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1. Introduction

There are two main subareas in pattern recognition: the decision-theoretic sub-

area [42, 114], including the neural network-based approach [156, 167], and the syn-

tactic/structural one. The latter subarea can be divided, in turn, into the structural

approach [25] and syntactic pattern recognition, SPR, [60, 69]. In syntactic pattern

recognition, a pattern takes the form of a string, a tree or a graph and a set of

(structural) patterns is treated as a formal language. Then, a generative grammar

is defined as a generator of this language and a syntax analyzer (formal automaton)

is constructed for recognizing and/or interpreting of structural patterns. There are

three groups of syntactic pattern recognition models depending on a type of a struc-

ture considered, namely: string-based models, tree-based models and graph-based

models. We use this taxonomy for the presentation of syntactic pattern recognition

methods in the paper. From the methodological point of view, syntactic pattern

recognition is preferred if patterns considered are structural, a recognition process is

multilevel and hierarchy-oriented and a structure-based interpretation is required [60].

As we will see in the next section, there are important issues considered in bioin-

formatics that can be characterized with the methodological requirements mentioned

above. Indeed, syntactic pattern recognition has delivered formal models for recog-

nizing and interpreting structural patterns in bioinformatics from the very beginning.

In fact, the first SPR application took place in bioinformatics in the early 1960s.

(The term bioinformatics had not yet been coined.) This was the development of

the FIDAC system for karyotype analysis by Robert S. Ledley and his collabora-

tors [120,121].

The research areas and important problems of bioinformatics in the context of

syntactic pattern recognition methods are introduced in Section 2. The basic formal

tools and models of syntactic pattern recognition which are used in bioinformatics are

characterized in the third section. It allows us to refer to these models in Section 4,

in which the survey of syntactic pattern recognition applications in bioinformatics is

presented. The last section contains conclusions.

2. Issues of bioinformatics and syntactic pattern recognition

There are three basic formal tools in syntactic pattern recognition: a (generative)

grammar, a syntax analyzer (formal automaton, parser) and a language inference

(induction) algorithm [60]. A grammar is a formal tool for the generating of a set of

strings/sequences (trees, graphs) which is treated here as a formal language. Thus,

the grammar models sequences (structures) via their generation. On the other hand,

a syntax analyzer (automaton) is a formal tool for the recognition/classification of

a set of sequences (structures). Thus, it models sequences (structures) via their anal-

ysis. In any case, both formal tools are used for the modeling of sequences/structures

in order to better understand their structural properties. The typical applications of

these formal tools in bioinformatics include: finding a subsequence/substructure that
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relates to important features/functions in the whole sequence/structure, aligning se-

quences, predicting sequences on the basis of specific features, modeling a higher-level

structure on the basis of a lower-level one (e.g. RNA tertiary structure on the basis of

its secondary structure) and the like. A language inference (induction) algorithm is an

algorithm which generates (automatically) a grammar or a syntax analyzer (automa-

ton) on the basis of a sample of sequences (structures). In fact, it is a learning formal

tool, i.e. it learns a model (represented by a grammar/automaton) on the basis of

examples. For example, a task of this formal tool can be defined in the following way.

Given a set of biological sequences, construct a stochastic automaton (or a grammar)

that models these sequences.

Bioinformatics applies (and sometimes develops) models of computer science in

order to better understand biological processes. These models and software systems

constructed on their bases are especially useful when the data sets to be analyzed and

interpreted are complex and large. The main research areas of bioinformatics include:

• sequence analysis,

• structural bioinformatics,

• gene and protein expression,

• analysis of cellular organization and

• network and systems biology.

Syntactic pattern recognition models have been applied especially in the first three

areas. We will characterize them in a general way by identifying their main problems,

since we refer to these problems in Section 4 which contains the survey of syntactic

pattern recognition applications in bioinformatics.

Sequential structures are structures which are the most frequently considered in

bioinformatics. Their constitute the primary structures of DNA, RNA and proteins.

For example, the primary structure of the form of the amino acids’ sequence of the

ubiquitin protein is shown in Fig. 1 (a). Sequence analysis consists in the analysis

of DNA, RNA or protein sequence in order to understand their features, biological

function or evolution. Its main issues involve, among others: a sequence alignment,

a sequence assembly, and a gene prediction. A sequence alignment in bioinformatics is

a way of arranging sequences (DNA, RNA, protein) in order to identify regions of sim-

ilarity which may result from structural, functional or evolutionary relations. There

are two issues here: a pairwise sequence alignment (an analysis of two sequences) and

a multiple sequence alignment (an analysis of more than two sequences at a time).

A sequence assembly consists in aligning and merging of fragments that belong to

a longer sequence in order to obtain the original sequence. A gene prediction con-

sists in finding the parts of genomic DNA that encode genes, mainly by identifying

the stop and start regions of genes (which is called a gene annotation). Since se-

quence analysis problems concern an identification, recognition and/or interpretation

of sequence, string-based models are the most convenient formal tools in this case.

In Section 3.1 we present these models, including: stochastic grammars, stochastic

automata, hidden Markov models, programmed grammars, and attributed grammars.
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Figure 1. (a) The beginning of the primary structure (the sequence of amino acids) of the

ubiquitin protein (M stands for methionine (Met), Q stands for glutamine (Gln), I stands for

isoleucine (Ile), F stands for phenylalaline (Phe) etc.) and its complete string representation.

(b) The exemplary part of the secondary structure of RNA (the branched RNA structure, and

its tree representation generated by Tree Adjoining Grammar. Adapted from: M. Flasiński,

Syntactic Pattern Recognition, World Scientific, New Jersey-London-Singapore, 2019.

