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Abstract Interpretation of cognitive performance is a paramount pursuit in learning

achievements. Cognitive abilities, encompassing attention, memory, decision-

making, and language comprehension, are recognized on individual’s capacity

to navigate in diverse cognitive tasks. In the academic domain, optimal cog-

nitive functioning is essential for effective learning, information retention, and

problem-solving. Proficiency in cognitive skills is directly linked to academic

success and intellectual development, providing the necessary cognitive tools

for processing, and synthesizing complex information. Therefore, this study ex-

plores the correlation between event-related potential (ERP) sub-components

(P300, N170, N400) to assess the intricacies of cognitive performance. A reg-

ularized approach utilizing Spearman’s Rank Correlation Coefficient and Eu-

clidean Distance is employed. Positive correlations reveal consistent relation-

ships among P300, N170, and N400 ranks across ERP waveforms, indicat-

ing similar response patterns. Negative correlations denote inverse relation-

ships. Moreover, the theoretical framework focuses on the digital filtering,

ensemble averaging, and baseline correction from data contrast discrimination

tasks. Findings indicate positive correlations, suggesting higher ERP ampli-

tudes correspond to superior cognitive performance. This tailored and inte-

grated methodology, indicating the correlation between ERP sub-components,

contributes to the broader field of neuroscience and informatics, potentially in-

forming cognitive enhancement strategies in education and bio-medical analysis.
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1. Introduction

Cognitive performance, encompassing processes such as attention, memory, percep-

tion, and decision-making, is a fundamental aspect of human functioning. The brain’s

ability to process and interpret information is vital for problem-solving, learning, and

decision-making, impacting academic and professional success, daily functioning, and

overall quality of life. High cognitive performance facilitates efficient information

processing, effective decision-making, rapid learning, and adaptation to changing en-

vironments. Conversely, cognitive impairment can hinder independence, social inter-

actions, and daily tasks, particularly as individuals age. Research in assessing and

enhancing cognitive performance has grown in importance, aiming to optimize brain

function and promote cognitive well-being.

Event-Related Potentials (ERPs) are specific patterns of brain activity measured

through electroencephalography (EEG) in response to sensory, cognitive, or motor

events. These brain responses are time-locked to stimuli, allowing researchers to

examine the timing and stages of cognitive processing. ERPs are characterized by

distinct wave components such as P1, N1, P2, N2, P3 (P300), N400, and LPC, each

associated with different cognitive functions like sensory processing, attention, mem-

ory, and language comprehension. The amplitude and latency of these components

provide insights into the intensity and speed of cognitive processes. ERPs are es-

sential for understanding cognitive performance as they reflect the brain’s real-time

processing of information. Variations in P300 amplitude and latency are key indica-

tors of learning performance across tasks involving visual or auditory discrimination,

semantic processing, and spatial navigation. Changes in coherence patterns reflect al-

terations in neural synchronization and information transfer, key elements in learning

and memory processes.

The P300 is a positive peak in the ERP waveform occurring approximately 300

milliseconds after stimulus presentation, associated with cognitive processes like atten-

tion, memory, and decision-making. Detecting the P300 typically involves measuring

brain activity during experiments where subjects are exposed to various stimuli, often

using the oddball paradigm. P300 is widely studied concerning learning performance

and is associated with working memory capacity and attentional control.

The N170 is an ERP sub-component elicited by faces and other visual stimuli,

essential in face processing and social cognition. Its amplitude and latency can be

influenced by factors like familiarity, attention, and expertise, indicating its sensitiv-

ity to changes in perceptual and cognitive processing during learning. Similarly, the

N400, elicited by auditory stimuli, is associated with early auditory processing, in-

cluding sound localization and discrimination. The N400’s amplitude and latency can

be modulated by factors such as stimulus complexity, attention, and expertise, sug-

gesting its sensitivity to changes in auditory processing during learning. The N170

amplitude is linked to face recognition ability, and the N400 amplitude relates to

semantic processing and language comprehension.
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The correlations between these ERP sub-components and learning performance

offer potential biomarkers for assessing cognitive abilities in educational and training

contexts. By measuring the amplitudes and latencies of these ERP sub-components,

researchers can investigate the cognitive processes involved in different tasks and stim-

uli. Clinically, ERPs are used to diagnose and monitor neurological and psychiatric

conditions, providing valuable data on the effectiveness of cognitive training and re-

habilitation programs. ERP sub-components like P300, N170, and N400 serve as

valuable biomarkers for cognitive performance assessment and enable a deeper explo-

ration of the neural mechanisms underpinning cognitive processes. Analyzing ERP

components provides detailed insights into neural mechanisms underlying cognitive

functions, making ERPs a powerful tool in both research and clinical contexts.

This study aims to investigate the correlations between P300, N170, and N400,

which are ERPs associated with various aspects of cognitive performance. By ana-

lyzing the amplitudes and latencies of these ERP sub-components, the study seeks

to provide insights into the neural mechanisms underlying cognitive processes re-

lated to attention, memory, perception, and decision-making. The goal is to utilize

these ERP sub-components as biomarkers to assess cognitive abilities and enhance

educational and training strategies, contributing to a better understanding of cog-

nitive performance and its potential applications in optimizing brain function and

cognitive well-being.

2. Literature review

Identifying human cognitive performance can be done through various methods, in-

cluding classification by general process involved, regional brain functions, and hier-

archical structure based on the complexity of operations. ERP measures the brain’s

response to specific stimuli [17, 18]. This allows investigators to explore a nearly in-

finite number of domains where it is of interest to understand the relative timing of

neural events in a non-invasive method [11].

