practical needs of transport



Ea
rly
bi
rd

18 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

industry companies. The algorithm obtained satisfactory solutions in acceptable exe-

cution times and had an advantage over other compared metaheuristics. The selection

of the metaheuristic and local optimization methods provides good solution quality

to execution time ratio. It is crucial for real-life applications, because quality gives

operational savings for users, but the computation time is in some cases restricted by

real-life operations and the time slot between the moment of collecting the last orders

to be planned and the time when the drivers need to know their routes to prepare to

departure.

Acknowledgements

Our work was done as a part of project “TRASA – development and validation of

algorithms for routes optimization and resources allocation” [13] and was financed

by Intelligent Development Operational Program 2014–2020, sub-program: Industrial

Research and Development Projects Carried out by Enterprises.

References

[1] Álvarez A., Munari P.: Metaheuristic approaches for the vehicle routing problem

with time windows and multiple deliverymen, Gestão & Produção, vol. 23(2),

pp. 279–293, 2016.

[2] Alvina G.K., Ruey L.C., Quiang M.: Distance-constrained capacitated vehi-

cle routing problems with flexible assignment of start and end depots, Mathe-

matical and Computer Modelling, vol. 47(1), pp. 140–152, 2008. doi: 10.1016/

j.mcm.2007.02.007.

[3] Araque J.R., Kudva G., Morin T.L., Pekny J.F.: A branch-and-cut algorithm for

vehicle routing problems, Annals of Operations Research, vol. 4, pp. 37–59, 1994.

doi: 10.1007/bf02085634.

[4] Balakrishnan N.: Simple heuristics for the vehicle routing problem with soft time

windows, The Journal of the Operational Research Society, vol. 44(3), pp. 279–

287, 1993. doi: 10.1038/sj/jors/0440308.

[5] Bellmore M., Nemhauser G.L.: The Traveling Salesman Problem: a Survey, Op-

eration Research, vol. 16, pp. 538–558, 1986.

[6] Braysy O.: Fast local searches for the vehicle routing problem with time windows,

Information Systems and Operations Research, vol. 41, pp. 179–194, 2003.

[7] Braysy O., Gendreau M.: Vehicle Routing Problem with Time Windows, Part I:

Route Construction and Local Search Algorithms, Transportation Science, vol.

39(1), pp. 104–118, 2005. doi: 10.1287/trsc.1030.0056.

[8] Clarke G.U., Wright J.W.: Scheduling of vehicles from a central depot to a

number of delivery points, Operations Research, vol. 12(4), pp. 568–581, 1964.

doi: 10.1007/978-3-642-27922-5 18.

[9] Dantzig G., Ramser J.: The truck dispatching problem, Management science,

vol. 6, pp. 80–91, 1959. doi: 10.1287/mnsc.6.1.80.

https://doi.org/10.1016/j.mcm.2007.02.007
https://doi.org/10.1016/j.mcm.2007.02.007
https://doi.org/10.1016/j.mcm.2007.02.007
https://doi.org/10.1016/j.mcm.2007.02.007
https://doi.org/10.1007/bf02085634
https://doi.org/10.1007/bf02085634
https://doi.org/10.1007/bf02085634
https://doi.org/10.1038/sj/jors/0440308
https://doi.org/10.1038/sj/jors/0440308
https://doi.org/10.1038/sj/jors/0440308
https://doi.org/10.1287/trsc.1030.0056
https://doi.org/10.1287/trsc.1030.0056
https://doi.org/10.1287/trsc.1030.0056
https://doi.org/10.1007/978-3-642-27922-5_18
https://doi.org/10.1007/978-3-642-27922-5_18
https://doi.org/10.1007/978-3-642-27922-5_18
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80


Ea
rly
bi
rd

The ant colony optimization algorithm applied in transport logistics 19

[10] Dorigo M., Stutzle T.: Ant Colony Optimization., The MIT Press Cambridge,

2004. doi: 10.1109/ci-m.2006.248054.

[11] Gendreau M., Hertz A., Laporte G.: A Tabu Search Heuristic for the Vehi-

cle Routing Problem, Management Science, vol. 40(10), pp. 1276–1290, 1994.

doi: 10.1287/mnsc.40.10.1276.