Structural bioinformatics involves the analysis and prediction of higher-level,

three-dimensional structure of proteins, RNA, and DNA. For example, a part of the

secondary structure of RNA (the branched RNA structure, and its tree representation

is shown in Fig. 1 (b), whereas the graph structure of the nucleobase cytosine used

in the modeling of the tertiary structure of RNA is shown in Fig. 2. In case of pro-

teins four structural levels are identified: the primary level that can be represented

by sequences and three higher levels (secondary, tertiary, and quaternary) that are

usually represented by trees or graphs. Protein structure prediction is one of the most

important issues in structural bioinformatics, since the structure of a protein relates

to its function. Therefore, the problem is crucial for medicine (drug design) as well

as for biotechnology (novel enzymes design). It can be defined as the prediction of

the secondary level- and tertiary level-structure on the basis of the primary level-
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(sequential) structure. The structures of RNA and DNA are represented by trees or

graphs in bioinformatics. Therefore, tree-based and graph-based models are used in

this case. In Section 3.2 we present stochastic tree grammars, Tree Adjoining Gram-

mars and algebraic dynamic programming, whereas in Section 3.3 we introduce NLC-

and NCE-type graph grammars and algebraic graph transformation systems.

Figure 2. The graph structure of the nucleobase cytosine – a building block for the modeling

of the tertiary structure of RNA.

Gene and protein expression area studies three main issues: an analysis of a gene

expression, a gene regulation, and an analysis of protein expression. This area con-

tributes to medicine, pharmacy, and agriculture considerably. A gene expression

consists in affecting a phenotype by information from a gene. This information is

used in the synthesis of a functional gene product (RNA, protein). A gene regulation,

in turn, is a process of the increasing/decreasing of the production of gene products

by cells as a result of the appearing of some signal. String-based models of syntactic

pattern recognition are used in the area of gene and protein expression.

3. Basic formal tools of syntactic pattern recognition for

bioinformatics

Basic definitions and characteristics of main classes of grammars and automata used

for bioinformatics are contained in this section. The string-, tree- and graph-based

models are presented in the succeeding subsections.
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3.1. String-based models

The generative power of grammars (and the discriminative power of the correspond-

ing automata) of the standard Chomsky model is sometimes too small for their ef-

fective use in the real-world applications. Therefore, a variety of enhanced gram-

mars and automata have been defined to solve this problem [60]. The most useful

approaches include: stochastic grammars/automata [67], fuzzy grammars/automata

[207], error-correcting automata [192], hidden Markov models [11], and other en-

hanced models, e.g., programmed grammars [160], attributed grammars [113], and

vague languages/multi-derivational parsing [62].

Computational biologists usually reason in the presence of uncertainty, because

many facts are missing and often data are noisy. In order to handle this problem,

probabilistic models, e.g. Bayesian inference, Markov Random Fields, variational

methods, Bayesian networks etc., are applied in bioinformatics [9, 43]. The sequence

analysis tasks of modeling, aligning, predicting etc. which have been discussed in the

previous section, are of the probabilistic nature as well. Therefore, enhanced proba-

bilistic formal tools of syntactic pattern recognition are often used in bioinformatics.

Let us begin their presentation with stochastic regular grammars [17,67,71,85,163].

Definition 1. A stochastic regular grammar is a quadruple

G = (ΣN ,ΣT , P, S), where

ΣN is a set of nonterminal symbols,

ΣT is a set of terminal symbols,

P is a set of stochastic productions of the form:

Ai
pij−→ γij , i = 1, . . . , n, j = 1, . . . ,mi,

in which Ai ∈ ΣN , γij ∈ ΣT ∪ΣTΣN , pij is the probability related to the application

of the production such that

0 < pij ≤ 1 ,

mi∑
j=1

pij = 1 ,

S is the start symbol (axiom), S ∈ ΣN . □
Thus, a stochastic grammar is a standard (Chomsky) grammar such that proba-

bilities have been ascribed to productions. In this case a derivation definition has to

be modified slightly. Let the string θ be derived directly from the string β, denoted

β
pij=⇒ θ , as the result of applying the production Ai

pij−→ γij .

We say that α1 derives αr with the probability p =
∏r

k=1 pk, denoted α1
p

=⇒∗ αr

iff there exists the following sequence of derivational steps

αk
pk=⇒ αk+1 , k = 1, . . . , r − 1 .

The stochastic language generated by the grammar is defined as follows.

Definition 2. The language generated by the stochastic regular grammar G =

(ΣN ,ΣT , P, S) is the set

L(G) = {(ϕ, p(ϕ)) : ϕ ∈ Σ∗
T , S

pv=⇒∗ ϕ, v = 1, . . . , s, p(ϕ) =

s∑
v=1

pv},
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where s is the number of all the different derivations of ϕ from S and pv is the

probability of the vth derivation of ϕ. □

For stochastic grammars of various types (i.e., regular, context-free etc.), the

corresponding classes of stochastic automata (i.e., finite-state, pushdown etc.) are

defined. They differ from their standard counterparts in the ascribing of probabilities

to their transitions. Thus, stochastic finite-state automaton (FSA) is defined in the

following way [71,153,194].

Definition 3. A stochastic finite-state automaton is a quintuple

A = (Q,ΣT ,Π, π0, πF ), where

Q is a set of n states,

ΣT is a finite set of input symbols,

Π is a mapping of ΣT into the set of n × n stochastic state-transition matrices such

that

Π(a) = [πij(a)]n×n , πij ≥ 0 ,

n∑
j=1

πij = 1 , i = 1, . . . , n ,

where πij(a) is the probability of the transition from state qi to state qj when the

symbol a has been read,

π0 is an n-dimensional row vector representing the initial state distribution such that

its first component is equal to 1 and the remaining components are equal to 0,

πF is an n-dimensional column vector such that its kth component is equal to 1 if qk
is the final state and 0 otherwise. □

A stochastic FSA corresponds to a Markov chain defined in the theory of stochas-

tic processes. In both cases, i.e. a stochastic FSA and a Markov chain, we assume

that we the probabilities for sequences of observable events are known. (That is, a

stochastic process is observable which means that any transition between two states

in a stochastic FSA is related to one symbol.) In bioinformatics, however, such an

assumption is too strong, i.e. the events we are interested in can be not observable

directly. In the theory of syntactic pattern recognition we use an enhanced model of

a stochastic FSA, namely hidden Markov model, HMM in such a case. (HMMs were

firstly applied in the 1960s in the field of Natural Language Processing.) Then, in

case of bioinformatics, a hidden Markov model transits through a series of ”hidden”

states, modeling a biological sequence (denoting e.g. a protein) by emitting succeed-

ing terminal symbols (corresponding to e.g. amino acids). (In the case of HMMs

we say that a terminal symbol is emitted instead of saying that it is generated/read.)