In ERP, the stimulus is presented multiple times to the participant, and the

responses are measured. ERPs are created by averaging responses to standard and

deviant stimuli separately. ERPs measure voltage changes in the brain that occur

following the onset of specific stimuli or cues and provide a measure of the timing

of the brain’s communication or timing of information processing. It is extensively

used in neuroscience, cognitive psychology, cognitive science, and psychophysiological

research to measure cognitive performance. The amplitude, latency, and topography

of the resulting positive and negative deflections are taken to index the underlying

mental operations. ERPs provide a continuous measure of processing between a stim-

ulus and a response, allowing us to determine which stage(s) are being affected by

a specific experimental manipulation.

Additionally, ERP records brain processes on a millisecond scale, capturing neu-

ral activity related to both sensory and cognitive processes. It is used in experimental
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settings and is involved in language research [36]. ERP can be associated with sen-

sory encoding, inhibitory responses, updating working memory, and highlighting the

temporal unfolding of neural activity associated with different cognitive aspects of

language comprehension and production [23]. Moreover, studies have estimated the

test-retest reliability of ERP waves, with interclass correlation coefficients between

first and second recordings being around 0.8 for amplitude and around 0.9 for the

latency of the P3 NOGO waves, indicating the reliability of ERPs as measures of

brain functioning [6, 24].

Classification by general process involves memory, attention, language, and ex-

ecutive functioning, while regional brain functions are derived from lesion studies

and include the frontal lobe, temporal lobe, parietal lobe, hippocampus, or other

structures [20, 21]. Cognitive ability domains can also be conceptualized in several

ways, such as a hierarchical structure based on the complexity of operations, with

basic sensory and perceptional operations being the least complex and reasoning and

problem-solving being the most complex [14]. Tests of general cognitive ability are

used to identify human cognitive performance. The most used cognitive tests usually

take 15 minutes or less and include repeating lists of words or spelling words back-

ward [31]. These tests are good predictors of job performance and training success for

a wide variety of jobs. Processing speed is the strongest predictor of overall cognitive

performance and is correlated with impairments in everyday functioning, with cod-

ing tasks showing the most significant impairment in schizophrenia. However, there

are inconsistencies in the clinical and research literature, especially in broad domains

that may include multiple component processes [39]. In addition, there is an issue

with the intrinsic validity of cognitive domains in populations other than those with

specific regional brain damage [4]. Contemporary circuit-based conceptions focus on

the activation and interaction of these circuits. Current methods such as smartphone

assessment and remote cognitive assessment are more convenient for longitudinal as-

sessment and can measure preclinical AD-related changes in long-term associative

memory across varied memory retention intervals [35].

Moreover, there are a variety of methods available for measuring cognitive per-

formance, including gamified assessment, smartphone assessment, and assessments

of GPS data and gait characteristics [35]. Smartphone assessment is useful in mea-

suring preclinical AD-related changes in long-term associative memory but requires

retention intervals of at least 3 days to be sufficiently sensitive to differences in re-

call and recognition performance in adults without diagnosed cognitive impairment.

Gamified assessment has been found to reduce testing anxiety and increase task en-

gagement and enjoyment without affecting performance and can provide better con-

struct and ecological validity than simple laboratory-based tasks thanks to a more

realistic context [26]. Assessment of GPS data and gait characteristics measured

through wearable accelerometers have also been found to differentiate among demen-

tia subtypes with moderate accuracy, while recent developments allow neuropathology

associated with potential cognitive decline to be accurately detected from peripheral
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blood samples [28]. However, the accuracy of these methods can be affected by var-

ious factors such as device type, operating system, and Wi-Fi connection, as well as

subtle differences in task design and the lack of interoperability between cognitive

functioning metrics.

In conclusion, while there are a variety of methods available for measuring cogni-

tive performance, researchers need to carefully consider the strengths and limitations

of each method to accurately assess cognitive function. The application of correlation

and distance analysis holds great promise in advancing our understanding of cognitive

processes associated with various tasks. By adopting these methods, this study can

gain valuable insights into the limitations of traditional techniques such as ERP. The

existing methods highlighted the strengths and limitations of existing methods, em-

phasizing the need for alternative approaches to studying cognitive performance. In

this study, Spearman’s rank correlation coefficient offers a statistical measure to ex-

amine the relationships between cognitive performance measures and other variables,

providing valuable insights into cognitive processes. On the other hand, Euclidean

distance analysis enables the assessment of similarity or dissimilarity in cognitive pro-

files, paving the way for future research and the development of diagnostic tools for

cognitive impairments. By leveraging these methods, this study can further our un-

derstanding of cognitive processes, improve diagnostic accuracy, and enhance clinical

interventions for individuals with cognitive impairments.

In summary, the research aims to employ correlation and distance analysis tech-

niques to gain a deeper understanding of cognitive performance, bypassing the lim-

itations of traditional methods like ERP. The study aims to explore relationships

between cognitive performance measures and other variables using Spearman’s rank

correlation coefficient. Additionally, it seeks to assess the similarity or dissimilarity in

cognitive profiles through Euclidean Distance analysis. Nevertheless, these methods

can contribute to a more comprehensive understanding of cognitive processes and have

the potential to enhance diagnostic accuracy and clinical interventions for individuals

with cognitive impairments.

3. Theoretical framework

3.1. Cognitive performance and related ERP sub-components

Cognitive performance denotes an individual’s capacity to process and utilize in-

formation, encompassing a spectrum of skills, including attention, memory, decision-

making, problem-solving, and language comprehension effectively and efficiently. The

evaluation of cognitive performance involves a diverse array of methods, spanning

behavioral assessments, neuroimaging modalities, and electrophysiological measures,

event-related potentials (ERPs) [37]. ERPs provide insights into the brain’s electrical

activity concerning specific events or stimuli. Among these ERPs, the P300, N170,

and N400 stand as prominent sub-components frequently employed in the investiga-

tion of cognitive performance.
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The P300, or P3 wave, manifests as a positive ERP sub-component, surfacing

approximately 300 ms post-presentation of a target stimulus [29]. It is conventionally

associated with cognitive processes such as attention, working memory, and decision-

making. The amplitude and latency of the P300 serve as indicators of cognitive

performance, with larger and faster P300 responses signifying enhanced cognitive

processing and performance.