[12] Gmira M., Gendreau M., Lodi A., Potvin J.Y.: Tabu search for the time-

dependent vehicle routing problem with time windows on a road network, Euro-

pean Journal of Operational Research, vol. 288, pp. 129–140, 2021. doi: 10.1016/

j.ejor.2020.05.041.

[13] Grant “Trasa”. Online: https://getsent.io/en/projects/trasa.

[14] Homberger J., Gehring H.: A two-phase hybrid metaheuristic for the vehicle

routing problem with time windows, European Journal of Operations Research,

vol. 62, pp. 220–238, 2005. doi: 10.1016/j.ejor.2004.01.027.

[15] Ibrahim A.A., Nassirou L., Rabiat O.A., Jeremiah A.I.: Capacitated Vehicle

Routing Problem, International Journal of Research – GRANTHAALAYAH, vol.

7(3), pp. 310–327, 2019. doi: 10.29121/granthaalayah.v7.i3.2019.976.

[16] Jin A., Kachitvichyanukul V.: A Particle Swarm Optimisation for Vehicle Rout-

ing Problem with Time Windows, International Journal of Operational Research,

vol. 4(4), pp. 519–537, 2009. doi: 10.1504/ijor.2009.027156.

[17] Lau H.C., Sim M., Teo K.M.: Vehicle routing problem with time windows and a

limited number of vehicles, European Journal of Operational Research, vol. 148,

pp. 559–568, 2003. doi: 10.1016/s0377-2217(02)00363-6.

[18] Lenstra J.K., Kan A.H.G.: Computational Complexity of Discrete Optimiza-

tion Problems, Annals of Discrete Mathematics, vol. 4, pp. 121–140, 1979.

doi: 10.1016/s0167-5060(08)70821-5.

[19] Menezes B., Herrmann N., Kuchen H., Neto F.: High-Level Parallel Ant Colony

Optimization with Algorithmic Skeletons, International Journal of Parallel Pro-

gramming, vol. 49, pp. 776–801, 2021. doi: 10.1007/s10766-021-00714-1.

[20] Niu Y., Shao J., Xiao J., Song W., Cao Z.: Multi-objective evolutionary algo-

rithm based on rbf network for solving the stochastic vehicle routing problem,

Information Sciences, vol. 609, pp. 387–410, 2022. doi: 10.1016/j.ins.2022.07.087.

[21] Open Route Service. Online: https://openrouteservice.org/.

[22] OR tool. Online: https://developers.google.com/optimization.

[23] Ostrowski K., Karbowska-Chilinska J., Koszelew J., Zabielski P.: Evolution-

inspired local improvement algorithm solving orienteering problem, Annals of

Operations Research, vol. 1, pp. 519–543, 2017.

[24] Prins C.: A simple and effective evolutionary algorithm for the vehicle routing

problem, Computers and Operations Research, vol. 31(12), pp. 1985–2002, 2004.

doi: 10.1016/s0305-0548(03)00158-8.

[25] Pugliese L.D.P., Ferone D., Festa P., Guerriero F., Macrina G.: Combin-

ing variable neighborhood search and machine learning to solve the vehicle

routing problem with crowd-shipping., Optimization Letters, pp. 1–23, 2022.

doi: 10.1007/s11590-021-01833-x.

https://doi.org/10.1109/ci-m.2006.248054
https://doi.org/10.1287/mnsc.40.10.1276
https://doi.org/10.1287/mnsc.40.10.1276
https://doi.org/10.1287/mnsc.40.10.1276
https://doi.org/10.1016/j.ejor.2020.05.041
https://doi.org/10.1016/j.ejor.2020.05.041
https://doi.org/10.1016/j.ejor.2020.05.041
https://doi.org/10.1016/j.ejor.2020.05.041
https://getsent.io/en/projects/trasa
https://doi.org/10.1016/j.ejor.2004.01.027
https://doi.org/10.1016/j.ejor.2004.01.027
https://doi.org/10.1016/j.ejor.2004.01.027
https://doi.org/10.29121/granthaalayah.v7.i3.2019.976
https://doi.org/10.29121/granthaalayah.v7.i3.2019.976
https://doi.org/10.29121/granthaalayah.v7.i3.2019.976
https://doi.org/10.1504/ijor.2009.027156
https://doi.org/10.1504/ijor.2009.027156
https://doi.org/10.1504/ijor.2009.027156
https://doi.org/10.1016/s0377-2217(02)00363-6
https://doi.org/10.1016/s0377-2217(02)00363-6
https://doi.org/10.1016/s0377-2217(02)00363-6
https://doi.org/10.1016/s0167-5060(08)70821-5
https://doi.org/10.1016/s0167-5060(08)70821-5
https://doi.org/10.1016/s0167-5060(08)70821-5
https://doi.org/10.1007/s10766-021-00714-1
https://doi.org/10.1007/s10766-021-00714-1
https://doi.org/10.1007/s10766-021-00714-1
https://doi.org/10.1016/j.ins.2022.07.087
https://doi.org/10.1016/j.ins.2022.07.087
https://doi.org/10.1016/j.ins.2022.07.087
https://openrouteservice.org/
https://developers.google.com/optimization
https://doi.org/10.1016/s0305-0548(03)00158-8
https://doi.org/10.1016/s0305-0548(03)00158-8
https://doi.org/10.1016/s0305-0548(03)00158-8
https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1007/s11590-021-01833-x