Any state of a HMM does not have to be related one-to-one to the event observed

(as in case of stochastic finite-state automata), but the probability distribution for a

set of terminal symbols is defined for each state independently. Let us formalize our

considerations with the following definition [11,138].

Definition 4. A hidden Markov (HMM) model is a quintuple

HMM = (Q,ΣT ,Π, E, π0), where

Q = {q1, q2, . . . , qN} is a set of N states,

ΣT = {a1, a2, . . . , aM} is a finite set of M symbols,
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Π : Q×Q→ R≥0 is the state-transition probability distribution,

E : Q× ΣT → R≥0 is the state-based symbol emission probability distribution,

π0 = [π(1), π(2), . . . , π(N)] is the initial state distribution vector,

and the following conditions hold:

∀q′ ∈ Q
∑
q′′∈Q

Π(q′, q′′) = 1 ,
∑
a∈ΣT

E(q′, a) = 1 ,

N∑
i=1

π(i) = 1 . □

Π(qi, qj) = πij , i, j = 1, . . . , N is the probability of the transition from state qi
to state qj . E(qj , am) = ej(am), j = 1, . . . , N, m = 1, . . . ,M is the probability of

emitting am in state qj . π(i), i = 1, . . . , N is the probability the Markov chain starts

in state qi.

In the theory of syntactic pattern recognition, error-correcting automata [192]

are applied in two cases [60]. Firstly, they are used, if we have to analyze dis-

torted/deformed versions of structural representations of reference (template) pat-

terns. Secondly, they can model the family of variant patterns belonging to the same

category (class), yet differing from each other in some detailed structural features.

Then, the ”error”-transformations are defined for the string representations and the

expanded grammar is constructed by adding ”error”-productions which model these

structural differences in the variant patterns. Finally, the error-correcting automa-

ton that, apart from normal states, contains error-states (and error-transitions) is

constructed. The biological sequences usually come in families. Then, the sequences

which belong to the same family diverge from each other. For modeling protein fam-

ily assignment, multiple sequence alignment, protein structure prediction, alignment

segmentation, etc. hidden Markov models, presented above, also have been enhanced,

by introducing the so-called, profile hidden Markov models [46, 87,115].

In order to formalize our considerations, we introduce the notion of (error) string

transformation [69,125] as in [60].

Let there be given two strings x, y ∈ Σ∗
T . A transformation F : Σ∗

T 7−→ Σ∗
T

such that y ∈ F(x) is called a string transformation. The following string (error)

transformations are defined

• Substitution transformation FS : η1aη2
FS7−→ η1bη2 , a, b ∈ ΣT ,

a ̸= b, η1, η2 ∈ Σ∗
T .

• Insertion transformation FI : η1η2
FI7−→ η1aη2 , a ∈ ΣT , η1, η2 ∈ Σ∗

T .

• Deletion transformation FD : η1aη2
FD7−→ η1η2 , a ∈ ΣT , η1, η2 ∈ Σ∗

T .

For defining profile hidden Markov models, only insertion and deletion transfor-

mations are used. A profile hidden Markov model is just a hidden Markov model such

that three types of states, namely: (normal) match states, insert states (modeling in-

sertion transformation), and delete states (modeling deletion transformations), are

distinguished, and its generic structure is defined as it is shown in Fig. 3. Summing

up, profile hidden Markov models can be considered to be error-correcting hidden

Markov models, as it understood in syntactic pattern recognition.
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Figure 3. The generic structure of a profile HMM. (Normal (match) states are represented

with squares, insert states are represented with diamonds and delete states are represented

with circles. The begin state is marked with small black triangle and the end state is marked

with double square.)

Two basic classes of Chomsky grammars are used in syntactic pattern recog-

nition: (weaker) regular grammars and (stronger) context-free grammars (CFGs).

However, sometimes even CFGs are too weak if a generative power is concerned, i.e.

a language (a set of sequential patterns) is too complex to be generated by any CFG.

For example, a language considered can be context-sensitive (CSL). In bioinformatics

such a problem arises quite frequently, e.g. in the case of some RNA pseudoknotted

structures [43,157]. In syntactic pattern recognition, such structures can be viewed as

crossing interactions which can be modeled with the help of the copy language Lc that

is of the form Lc = {ww : w ∈ Σ∗
T }. However, Lc is the context-sensitive language gen-

erated by context-sensitive grammars (CSGs). The problem is that context-sensitive

grammars are inefficient computationally and therefore they are not used in practical

applications. Such a problem is effectively solved in syntactic pattern recognition by

defining various classes of enhanced CFGs which can generate certain context-sensitive

languages. (For a review of such enhanced grammars, see [60].) Programmed CFGs,

introduced in [160], are one of the most popular enhanced CFGs. Let us present their

definition.

Definition 5. A programmed context-free grammar is a quintuple

G = (ΣN ,ΣT , J, P, S), where

ΣN is a set of nonterminal symbols,

ΣT is a set of terminal symbols,

J is a set of production labels,

P is a finite set of productions of the form:

(r) A→ β S(U) F (W ), in which

A→ β, A ∈ ΣN , β ∈ Σ∗, is called the core, (r) is the production label, r ∈ J , U ⊂ J
is the success field and W ⊂ J is the failure field,

S is the start symbol (axiom), S ∈ ΣN . □
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A derivation in a programmed CFG can be defined as follows. Firstly, the produc-

tion labeled with (1) is applied. If any production is applied, then after its application

the next production is chosen from its success field U . Otherwise, the next production

is chosen from the failure field W . Intuitively speaking, a programming mechanism

allows us to control the choice of subsequent productions during a derivation, and this

way to force the applying of some (desirable) productions in case a certain production

has been applied before. For example, we can generate the (context-sensitive) copy

language Lc with a programmed context-free grammar.

The extension of programmed CFGs, namely (dynamically programmed)

DPLL(k) grammars have been defined in [61]. They are more efficient computation-

ally, i.e. their syntax analyzer is only of the O(n2) time complexity. Their extensions

to the error-correcting model and the stochastic model have been defined as well [60].