In contrast, the N170, a negative ERP sub-component, emerges approximately

170 ms following the introduction of a visual stimulus, typically a facial image [16]. Its

primary function lies in the processing of facial features and the recognition of faces.

The amplitude and latency of the N170 serve as markers of cognitive performance,

with larger and more rapid N170 responses signaling improved face processing and

recognition.

Conversely, the N400, another negative ERP sub-component, materializes around

400 ms after the presentation of a semantic stimulus, such as a word or sentence [34].

The N400 is intimately connected with semantic processing, encapsulating language

comprehension, and memory retrieval. Here again, the amplitude and latency of the

N400 offer insights into cognitive performance, with larger and more rapid N400 re-

sponses indicative of superior semantic processing and comprehension. Each ERP

waveform boasts unique characteristics and is influenced by specific factors, as out-

lined in Table 1.

Table 1
Main Characteristics of P300, N170, and N400 Waveforms [19,23,30]

ERP

waveforms

Latency(ms) Amplitude

range (µV )

Characteristics and factors

P300 250–350 5–25 Reflects attention, cognitive pro-

cessing, and task relevance. Am-

plitude can vary based on stimu-

lus characteristics, attentional de-

mands, and individual differences.

N170 120–200 2–10 Typically observed in response to

visual stimuli, particularly faces.

Amplitude can be influenced by fa-

cial familiarity, emotional expres-

sion, and attentional focus. .

N400 300–500 2–8 Occurs in response to semantically

meaningful stimuli. Amplitude is

affected by semantic processing,

stimulus congruity, and contextual

integration.

Table 1 offers amplitude ranges as general reference points, drawing from typical

observations in prior [19, 23, 30]. However, it is essential to acknowledge that actual

amplitude values may exhibit variation contingent upon the specific experimental
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protocols, recording configurations, and individual dissimilarities. These amplitude

ranges, therefore, serve as an initial framework for comprehending these ERPs and

the multifaceted determinants affecting the magnitudes. The P300, N170, and N400

ERP sub-components stand as invaluable instruments in elucidating the cognitive

processes and performance of individuals within cognitive neuroscience and clinical

investigations. Figure 1 shows a simulated ERP waveform with the N170, P300 and

N400 sub-components.

Figure 1. Simulated ERP Waveform with N170, P300 and N400 Sub-Components

3.2. Correlation coefficient

Spearman’s rank correlation coefficient is a statistical measure assessing the strength

of the relationship between two variables [15]. In the context of human cognitive per-

formance and ERP, it determines the association between the amplitude or latency

of ERP sub-components (e.g., P300, N170, N400) and measures of cognitive perfor-

mance, such as reaction time or accuracy. Spearman’s rank correlation coefficient

relies on rank order rather than specific numerical values. The coefficient ranges from

−1 (perfect negative correlation) to +1 (perfect positive correlation), with 0 indicating

no correlation. It also reveals the proportion of variability in one variable explained by

another. In a study measuring P300 component amplitude in an attention-demanding

task and participants’ reaction times to target stimuli, Spearman’s rank correlation

coefficient assesses the association between P300 amplitude and reaction time. A pos-

itive coefficient suggests that as P300 amplitude increases, reaction time decreases,

signifying better cognitive performance. Therefore, Spearman’s rank correlation co-

efficient is a valuable statistical tool for examining the relationship between ERP

sub-components and cognitive performance in studies exploring the neural basis of

cognitive processes.



Ea
rly
bi
rd

8 Nyi Nyein Aung, Wanus Srimaharaj

3.3. Distance-based measurement

Euclidean Distance (ED) is a widely employed method in numerous academic disci-

plines, renowned for its versatility in quantifying the similarity or dissimilarity be-

tween data points [27]. Within the domain of cognitive neuroscience, particularly

in the analysis of Event-Related Potentials (ERPs) and cognitive performance, ED

emerges as a crucial metric [7]. This distance metric, computed by measuring the

straight-line separation between two points in a multidimensional space, allows for

a nuanced comparison of ERP waveforms, where each data point signifies the wave-

form’s amplitude at a specific time point [7]. The application of ED in the analysis

of cognitive performance and ERP sub-components is supported by various empirical

studies. For instance, [22] demonstrate the effectiveness of different distance met-

rics, including Euclidean, in comparing ERP waveforms, while [30] provides insights

into the relationship between ERP components and cognitive processes. Smaller ED

between ERP waveforms obtained from individuals engaged in cognitive tasks often

indicates greater similarity in cognitive performance [7]. Conversely, larger distances

suggest greater dissimilarity, implying differences in cognitive processing. Moreover,

changes in ED pre and post-cognitive interventions offer valuable insights into the

impact of these interventions on cognitive performance. For instance, studies by [12]

explore the effects of cognitive interventions on ERP components, shedding light on

their potential to modulate cognitive processes. Through the meticulous analysis of

ERP waveforms using ED, researchers can unravel the intricate neural mechanisms

underlying cognitive processes and their susceptibility to various modulations, in-

cluding cognitive interventions and individual differences [7]. Thus, ED stands as

an indispensable tool in exploring the complex relationship between cognitive per-

formance and ERP sub-components, supported by empirical evidence from cognitive

neuroscience research.