Ea
rly
bi
rd

20 Krzysztof Ostrowski, Mateusz Starzec, Grażyna Starzec

[26] Qi R., Li J.Q., Wang J., Jin H., Han Y.Y.: Qmoea: A q-learning-based multiob-

jective evolutionary algorithm for solving time-dependent green vehicle routing

problems with time windows, Information Sciences, vol. 608, pp. 178–201, 2022.

doi: 10.1016/j.ins.2022.06.056.

[27] Starzec M., Starzec G., Byrski A., Turek W.: Distributed Ant Colony Optimiza-

tion Based on Actor Model, Parallel Computing, vol. 90(1), 2019. doi: 10.1016/

j.parco.2019.102573.

[28] Stutze T.: Parallelization strategics for Ant Colony Optimization, Lecture Notes

in Computer Science, vol. 1498, pp. 722–731, 1998.

[29] Tan K.C., Lee K.O.: Artificial intelligence heuristics in solving vehicle routing

problems with time window constraints, The Engineering Applications of Artifi-

cial Intelligence, vol. 14, pp. 825–837, 2001. doi: 10.1016/s0952-1976(02)00011-8.

[30] Voudouris C., Tsang E., Alsheddy A.: Handbook of Metaheuristics, 2010.

[31] VRPTW instances. Online: http://vrp.galgos.inf.puc- rio.br/index.php/en/

(VRPTW benchmarks).

Affiliations

Krzysztof Ostrowski
Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A,
15-351 Bialystok, Sentio sp. z o.o., ul. Warszawska 6/32, 15-063 Bialystok,
e-mail: k.ostrowski@pb.edu.pl

Grażyna Starzec
AGH University, Faculty of Computer Science, al. Adama Mickiewicza 30, 30-059 Krakow,
Sentio sp. z o.o., ul. Warszawska 6/32, 15-063 Bialystok, e-mail: g.starzec@getsent.io

Mateusz Starzec
Sentio sp. z o.o., ul. Warszawska 6/32, 15-063 Bialystok, e-mail: m.starzec@getsent.io

Received: 13.06.2024

Revised: 15.06.2024

Accepted: 15.06.2024

https://doi.org/10.1016/j.ins.2022.06.056
https://doi.org/10.1016/j.ins.2022.06.056
https://doi.org/10.1016/j.ins.2022.06.056
https://doi.org/10.1016/j.ins.2022.06.056
https://doi.org/10.1016/j.parco.2019.102573
https://doi.org/10.1016/j.parco.2019.102573
https://doi.org/10.1016/j.parco.2019.102573
https://doi.org/10.1016/j.parco.2019.102573
https://doi.org/10.1016/s0952-1976(02)00011-8
https://doi.org/10.1016/s0952-1976(02)00011-8
https://doi.org/10.1016/s0952-1976(02)00011-8
http://vrp.galgos.inf.puc-rio.br/index.php/en/
k.ostrowski@pb.edu.pl
g.starzec@getsent.io
m.starzec@getsent.io

	Introduction
	VRP family
	Problem formulation as mixed-programming problem
	State of the art
	Algorithm description
	Solution construction
	Local optimization
	2-opt
	Insert and delete
	Generalized move – path look improvement and final optimization

	Pheromones update
	Construction of pareto set approximations

	Experiments
	Parameters tuning and analysis
	Catering company results
	Pharmaceutical wholesaler company results
	Delivery company results
	Benchmark instances results

	Conclusion