DPLL(k) grammars can generate such typical (complex) context sensitive-languages

like, e.g., L1 = {anbncn : n ≥ 0}, L2 = {anbmcndm : n,m ≥ 0} [60].
If symbolic/structural information on structural patterns that is represented by

a formal language/grammar should be supplied with numerical information, then

attribute grammars are used in syntactic pattern recognition. Such a use of numerical

information can be required in the case of minimum-distance alignment or folding

operations performed for biological sequences [123,171]. Let us introduce the following

notions and definitions.

Let AX denote the set of attributes of the symbol X ∈ Σ, X•α denote the

attribute α of X, Dα denote the set of possible values for the attribute α.

Let (p) X0 → X1X2 . . . Xm be a production of a context-free grammar and

A(p) = AX0 ∪ AX1 ∪ AX2 ∪ . . . ∪ AXm . A semantic rule for the production (p) is an

expression of the following form

β := f(γ1, γ2, . . . , γk), where

β, γ1, γ2, . . . , γk ∈ A(p),

f : Dγ1
× Dγ2

× . . . × Dγk
→ Dβ is a function. The set of semantic rules for the

production (p) is denoted by R(p).

Now, we can present attributed context-free grammars as in [69,113].

Definition 6. An attributed context-free grammar is a sextuple

G = (ΣN ,ΣT , P, S,A,R), where

ΣN ,ΣT , P, S are defined as for a context-free grammar,

A =
⋃

X∈ΣAX is a finite set of attributes,

R =
⋃

p∈P R
(p) is a finite set of semantic rules. □

Since values can be ascribed to attributes according to semantic rules related to

productions (syntactic rules) of a grammar, the corresponding syntax analyzer can

compute certain measures during succeeding steps of parsing. These measures can

be, then, used for the evaluation of distances between analyzed sequences, which is

very useful in case of operations performed for biological sequences mentioned above.
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3.2. Tree-based models

As we have mentioned in Section 2, tree languages are used mainly for the analy-

sis and prediction of higher-level structures. It includes: the prediction of protein

secondary structures, the prediction of RNA secondary structures (cf. Fig. 1 (b) in

Section 2), and the prediction of tertiary interactions over pseudoknots for RNA sec-

ondary structures. In this section, the most popular tree-based models used in these

tasks are presented subsequently, i.e.: (stochastic) tree grammars, Tree Adjoining

Grammars, and Algebraic Dynamic Programming.

We introduce the notions concerning tree structures [18,69,73,84] as in [60].

Let U = (N+, •, λ), where N+ is the set of positive integers, • is the operation, λ

is the identity, be the free monoid. The partial ordering ≤ on U is defined as follows.

x ≤ y, x, y ∈ U iff there exists z ∈ U such that x • z = y. x and y are incomparable

iff x ≰ y and y ≰ x. U is called the Gorn universal tree domain.

A subset D ⊂ U is a tree domain iff for all x, y ∈ U and all i, j ∈ N+ the following

conditions are satisfied: (1) if x • y ∈ D then x ∈ D and (2) if x • j ∈ D and i ≤ j

then x • i ∈ D. The root is represented by λ. The leaves are the nodes which are

maximal with respect to ≤. A tree node which is not a leaf is called an internal node.

Let N be the set of nonnegative integers, A be a finite subset of N. A ranked

alphabet is a pair (Σ, r), where Σ is a finite alphabet, r : Σ→ 2A is a rank multi-valued

mapping. n ∈ r(a), a ∈ Σ is called the rank of a. We denote Σn = {a : n ∈ r(a)}.
A tree over (Σ, r) is a function t : D → Σ, D is a tree domain, such that: (1)

t(x) ∈ Σ0, if x is a leaf in D and (2) t(x) ∈ Σn, where n = max{i ∈ N+ : x • i ∈ D},
otherwise. The domain of a tree t is denoted by Dt. The set of all finite trees over Σ

is denoted by TΣ. A node is a pair (x, a) ∈ D × Σ. The frontier of t is the sequence

of its leaves.

Let t ∈ TΣ and x ∈ Dt. The subtree of t at x, denoted t/x, is defined by the

function which is the set of pairs {(y, a) : (x • y, a) ∈ t, a ∈ Σ}.
Now, we can introduce the definition of (expansive) stochastic regular tree gram-

mars [16,68,69,132].

Definition 7. An (expansive) stochastic regular tree grammar over (ΣT , r) is a quin-

tuple

G = (ΣN ,ΣT , r, P, S), where

ΣN is a finite set of nonterminal symbols,

(ΣT , r) is a ranked alphabet of terminal symbols, ΣN ∩ ΣT = ∅, Σ = ΣN ∪ ΣT ,

P is a set of productions of the form:

Ai
pij−→ tij , i = 1, . . . , n, j = 1, . . . ,mi,

in which Ai ∈ ΣN , tij ∈ TΣ is a tree which either consists of a terminal root and its

nonterminal children or consists of a terminal node, pij is the probability related to

the application of the production such that

0 < pij ≤ 1 ,

mi∑
j=1

pij = 1 ,
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S ∈ ΣN is the start symbol. □

Figure 4. (a) Replacement of a subtree and (b) derivation in stochastic regular tree grammar.

The definition of standard (non-stochastic) tree grammar can be obtained by

removing the probabilities in Definition 7.

A derivation step is introduced as a kind of more general operation of subtree

replacement. The replacement of the subtree α/x by t, denoted α[x← t], is the tree

defined by the function which is the set of pairs (see Fig. 4 (a))

{(y, α(y)) : y ∈ Dα , x is not a prefix of y} ∪ {(x • z, t(z)) : z ∈ Dt} .
Let α, β ∈ TΣ and x ∈ Dα. α directly derives β with the probability pij in

G, denoted α
pij=⇒ β, iff there exists A pij−→ t ∈ P such that α(x) = A and β =

α[x ← t] (see Fig. 4 (b)). The stochastic tree language generated by the stochastic

tree grammar G is defined in an analogous way as the stochastic string language (cf.

Definition 2).

Now, we present Tree Adjoining Grammars (TAGs) [100–102] according to [60].