4. Methodology

The research framework, as illustrated in Figure 2, comprises three primary stages:

1) data collection, 2) data preprocessing, and 3) data analysis. During the data

preprocessing phase, digital filtering, ensemble averaging techniques, and baseline

correction are implemented to extract the ERP sub-components from the raw data.

Subsequently, in the data analysis stage, the Correlation and Distance-Based ap-

proach is employed on the preprocessed ERP waveforms, and the resultant findings

are subjected to rigorous statistical testing for significance.

4.1. Data collection

In conventional psychological studies, data collection typically necessitates the in-

volvement of expert psychologists to ensure adherence to ethical standards. However,

this study adopted an open-source event-related potential (ERP) dataset obtained

through contrast discrimination tasks [1].
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Figure 2. Framework for ERP Analysis Using Correlation and Distance-Based Approach

This innovative approach allowed the investigation to proceed without the di-

rect involvement of specialized psychological experts. The raw brain signal data was

acquired using a WaveGuard cap and an ANT Neuroscan EEG system, which incorpo-

rated 64 electrodes. While the 10/20 system generally refers to a method for electrode

placement, it does not inherently consist of 64 electrodes. Instead, the electrodes were

arranged in a manner consistent with the 10/20 system principles, ensuring compre-

hensive coverage of the scalp. The AFz electrode served as the ground reference.

Data acquisition was performed at a sampling rate of 1 kHz utilizing the ASALab

software. To pinpoint the P300, N170, and N400 components, electrode placements

following the 10/20 system were adopted, covering prefrontal (Fp), frontal (F), tem-

poral (T), parietal (P), occipital (O), and central (C) regions. Additionally, midline

sagittal plane electrodes denoted as ’Z’ (zero), including FpZ, Fz, Cz, and Oz, were

designated as grounding or referencing points. These electrode selections were metic-

ulously made to encompass an extensive array of brain regions relevant to the P300,

N170, and N400 components. Channels Pz, P3, P4, and Cz were specifically chosen to

effectively capture neural activity linked to the P300 component, known to manifest

in these regions [8]. The N170 component, primarily associated with face processing,

was targeted using channels Oz, O1, O2, P7, and P8, selected for their significance

in the occipital and posterior temporal regions [2]. For the detection of the N400

component, channels Cz and CPz were included, as these central and centroparietal
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regions are commonly associated with substantial N400 activity [23]. During the ex-

perimental procedure, participants were seated in a dimly lit room 57 cm from the

display screen. Responses were collected through a mouse interface to indicate ob-

servations. The task was divided into five blocks, each comprising an 8-minute trial

period with 200 trials per target contrast. Trigger events with infrequent occurrences

during human brain signal detection were excluded from the analysis in this study.

To summarize, meticulous selection of electrode placements and the experimental de-

sign were devised to concurrently capture the P300, N170, and N400 components.

These specific channels were chosen considering the distinct requirements for iden-

tifying and investigating these components, all within the broader framework of the

electrode placement system employed in this study. It is important to note that the

experiment excluded the last 25% of the trials (50 trials) due to unusually high noise

levels caused by external factors.

4.2. Data preprocessng

4.2.1. EEG processing

In the raw brain signal recordings, a significant presence of noise is a common oc-

currence, primarily stemming from participant movements and voltage dispersion

between different electrodes during data collection. This noise can be effectively elim-

inated from the raw Brain Signals to enhance the extraction of ERP sub-components.

One approach employed for noise reduction is the use of finite impulse response (FIR)

filters, which are digital filters capable of removing noise that contaminates the raw

Brain Signals across a wide frequency range. FIR filters exhibit linearity in the phase,

ensuring enhanced stability during the filtering process, a feature that distinguishes

them from infinite impulse response (IIR) filters. Typically, a high-pass filter with

a cutoff frequency of 0.1 Hz and a low-pass filter with a cutoff frequency of 30 Hz is

applied to brain signal recordings to attain an optimal noise-to-signal ratio. These

filters effectively eliminate signals with frequencies falling below or exceeding the

specified cutoff frequencies, optimizing the overall signal quality. The convolution

equation representing the operation of a finite impulse response filter is presented in

Equation (1). This mathematical representation illustrates the process by which FIR

filters contribute to the refinement of brain signal data, enhancing the extraction of

ERP sub-components.

y(n) =
N−1∑
k=0

bk · x(n− k) (1)

The elements of the equation can be defined as follows: y(n) represents the output

signal, x(n) corresponds to the input signal, N signifies the filter order, and bk denotes

the value of the impulse response at the instance denoted as k. These components

collectively illustrate the fundamental parameters and variables within the equation,

outlining the key factors contributing to the signal processing process.
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4.2.2. High-pass filter

High-pass filters are frequently employed in EEG and ERP studies to enhance the

statistical power of data. They serve the purpose of mitigating variations in voltage,

including skin potentials and gradual voltage offsets [25]. This type of electric filter

functions by allowing signals possessing frequencies above the cut-off frequency to

pass through while simultaneously attenuating signals with frequencies below this

threshold. Notably, high-pass filters exhibit reduced susceptibility to the edge artifacts

issue, which can lead to inaccuracies in the calculation of filtered values, especially

after the EEG recording. As a result, high-pass filters are commonly administered to

the EEG recording before the EEG Epoching step, during which specific time windows

are extracted from the continuous single-trial EEG data. This strategic application

of high-pass filters serves to optimize data quality and reliability in EEG and ERP

investigations. A high-pass filter with a cutoff frequency of 0.1 Hz and an attenuation

of 12 dB/octave is applied to the raw Brain Signal in this study.

4.2.3. Ensemble averaging

Ensemble averaging stands as a widely adopted technique in ERP analysis, primarily

serving the purpose of noise reduction and the amplification of ERP sub-component

signals. At its core, this approach involves the precise alignment and subsequent

averaging of multiple ERP waveforms that are time-locked to a specific event of inter-

est. To effectively isolate and extract components such as the P300, N170, and N400

from event-related potential (ERP) waveforms through ensemble averaging, a tech-

nique known as time-domain averaging is typically employed. This method entails

the meticulous alignment of multiple trials associated with the same type of stimulus,

followed by the collective averaging. This process is instrumental in elevating the

signal-to-noise ratio and facilitating the extraction of the intended ERP component.

The general equation for ensemble averaging can be succinctly expressed as follows:

ERPavg(t) =
1

n

n∑
i=1

ERPi(t) (2)

Where ERPavg(t) is the averaged ERP waveform at time point t. n is the total

number of trials. ERPi(t) represents the ERP waveform of the i-th trial at time

point t. By repeating this process for all time points, a filtered ERP waveform that

highlights the component of interest while reducing random variability can be ob-

tained.

4.2.4. Low-pass filter

In contrast to high-pass filters, low-pass filters operate inversely, attenuating brain

signals characterized by frequencies lower than the specified cut-off frequency while al-

lowing signals exhibiting frequencies higher than the cut-off frequency to pass through.

In the context of ERP studies, low-pass filters find application in the suppression of

noise artifacts, including the noise line and EMG interference within the data [25]. It is
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pertinent to employ a low-pass filter when working with averaged EEG or ERP wave-

forms, particularly due to the reduced impact of edge artifacts on shorter waveforms.

A low-pass filter with a cut-off frequency of 30Hz and 24db attenuation is applied

to the ERP waveform. For optimal filtering performance and the enhancement of

spectral resolution, a finite impulse response (FIR) low-pass filter, implemented with

a Hamming window as the window design method, is often utilized [10]. The Ham-

ming window, an extension of the Hann window, presents distinctive characteristics,

including a heightened side lobe and a more gradual fall-off rate, as compared to the

Hann window, as illustrated in Equation (3).

w(n) = 0.54− 0.46 cos
(
2π

n

N

)
(3)

Where w(n) represents the window coefficient, N corresponds to the total number

of signals encompassed within the window frame, and n denotes the input signal.

These elements collectively indicate the fundamental parameters and variables within

the equation, outlining in the signal processing process.

4.2.5. Baseline correction

ERP signals exhibit a time-resolved nature, which implies the presence of temporal

drifts or vertical offsets in the electrical signals. These variations in voltage levels

over time often result from a range of factors, both internal and external, such as

fluctuations in skin hydration and static changes in electrode conditions during the

data collection process. To mitigate the influence of these offsets and drifts on the

integrity of ERP signals, a fundamental preprocessing technique known as baseline

correction is employed in ERP analysis. The core principle behind baseline correction

involves the removal of these temporal drifts and offsets from the recorded brain

signals. This is achieved by computing the average voltage level during the pre-

stimulus interval and subsequently subtracting this value from every data point within

the ERP waveform. The application of baseline correction serves the purpose of

minimizing variance in the data while effectively segregating the stimulus-induced

brain activity from any preexisting neural activity that may have been present before

the onset of the stimulus.

4.3. Correlation and distance-based approach

The Spearman’s Rank Correlation Coefficient, in conjunction with Euclidean Dis-

tance, has been employed to formulate a framework for defining cognitive performance

with a focus on the P300, N170, and N400 ERP sub-components. Spearman’s Rank

Correlation Coefficient serves to quantify the strength and direction of the monotonic

relationships that exist between various variables, while Euclidean Distance is utilized

to measure the degree of dissimilarity or similarity between vectors representing these

ERP sub-components. This proposed approach offers a comprehensive evaluation

of cognitive performance based on the P300, N170, and N400 sub-components, en-

compassing both the interrelationships and the spatial separation. By incorporating
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both the correlations between these sub-components and the spatial distances, this

integrated approach yields a more holistic assessment of cognitive performance. The

correlation between the amplitudes of the target waveforms can be computed using

Equation (4).

ρ = 1− 6 ·
∑

d2

n · (n2 − 1)
(4)

Where ρ is the correlation coefficient. d is the difference in ranks of corresponding

observations. n is the number of observations (e.g., trials or participants). To provide

a more specific representation of the variables in the equation for the sum of squared

differences between the ranks of amplitudes, in this case, the variables can be denoted

as follows:

• P300ranks: The ranks of P300 across the EEG channels

• N170ranks: The ranks of N170 across the EEG channels

• N400ranks: The ranks of N400 across the EEG channels

To calculate the sum of squared differences between the ranks of these variables, the

equation is modified as Equation (5).∑
d2 =

∑
(P300ranks −N170ranks)

2 +
∑

(P300ranks −N400ranks)
2

+
∑

(N170ranks −N400ranks)
2

(5)

The actual computation of the sum of squared differences would involve sub-

stituting the specific ranks of the variables into the equation and performing the

summation. As the specific measure of learning performance is used, the experimen-

tal design will impact the interpretation of the correlation results. The strength of

the correlation in the correlation coefficient (ρ) ranges from −1 to 1. A correlation

coefficient of 1 indicates a perfect positive correlation, while a coefficient of −1 in-

dicates a perfect negative correlation and a coefficient of 0 indicates no correlation.

The significance of the correlation can be determined using a hypothesis test with a

p-value threshold (e.g., p ¡ 0.05). Euclidean distance is applied to measure the correla-

tion between ERP waveforms and human learning performance. The basic idea is to

calculate the Euclidean distance between two targeted ERP sub-components and use

it as a measure of the similarity. A smaller Euclidean distance indicates a stronger

correlation between the two waveforms as in Equation (6).

d(x, y) =
√∑

(xi − yi)2 (6)

Where d(x, y) is the Euclidean Distance between two waveforms x and y. xi and

yi are the amplitude values of the i-th sample in waveforms x and y, respectively.