Definition 8. A Tree Adjoining Grammar, TAG, is a quintuple

G = (ΣN ,ΣT , S, I, A), where

ΣN is a finite set of nonterminal symbols,

ΣT is a finite set of terminal symbols, ΣN ∩ ΣT = ∅, Σ = ΣN ∪ ΣT ,

S ∈ ΣN is the initial symbol,

I is a finite set of initial trees such that for any α ∈ I the internal nodes of α are

labelled by nonterminals and leaves are labeled by terminals or nonterminals; nonter-

minal leaves of α are marked for the substitution operation with a special symbol ↓,
A is a finite set of auxiliary trees such that for any β ∈ A the internal nodes of β
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are labelled by nonterminals and leaves are labeled by terminals or nonterminals; non-

terminal leaves of β are marked for substitution except for one node, called the foot

node; the foot node has the same label as the root of β; the foot node is marked for

the adjoining operation with a special symbol ∗. □

Figure 5. (a) Substitution in TAG. (b) Adjoining in TAG.

The scheme of substitution operation is shown in Fig. 5 (a). A nonterminal leaf

marked ↓ of a derived tree is replaced with some tree s derived from an initial tree.

The replaced node should have the same label as the root of s.

The scheme of adjoining operation is shown in Fig. 5 (b). An auxiliary tree β is

inserted into an internal node having the address x of a derived tree t. The node of t

having the address x should have the same label as the root of β. The subtree t/x is

attached to the foot node of β which is marked with ∗.
Let θ, γ ∈ TΣ. θ directly derives γ in G, denoted θ =⇒

G
γ, iff either γ = θ[x, β],

x ∈ Dθ, β ∈ A or γ results from the application of a substitution operation to θ.

The reflexive and transitive closure of the relation =⇒
G

is denoted with *=⇒
G

.

If θ *=⇒
G

γ, then γ is called a derived tree of θ. The set of all derived trees of θ is

denoted with DT (θ).

Now, we can define the tree language generated by TAG G.

Definition 9. The tree language generated by TAG G is the set

T (G) = {γ ∈ TΣ : γ ∈ DT (θ), θ ∈ I, θ(λ) = S, and Y (γ) ∈ Σ∗
T }. □
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At the end of this section, we present the novel efficient approach of Algebraic

Dynamic Programming, (ADP) [?, 75, 78–80,166] which has been developed in bioin-

formatics. This approach is based on the (well-known in computer science) paradigm

of dynamic programming which is a generic model of the constructing of efficient al-

gorithms for complex problems which, by definition, involve the searching of a space

of exponential size (that is inefficient computationally). The paradigm consists in

breaking a complex problem into simpler subproblems recursively (in case these sub-

problems are shared) which allows one to search the space in polynomial time [12].

Dynamic programming algorithms are widely used in bioinformatics, including: opti-

mal global alignment, local alignment, repeated matching, overlap matching, etc. [43].

Algebraic Dynamic Programming is a systematic methodology of the constructing

of dynamic programming algorithms. Two main phases are defined in the methodol-

ogy: the recognition phase and the evaluation phase.

During the recognition phase a yield grammar is used. The concept of yield has

been introduced for Tree Adjoining Grammars, presented above. Let us introduce

this concept according to [60].

Let us define the yield mapping Y : TΣ −→ Σ∗
T,0 in the following way.

(1) If a ∈ ΣT,0 then Y (a) = a.

(2) If a ∈ ΣT,n , k > 0 and t1, t2, . . . , tn ∈ TΣ then

Y (a(t1t2 . . . tn)) = Y (t1) · Y (t2) · . . . · Y (tn)) ,

where · is the concatenation operation.

Thus, yield mapping delivers the sequence of the labels of the frontier nodes (i.e.

the leaves), writing them from left to right.

For tree grammars we can define the tree language generated by them, as it has

been made by Definition 9 for Tree Adjoining Grammars. On the other hand, we can

also define the string language generated by them in the following way.

Definition 10. The string language generated by TAG G is the set

L(G) = {v : v = Y (γ), γ ∈ T (G)}. □

In this case the strings defined by the terminal labels of the frontiers of the

derived trees are treated as the words of this (string) language. Then, we say that

G is the yield grammar. In fact, Tree Adjoining Grammars have been introduced in

syntactic pattern recognition for generating enhanced context-free (string) grammars

that has been discussed in the previous section. The search space of the problem

considered is described by the yield grammar.

During the evaluation phase, the so-called evaluation Σ-algebra (an interpreta-

tion, as it is understood in algebraic semantics) is used to comprise the aspects relevant

to the objective assumed, independently of the description of the search space by the

yield grammar. This way the dynamic programming algorithms can be developed on

a more abstract level than in the standard dynamic programming approach. Alge-

braic Dynamic Programming methodology has been successfully used, among others,

for sequence alignment and RNA folding.
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3.3. Graph-based models

Graph grammars are the strongest generative formalism in syntactic pattern recog-

nition [60, 69, 145], because every kind of relation among the elements of a structure

can be defined. Due to their big generative power, graph grammars have been used

for such complex problems in bioinformatics as, e.g.: modeling RNA tertiary struc-

ture motifs, modeling RNA folding, modeling protein structures, genetic regulation,

analyzing metabolic networks.

There are many classes of graph grammars [50]. In this subsection we present

three classes which, on one hand, are classic in the theory of graph grammars and,

on the other hand, are applied in bioinformatics. They include: Node Label Con-

trolled (NLC) graph grammars, Neighborhood-Controlled Embedding (NCE) graph

grammars, and algebraic (DPO) graph transformation systems.

As we have discussed in Section 3.1, the application of a certain class of a genera-

tive grammar is conditioned by the computational efficiency of the corresponding type

of a syntax analyzer. In case of graph grammars this problem is especially crucial,

because the research into the efficiency of graph parsing revealed a hard membership

problem, PSPACE-complete or NP-complete, for graph grammars [20, 95, 181, 195].

(The reasons for the intractability of this problem were identified in [57, 60]). Fortu-

nately, for the graph grammars of the Node Label Controlled (NLC) class (edNLC

graph grammars), efficient, O(n2), top-down (ETPL(k)) and bottom-up (ETPR(k))

syntax analyzers [53–55, 59, 60] as well as an efficient inference algorithm [58] have

been defined. In result ETPL(k)/ETPR(k) subclasses of NLC grammars could have

been applied, among others, for scene analysis [53, 55], CAD/CAM integration [56],

Polish Sign Language recognition [65]. The error-correcting ETPL(k) syntax analyzer

and its attributed version have been used for the recognition of vague/variant pat-

terns [54,64]. Stochastic ETPL(k) grammars were applied for manufacturing quality

control [60], and attributed programmed ETPL(k) grammars - for process monitoring

and control [63].

Let us introduce the notions concerning this class of graph grammars according

to [94,95,97].

A directed node- and edge-labeled graph, EDG graph, over Σ and Γ is a quintuple

H = (V,E,Σ,Γ, ϕ), where V is a finite, non-empty set of nodes, Σ is a finite, non-

empty set of node labels, Γ is a finite, non-empty set of edge labels, E is a set of edges

of the form (v, γ, w), in which v, w ∈ V, γ ∈ Γ, and ϕ : V → Σ is a node-labeling

function.

The family of the EDG graphs over Σ and Γ is denoted by EDGΣ,Γ. The

components V,E, ϕ of a graph H are sometimes denoted with VH , EH , ϕH .

Let A = (VA, EA,Σ,Γ, ϕA), B = (VB , EB ,Σ,Γ, ϕB) and C = (VC , EC ,Σ, Γ, ϕC)

be EDG graphs. An isomorphism from A onto B is a bijective function h from VA
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onto VB such that

ϕB ◦ h = ϕA and EB = {(h(v), γ, h(w)) : (v, γ, w) ∈ EA}.

We say that A is isomorphic to B, and denote this with A ∼= B.

Definition 11. An edge-labeled directed Node Label Controlled, edNLC, graph gram-

mar is a quintuple

G = (Σ,ΣT ,Γ, P, Z), where

Σ is a finite, non-empty set of node labels,

ΣT ⊆ Σ is a set of terminal node labels,

Γ is a finite, non-empty set of edge labels,

P is a finite set of productions of the form (l,D,C), in which

l ∈ Σ \ ΣT , D ∈ EDGΣ,Γ,

C : Γ× {in, out} → 2Σ×Σ×Γ×{in,out} is the embedding transformation,

Z ∈ EDGΣ,Γ is the start graph called the axiom. □

We have presented definitions for languages which consist of directed node- and

edge-labeled graphs. If we use undirected node- and edge-labeled graphs, we denote

the family of such graphs by EGΣ,Γ and the class of the corresponding graph grammars

by eNLC. If we use undirected node-labeled graphs, we denote the family of such

graphs by GΣ and the class of the corresponding graph grammars by NLC. In both

cases, the corresponding definitions are just simplified with relation to the definitions

of EDG graphs and edNLC grammars. (The same holds for definitions presented

below.)

A direct derivational step in edNLC graph grammars is defined as follows.

Definition 12. Let G = (Σ,ΣT ,Γ, P, Z) be an edNLC graph grammar.

Let H,H ∈ EDGΣ,Γ. Then H directly derives H in G, denoted by H =⇒
G

H, if there

exists a node v ∈ VH and a production (l,D,C) in P such that the following holds.

(a) l = ϕH(v).

(b) There exists an isomorphism from H onto the graph X in EDGΣ,Γ con-

structed as follows. Let D be a graph isomorphic to D such that VH ∩ VD = ∅ and let

h be an isomorphism from D onto D. Then

X = (VX , EX ,Σ,Γ, ϕX), where

VX = (VH \ {v}) ∪ VD ,

ϕX(y) =

{
ϕH(y), if y ∈ VH \ {v},
ϕD(y), if y ∈ VD ,

EX = (EH \ {(n, γ,m) : n = v or m = v}) ∪
∪ {(n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH such that

(ϕX(n), ϕX(m), γ, out) ∈ C(λ, in)} ∪
∪ {(m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (m,λ, v) ∈ EH such that

(ϕX(n), ϕX(m), γ, in) ∈ C(λ, in)} ∪
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∪ {(n, γ,m) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH such that

(ϕX(n), ϕX(m), γ, out) ∈ C(λ, out)} ∪
∪ {(m, γ, n) : n ∈ VD ,m ∈ VX\D and there exists an edge (v, λ,m) ∈ EH such that

(ϕX(n), ϕX(m), γ, in) ∈ C(λ, out)}. □

Figure 6. (a) The start graph Z of the edNLC grammar G, (b) a production of G and (c)

the derived graph h.

Since the definition of a derivation step for edNLC graph grammar is a little

bit complicated, let us consider the following example. The start graph Z which a

production is to be applied for, is shown in Fig. 6 (a).

The left- and right-hand sides of a production to be applied are shown in Fig. 6

(b). The embedding transformation of the production is defined in the following way.

(i) C(ω, out) = {(r,X, ψ, in)},
(ii) C(π, in) = {(d, t, π, in)}.
A derived graph h (the result of applying the production to the start graph Z) is

shown in Fig. 6 (c).

The derivation step has two phases. During the first phase, the node labeled

with Y of the graph Z is removed, and the graph of the right-hand side replaces

the removed node. The transformed graph obtained by removing the node and its

adjacent edges is called the rest graph. During the second phase, the embedding

transformation is applied to connect some nodes of the right-hand side graph with

the rest graph. The item (i) is interpreted as follows.

1. Each edge labeled with ω and going out from the node corresponding to the

left-hand side of a production, i.e. Y , has to be replaced by

2. the edge:

(a) which connects the node of the graph of the right-hand side of the production

and labeled with r with the node of the rest graph and labeled with X,

(b) is labeled with ψ,

(c) and comes in to the node r.

One can easily notice that the item (ii) just preserves the edge labeled with π.

(Indirect) derivations in the edNLC graph grammarG and the language generated

by G are defined in an analogous way as for Chomsky (standard) grammars.

The class of Neighborhood-Controlled Embedding (NCE) graph grammars [96] is

the extension (and enhancement) of the class of NLC graph grammars. The left-hand
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side of a production can be a graph (not only a nonterminal symbol). The embedding

transformation uses node identifiers (not node labels) which allows us to distinguish

various nodes having the same label.

Figure 7. (a) The scheme of DPO graph transformation and (b) its example.

Algebraic graph transformation systems - double pushout model (DPO) - were

introduced in [51,52]. Let us present the notions of: a production and a direct graph

transformation in the DPO model according to [49].