The Euclidean Distance can be computed as the square root of the sum of squared

differences between the amplitudes of corresponding components across EEG channels

as follows:
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• P300i: P300 amplitudes across EEG channels

• N170i: N170 amplitudes across EEG channels

• N400i: N400 amplitudes across EEG channels

The specific computation of Euclidean Distance for the amplitude of the ERP sub-

components is presented as Equation (7).

dERP =
√∑

(P300i −N170i)2 +
∑

(P300i −N400i)2 +
∑

(N170i −N400i)2

(7)

Where dERP denotes the squared differences between the targeted ERP sub-

components. The P300i, N170i, and N400i are the amplitudes at index i in the

respective vectors. Assigning weights to each component of ERP waveforms (P300,

N170, N400) based on the importance or relevance is subjective and can vary de-

pending on the specific research question or context. However, this study provides a

general approach for assigning weights W1, W2, and W3 to each component (P300,

N170, N400) based on the importance or relevance (normalized to a scale of 0 to 1):

• W1 = 0.4

• W2 = 0.3

• W3 = 0.3

These weighted ERP waveforms reflect the assigned weights based on the im-

portant criteria by multiplying the Spearman’s Rank Correlation Coefficient by the

Euclidean Distance, weighted by the respective weights for each component. The

weighted correlation value is calculated for each component using the following Equa-

tions:

P300wcc = ρ · dERP ·W1 (8)

N170wcc = ρ · dERP ·W2 (9)

N400wcc = ρ · dERP ·W3 (10)

Where WCC denotes the Weighted Correlation Component for each component.

The weighted correlation values are summed up across the ERP sub-components to

obtain an overall measure of cognitive performance. The proposed methods combined

approach considers the correlation between ERP sub-components (P300, N170, N400)

using Spearman’s Rank Correlation Coefficient and incorporates the spatial distance

using Euclidean Distance. A positive correlation suggests that there is a consistent

relationship between the ranks of the P300, N170, and N400 components across the

brain channels. Higher ranks in one component are associated with higher ranks in

the other components, indicating a similar pattern of response across the channels.

The magnitude of the positive correlation coefficient would indicate the strength of

the relationship. If the correlation coefficient is close to 1, it suggests a strong positive

correlation, meaning that the ranks of the components are closely related and tend to

increase or decrease together. If the correlation co-efficient is closer to 0, it indicates

a weaker positive correlation. In contrast, the negative correlation coefficient suggests
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that there is a negative relationship between the ranks of the P300, N170, and N400

components across the Brain channels. This means that ranks in one component tend

to be associated with lower ranks in the other components. By applying appropri-

ate weights, this method can capture the relative importance of each component in

determining cognitive performance.

5. Experimental results

The ERP sub-components need to be extracted from raw Brain Signals and prepro-

cessed equally before being applied to the Correlation and Distance-Based approach.

Initially, a FIR high-pass filter with a cutoff frequency of 0.1 Hz and an attenuation

of 12 dB/octave is applied to the continuous single trial Brain signal data. This high-

pass filter effectively eliminates noise, optimizing the quality of the Brain Signal data.

The effects of the filter on an EEG channel are shown in Figure 3, highlighting the

successful noise reduction.

Figure 3. High-Pass Filtered Brain Signal Data of Pz Channel

The high-pass filtered raw Brain Signal is divided into 150 separate trials, each

with a 2,400 milliseconds split into 1000 pre-stimulus and 1400 post stimulus duration.

These trials are then averaged into a single trial using time-domain averaging to

extract the Event-Related Potential signals. This process enhances the signal-to-

noise ratio and ensures that the extracted ERP sub-components are representative of

cognitive activity.

Table 2 presents the numerical values corresponding to the data points of the

Event-Related Potential (ERP) recorded across the Electroencephalogram (EEG)

channels within a representative sample following the time domain averaging. Sub-

sequently, a low-pass filter with a cut-off frequency of 30 Hz and 24 db attenuation

is applied to the ERP signal across the Brain channels, reducing the impact of noise

and further refining the signal quality.
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Table 2
Filtered ERP Data

Time (ms)
Amplitude µV

Pz P3 P4 P7 P8 Oz O1 O2 Cz CPz

1 95.7 74.4 68.5 -123.7 50.9 42.9 -100.1 77.4 69.8 92.4

2 95.6 74.4 68.4 -123.5 51.0 42.8 -100.2 77.2 69.8 92.4

3 95.6 74.5 68.3 -123.1 51.1 42.6 -100.3 77.0 69.8 92.4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2399 95.8 74.5 68.5 -123.6 51.3 43.2 -100.1 77.5 69.9 92.3

2400 95.9 74.4 68.6 -123.4 51.4 43.3 -100.0 77.6 69.8 92.3

In addition, a baseline correction will be enacted on the data, wherein a pre-

stimulus duration of 1,000 milliseconds will be employed. This correction involves

computing the average of the first 1,000 data points in the ERP signal and subtracting

this computed value from the entire waveform within each EEG channel. Afterward,

75 evenly distributed data points from the time windows of 250 – 350 ms, 120 – 200

ms, and 300 – 500 ms are extracted to take the amplitudes of the P300, N170, and

N400 ERP sub-components respectively, as specified in Table 1. Only 75 data points

are selected because it is the greatest number evenly spaced of data points extractable

from each ERP sub-component time window. Figure 4 shows the extracted amplitudes

of the ERP sub-components from the 10 channels of a sample, indicating the presence

of the components of interest.
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Figure 4. Preprocessed ERP Waveforms Across the Brain Channels
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Finally, ensemble averaging is applied to the extracted amplitudes of the ERP

sub-components by taking the average of the amplitudes of the 10 channels at each

time point. This ensemble averaging provides a consolidated representation of the

ERP components and enhances the statistical significance of the analysis. The result

is shown in Table 3, indicating the averaged amplitudes of the P300, N170, and N400

ERP sub-components.