A production in DPO is a triple p = (L,K,R), where L is the left-hand side graph

of p, R is the right-hand side graph of p, K is used for defining the gluing conditions.

The scheme of a DPO graph transformation is shown in Fig. 7 (a). Let G be

a graph which is to be transformed as the result of the application of a production

p = (L,K,R). Let L \K denote the part of G which is to be removed from as the

result of the application of p, R \ K denote the part of G which is to be added to.

A direct graph transformation with p = (L,K,R) is performed in the following two

steps.

(1) A match m of L in G is found such that m is structure-preserving. Then, all the

nodes and edges which are matched with L \ K are removed from G. (Let us note
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that m should satisfy a gluing condition, i.e. the gluing of L \K and D equals to G.)

This step is depicted schematically in the part (1) of in Fig. 7 (a).)

(2) The graph D is glued with R \K in order to obtain the derived graph H, as it is

depicted schematically in the part (2) of in Fig. 7 (a). The graph K is used for gluing

the nodes and edges which has been newly created into D. (It allows us to define the

gluing points at which the right-hand side graph R is embedded into D.)

The example of the DPO graph transformation is shown in Fig. 7 (b).

Both an indirect graph transformation and the graph language defined by a DPO

algebraic graph transformation system are defined in an analogous way as for graph

grammars introduced above.

4. Applications of syntactic pattern recognition models in

bioinformatics

The survey of the applications of syntactic pattern recognition methods in bioinfor-

matics is presented in this section. Due to the presentation of string-based models,

tree-based models and graph-based models in subsections: 3.1, 3.2 and 3.3 of the

previous section, we can just refer to these models during the survey of their appli-

cations below in subsections: 4.1, 4.2 and 4.3, respectively. The summary of these

applications is included in Subsection 4.4.

4.1. Applications of string-based models

In the area of bioinformatics, syntactic pattern recognition methods were applied

firstly for chromosome analysis. The research team conducted by R.S. Ledley con-

structed the FIDAC system for scanning the chromosome photomicrographs for kary-

otype analysis in the 1960s [82,120,121]. The problem of biological images was studied

by R.A. Kirsch [109]. K. S. Fu with collaborators led research into the analysis of pho-

tomicrographs of chromosomes in the 1970s. Precedence parsing [122] and stochastic

context-free programmed grammars [70,92] were applied. In [192] the error-correcting

recognition system was applied. The direct parsing model was presented in [189].

Research into the use of formal languages, grammars and automata in molecular

biology and genetics was led in the 1980s and early 1990s [19,22,40,88,168,169]. tRNA

modeling was performed with the help of stochastic context-free grammars (CFGs)

[162]. For the parsing of DNA sequences, string variable grammars (an extension

of definite clause grammars) were used in [170]. Syntactic pattern recognition-based

methods were applied for the identification of regulatory sites in [159]. Stochastic

CFGs were used for the modeling of RNA pseudoknot structures in [23]. Multiple

sequence alignment was performed with the help of multi-tape S-attribute grammars

in [123]. The inference of strictly locally testable languages for DNA sequence analysis

was presented in [204].

In the area of gene expression and regulation, generative grammars have been

used since 1989 [32–34]. Finite-state automata (and transducers) for applications in
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this area were presented in [22] and HMMs - in [208]. Context-sensitive grammars

were applied for describing biological binding operators to model gene regulation

in [13]. Modeling gene expression and regulation based on the operon model of Jacob

and Monod with the help of finite-state automata was presented in [108]. Attributed

context-free grammars were used for testing relationships between DNA sequences

and phenotypes in [29]. The identification of the promoter regions with the help of

context-free grammars was presented in [36].

Small subunit ribosomal RNA multiple alignments were constructed with the

help of stochastic CFGs in [24]. The studies into the issue of predicting RNA sec-

ondary structures containing pseudoknots resulted in the proof of NP-completeness

of this problem [133]. A polynomial time syntax analyzer for augmented CFGs gener-

ating pseudoknotted structures was constructed in [157]. An ncRNA gene detection

was made with the help of pair stochastic CFGs in [158]. Basic gene grammars were

defined for processing DNA sequences in [124]. The model of grammatical induc-

tion for the recognition of human neuropeptide precursors was defined in [141]. A

pairwise RNA structure comparison was made with stochastic CFGs in [89]. Par-

allel communicating grammars were constructed for modeling RNA pseudoknotted

structures in [28]. The extraction of protein interaction information was made with

the help of context-free grammars in [190]. An RNA secondary structure prediction

with the help of stochastic CFGs was studied in [5, 31, 38, 41, 110, 111]. Dependency

grammars were used for the analysis of protein-protein interactions in [164]. Link

grammars and they parsing were applied for the extraction of protein interaction in-

formation in [176]. The induction of even linear grammars was applied for predicting

transmembrane domains in proteins in [147]. The prediction of RNA-RNA interac-

tion was made with stochastic multiple CFGs in [105, 107, 175]. The studies of RNA

pseudoknotted secondary structures with the help of multiple context-free grammars

were presented in [48, 143, 155]. The analysis of protein sequences was performed

with the help of stochastic CFGs in [44, 45]. The use of inference of regular gram-

mars for larger-than-gene structures was discussed in [193]. Multi-dimensional (based

on linear and context-free) grammars were used for DNA-protein alignment in [178].

A grammatical inference method was constructed for classification of amyloidogenic

hexapeptides in [200].

Hidden Markov models (HMMs) are one of the most popular syntactic pattern

recognition formal tools which are applied in bioinformatics [47,66]. HMMs were ap-

plied for gene/sequence prediction and modeling [26,27,103,117,126,140,142,154,188],

sequence alignment [10, 144], protein secondary structure prediction [119, 202], base

calling [128, 177], modeling sequencing errors [131], predicting transmembrane pro-

tein topology [116, 212], predicting and discriminating beta-barrel outer membrane

proteins [6–8], RNA folding and alignment [86], ncRNA identification [180, 209],

ncRNA annotation [21, 199], ncRNA structural alignment [206] and identification

of protein domains [74, 191]. Novel models based on HMMs were defined in

bioinformatics. The most popular ones include: profile hidden Markov models

[3,15,46,87,90,98,104,115,148,150,183,184,186,187,201] which are used for represent-
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ing and analyzing sequence profiles and pair hidden Markov models [39,43,112,144,198]

which are applied for finding sequence alignments by emitting two (aligned) strings.