Table 3
Ensemble-Averaged Amplitudes of P300, N170 and N400 ERP Sub-Components

P300 N170 N400

Time (ms) Activity (µV ) Time (ms) Activity (µV ) Time (ms) Activity (µV )

250 0.3930 120 0.7729 300 0.6764

251 0.4056 121 0.7933 303 0.6525

253 0.4242 122 0.8110 305 0.6328

. . . . . . . . . . . . . . . . . .

349 0.2277 199 0.2098 497 -0.0548

350 0.1969 120 0.2156 500 -0.0368

To analyze the Event-Related Potential components with the Correlation and

Distance-Based approach, the 75 data points of each ERP sub-component are rounded

to 2 decimal places, standardizing the data for further analysis. The data points

are sorted in ascending order and given a rank based on the values compared to

other data points. This ranking process is essential for quantifying the relationships

between ERP components. The ranked amplitudes are then used to calculate the sum

of squared rank differences between the P300, N170, and N400 ERP sub-components.

The resulting sum of squared rank differences, along with the number of ranked data

points, is employed to compute Spearman’s Rank Correlation Coefficient, utilizing

Equation (7).

Figure 5. Amplitudes of P300, N170, and N400 ERP Sub-Components
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For the distance-based part of the method, the square root of another sum of

squared differences between the sorted amplitudes of the ERP sub-components is

taken to obtain the Euclidean Distance between the amplitudes of the ERP sub-

components. This Euclidean Distance measurement provides insight into the spatial

relationships between the ERP components. Finally, the weighted correlation coef-

ficients of each ERP sub-component are calculated by multiplying the Spearman’s

Rank correlation coefficient with the Euclidean Distance and the assigned weights for

the respective ERP sub-component, following Equations (8), (9), and (10) from Sec-

tion 4.3. This weighted correlation approach allows for a comprehensive assessment

of the contributions of each ERP sub-component to cognitive performance. The de-

scriptive statistics of the results obtained from the ERP analysis using the Correlation

and Distance-Based approach are shown in Table 4.

Table 4
Results of the Correlation Coefficient and Distance-Based Approach

Variable Mean
Standard

Deviation
Variance

Confidence

Interval

Correlation Coefficient (ρ) 0.99 0.01 0.0002 0.01

Euclidean Distance (dERP) 5.50 2.70 7.30 0.93

P300wcc 2.18 1.08 1.16 0.77

N170wcc 1.63 0.80 0.65 0.58

N400wcc 1.63 0.81 0.65 0.58

The examination of correlation coefficients displayed in Table 4 unveils pro-

found insights into the interrelationships among the P300, N170, and N400 ERP

sub-components and the impact on cognitive performance. A Spearman’s rank corre-

lation coefficient of 0.99, accompanied by a low standard deviation of 0.01, accentuates

a positive correlation between the amplitudes of these sub-components and cognitive

performance. This implies that greater amplitudes of the P300, N170, and N400

sub-components are indicative of enhanced cognitive performance.

Complementing this insight, the analysis of Euclidean Distance data corroborates

the observation. With a mean value of 5.50, a standard deviation of 2.70, and a Con-

fidence Interval of 0.93, the relatively diminutive Euclidean Distance underscores the

spatial proximity of data points associated with these ERP sub-components. This

suggests that the P300, N170, and N400 sub-components share analogous predictive

capacities concerning cognitive performance. The combined evidence from correlation

coefficients and Euclidean Distance data underscores a positive relationship among

these sub-components, establishing a strong case that higher amplitudes are reflective

of superior cognitive performance.

Moreover, the results of paired two-sample t-tests serve to fortify these findings.

The p-value of 0.0001 derived from the comparison of P300wcc with the ERP sub-

components underscores the statistical preeminence of P300wcc in cognitive perfor-
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mance assessment, thus underscoring P300 as the most reliable ERP sub-component

for this purpose. Conversely, the p-value of 0.999 arising from the paired two-sample

t-test contrasting N170wcc and N400wcc implies the absence of a substantial distinc-

tion in the efficacy in the evaluation of cognitive performance, reaffirming the equal

importance of the N170 and N400 ERP sub-components within this context.

In summation, the systematic scrutiny of correlation coefficients, Euclidean Dis-

tance data, and paired t-tests collectively reiterates the positive correlation between

the P300, N170, and N400 ERP sub-components and cognitive performance. This

evidence strongly suggests that elevated amplitudes within these sub-components cor-

relate with superior cognitive performance. These findings offer invaluable guidance

in prioritizing the P300 ERP sub-component in cognitive performance research, while

simultaneously acknowledging the equal significance of N170 and N400 in the evalu-

ation of cognitive performance.

6. Discussion and conclusion

6.1. Discussion

The identification of cognitive performance in humans using event-related potentials

(ERP) has been a topic of extensive research for several decades. In recent years, sig-

nificant advancements have been made in the field, particularly in the development

of advanced techniques and methods that enable more precise and dependable mea-

surements of cognitive performance through ERP analysis. Our experimental results

align with these advancements by demonstrating the effectiveness of filtering and pre-

processing techniques in enhancing the quality of Brain signal data, which is crucial

for accurate ERP analysis.

A notable recent development involves the application of machine learning al-

gorithms to classify ERP waveforms. Deep learning and support vector machines,

among other machine learning algorithms, have shown promising outcomes when

utilized to analyze ERP data. These algorithms possess the capability to identify

patterns and correlations within ERP data that may not be readily discernible to

human observers [32] [3]. This is particularly relevant to our study, where the Corre-

lation and Distance-Based approach was used to analyze the ERP sub-components,

providing a robust method for assessing cognitive performance.