Generalized hidden Markov models which emit a string at a state, were applied for

gene prediction in [118, 134, 154]. Previously emitted substrings are used for de-

termining the probabilities of future states in context-sensitive hidden Markov mod-

els [2, 206], which allows one to represent correlations between subsequences. (Stan-

dard) HMMs are combined with with continuous Markov chains to define evolutionary

hidden Markov models [146] used to represent the evolution of biological sequences.

Profile HMMs were applied for a viral discovery from metagenomic data in [4].

Fundamental studies into the use of syntactic pattern recognition in bioinfor-

matics and comprehensive synthetics overview were presented in seminal monographs

and papers. The most important include [171–173]. The applications of HMMs in

bioinformatics were summarized in [83,205] and the use of formal lingustics tools can

be found in [9,35,43,149,165]. The problem of inferencing stochastic grammars from

biological sequences was studied in [161]. The research into the applying of Natural

Language Processing for genomics was presented in [203]. The studies into the possi-

ble existence of protein grammar which generates folding patterns in protein domains

were presented in [151]. The application of computational linguistics for biopolymer

structure studies was considered in [37].

4.2. Applications of tree-based models

Stochastic tree grammars were used for the prediction of protein secondary structures

in [1,135] and for the prediction of RNA/protein tertiary structures in [38]. Tree gram-

mars were applied for the modeling of multiple biomolecular structures in [210, 211],

for the computation of exact RNA shape probabilities in [93], for RNA analysis [129]

and for RNA pseudoknot comparison in [152]. The mining of human-viral infection

patterns was performed with the help of regular tree grammars in [182]. Rectangle

tree grammars were used for predicting RNA secondary structures in [127].

RNA structure prediction with the help of Tree Adjoining Grammars (TAGs)

was presented in [196]. TAGs were used for pseudoknot identification in [174]. The

generating of RNA secondary structure including pseudoknots with the help of ex-

tended simple linear Tree Adjoining Grammars (ESL-TAG) was presented in [106].

This class of TAGs was used to construct an algorithm for tertiary interactions over

pseudoknots for the predicting of RNA secondary structures in [91]. Pair stochastic

Tree Adjoining Grammars (PSTAG) were used for a pseudoknot RNA structure pre-

diction in [139]. The grammatical representation of macromolecular structures with

the help of Tree Adjoining Grammars and related formalisms was proposed in [30].

Algebraic Dynamic Programming (ADP), based on tree grammars, was firstly

used for RNA folding [75]. Its applications include: RNA folding [137], aligning

recombinant DNA sequences [77], pairwise sequence comparison [76], RNA structure

prediction and analysis [80] and the alignment of bio-structure tree representations

[14,81].
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4.3. Applications of graph-based models

The induction (inference) of node label controlled (NLC) graph grammars was ap-

plied for analyzing protein sequence data in [99]. The modeling of protein struc-

tures with the help of neighborhood-controlled embedding (eNCE) graph grammars

was presented in [197]. Algebraic (DPO) graph transformation systems were used

for modeling RNA folding in [136]. These systems were also applied for analyzing

metabolic networks in [179] and for modeling RNA tertiary structure motifs [185].

String-regulated rewriting graph grammars were used for genetic regulation in [130].

The use of an inference algorithm for k-testable graph languages in order to analyze

hairpin RNA molecules data sets was presented in [72].

4.4. Summary of applications

A summary of applications of syntactic pattern recognition models in bioinformatics

described in the previous subsections is presented in Table 1.

Table 1
The summary of applications of syntactic pattern recognition models in bioinformatics

(in chronological order)

Model type Models References

String-based

models

Regular grammars,

stochastic context-free

grammars, programmed

context-free grammars,

multiple context-free

grammars, context-sensitive

grammars, attributed

grammars, finite-state

automata, hidden Markov

models, precedence parsing,

CYK parsing, algebraic

dynamic programming

[120], [121], [82], [109], [70], [122], [192],

[22], [189], [88], [32–34], [168–173], [40],

[115, 117], [162], [19], [23], [118], [13],

[123], [159], [46, 47], [104], [204], [110],

[24], [133], [154], [157, 158], [108], [116],

[124], [141], [89], [144], [151], [203], [3],

[28], [111], [112], [131], [146], [190], [6–8],

[26,27], [41], [201], [39], [103], [134], [161],

[183], [31], [105, 107], [142], [198], [148],

[186,187], [199], [209], [15], [21], [37], [66],

[86], [128], [164], [176], [184], [202], [147],

[206], [29], [44], [180], [205], [2], [90], [98],

[212], [193], [5], [143], [177], [191], [36],

[45], [38], [74], [178], [4], [35], [155], [200],

[119], [140], [188], [208], [149], [126], [48],

[165]

Tree-based

models

(Stochastic) regular tree

grammars, Tree Adjoining

Grammars, algebraic

dynamic programming

[135], [1], [196], [75], [77], [76], [78], [79],

[80], [106], [139], [30], [174], [93], [127],

[210, 211], [91], [38], [81], [166], [182],

[14], [129], [152], [137]

Graph-based

models

NLC graph grammars, NCE

graph grammars, algebraic

(DPO) graph transformation

systems, string-regulated

rewriting graph grammars,

k-testable graph languages

[99], [185], [130], [136], [72], [179], [197]
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5. Conclusions

In Section 3 we have presented the basic formal tools of syntactic pattern recognition

(SPR) which are used in bioinformatics. As one could see in Section 4, SPR mod-

els and methods, namely various classes of generative grammars, syntax analyzers

of many types and a lot of language inference (induction) algorithms have been suc-

cessfully used in bioinformatics. Indeed, the popularity of these methods resulting in

plenty of applications in this research area is amazing. At the same time, bioinformat-

ics is an interesting and challenging research area for computer scientists developing

novel syntactic pattern recognition models for real-world applications.
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[53] Flasiński M.: Parsing of edNLC-graph grammars for scene analysis, Pattern

Recognition, vol. 21, pp. 623–629, 1988.
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