Moreover, recent progress in ERP research involves the utilization of high-density

EEG systems, which enable the recording of ERP data with superior spatial resolu-

tion. This advancement offers the potential to extract more detailed information

about the neural processes underlying cognitive performance [33], enhancing the sig-

nificance of our findings related to the P300, N170, and N400 sub-components. The

integration of multimodal imaging techniques, such as combining EEG with func-

tional magnetic resonance imaging (fMRI), has facilitated a more comprehensive un-

derstanding of the neural mechanisms associated with cognitive performance [5, 9],

further supporting the potential applications of our study.
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In addition to investigating cognitive performance, recent studies have focused

on utilizing ERP data to develop brain-computer interfaces (BCIs) for individuals

with disabilities [38]. The utilization of ERP data in the development of BCIs has

demonstrated encouraging results, enabling individuals with disabilities to control

devices such as prosthetic limbs and communication devices [13]. These advance-

ments highlight the broader implications of ERP research, extending beyond cogni-

tive performance assessment to practical applications that can significantly impact

individuals’ lives.

6.2. Conclusion

The correlation analysis conducted in this study has yielded valuable insights into the

associations between the P300, N170, and N400 event-related potential (ERP) sub-

components and cognitive performance. These ERP sub-components, which are linked

to various cognitive domains, have emerged as potential biomarkers for evaluating

cognitive abilities in educational and training settings. The strong positive correlation,

as indicated by Spearman’s rank correlation coefficient of 0.99 and a low standard

deviation of 0.01, underscores the relationship between the amplitudes of these sub-

components and cognitive performance.

The high-pass filtering, and time-domain averaging applied to the raw Brain

signal data effectively enhanced the signal-to-noise ratio, allowing for clear extraction

of ERP sub-components. The subsequent application of low-pass filtering and baseline

correction further refined the signal quality, enabling precise measurement of the

P300, N170, and N400 amplitudes. The Euclidean Distance analysis substantiates

the strong correlation observed, revealing a relatively small distance between the

ERP sub-components, which indicates similar predictive power regarding cognitive

performance.

The results of paired two-sample t-tests reinforce these findings. The p-value

of 0.0001 in the comparison between P300wcc and the N-group ERP sub-components

highlights the statistical superiority of P300wcc in assessing cognitive performance. In

contrast, the paired two-sample t-test between N170wcc and N400wcc, with a p-value

of 0.999, indicates no significant difference in their effectiveness in assessing cognitive

performance. This underscores the equal importance of the N170 and N400 ERP

sub-components in this specific context.

In summary, the study’s results demonstrate a positive correlation between the

P300, N170, and N400 ERP sub-components and cognitive performance, suggesting

that higher amplitudes of these sub-components are indicative of superior cognitive

performance. The study emphasizes the significance of the P300 sub-component while

also recognizing the necessity of N170 and N400 in the assessment of cognitive per-

formance. These findings offer valuable insights for future research endeavors and

practical applications in the field of cognitive performance assessment.
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6.3. Limitations and future works

There are several limitations to studies that aim to identify cognitive performance

using ERP. One of the main limitations is that the quality of the ERP signal is influ-

enced by various factors such as age and gender, mental state, and the type of EEG

equipment used for the participant. Additionally, the process of collecting and ana-

lyzing ERP data is time-consuming and requires significant expertise, which can limit

the practicality and scalability of the approach. Besides, ERP signals may be influ-

enced by other factors besides cognitive performance. For example, external stimuli

such as sounds or visual cues can trigger certain ERP sub-components, which may not

necessarily reflect cognitive performance. Moreover, different individuals may have

varying levels of baseline ERP activity, which can affect the interpretation of ERP

signals. Furthermore, there is a lack of consensus on the precise relationship between

ERP sub-components and cognitive performance. While some studies have reported

strong correlations between specific ERP sub-components and cognitive abilities, oth-

ers have reported weak or inconsistent relationships. The complex nature of cognitive

performance, which involves multiple cognitive processes and neural networks, makes

it difficult to identify specific ERP sub-components that can accurately predict cog-

nitive performance. Finally, there are ethical and privacy concerns related to the use

of ERP signals for cognitive assessment. The collection and analysis of brain activity

data may raise concerns about the confidentiality and privacy of the individual, as

well as potential discrimination based on cognitive ability. Despite these limitations,

the use of ERP signals for cognitive assessment shows promises and has the potential

to provide valuable insights into cognitive performance. Ongoing research is focused

on addressing these limitations and developing more accurate and reliable methods

for identifying cognitive performance using ERP signals.
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opments in Scalable Strategies for Detecting Early Markers of Cognitive Decline,

Translational Psychiatry, vol. 12(1), 473, 2022. doi: 10.1038/s41398-022-02237-w.

[36] Wlotko E.W., Lee C.L., Federmeier K.D.: Language of the Aging Brain:

Event-related Potential Studies of Comprehension in Older Adults, Language

and Linguistics Compass, vol. 4(8), pp. 623–638, 2010. doi: 10.1111/j.1749-

818X.2010.00224.x.

[37] Woodman G.F.: A Brief Introduction to the Use of Event-related Potentials

in Studies of Perception and Attention, Attention, Perception & Psychophysics,

vol. 72(8), pp. 2031–2046, 2010. doi: 10.3758/APP.72.8.2031.

[38] Yadav H., Maini S.: Electroencephalogram Based Brain-Computer Interface: Ap-

plications, Challenges, and Opportunities, Multimedia Tools and Applications,

pp. 47003–47047, 2023. doi: 10.1007/s11042-023-15653-x.
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