
Ea
rly
bi
rd

Computer Science • 24(4) 2023 https://doi.org/10.7494/csci.2023.24.4.6036

Kazimierz Michalik
 Lukasz Rauch

MESH COMPRESSION ALGORITHM
FOR GEOMETRICAL COORDINATES
IN COMPUTATIONAL MESHES

Abstract Application of advanced mesh based methods, including adaptive finite element

method, is impossible without theoretical elaboration and practical realization

of a model for organization and functionality of computational mesh. One of the

most basic mesh functionality is storing and providing geometrical coordinates

for vertices and other mesh entities. New algorithm for this task based on on-

the-fly recreation of coordinates was developed. Conducted tests are proving

that, for selected cases, it can be orders of magnitude faster than naive approach

or other similar algorithms.

Keywords mesh compression, finite element method, high performance computing,

computational efficiency

Citation Computer Science 24(4) 2023: 473–489

Copyright © 2023 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

473

https://doi.org/10.7494/csci.2023.24.4.6036
https://creativecommons.org/licenses/by/4.0/

Ea
rly
bi
rd

474 Kazimierz Michalik, Lukasz Rauch

1. Motivation

The research and analysis described so far in many papers shows that operator of get-

ting geometric coordinates for all vertices belonging to a certain finite element is very

important to the overall performance of the mesh management scheme. Assuming

that:

• E ∈ E is a single element belonging to set of all finite elements in computational

mesh M

• W(·) is an operator providing set of mesh vertices belonging to element E ∈ E
• Geo(·) is an operator providing geometrical coordinates for given vertices

One can define operator of getting geometric coordinates for all vertices belonging

to a certain finite element as:

Geo(W(E)) → {x1, y1, z1, ..., xn, yn, zn}, E ∈ E ∧ xi, yi, zi ∈ R, i ∈ N (1)

1. Although the operator itself is a rather simple and intuitive grid operator, the

high frequency fGeo(W(E)) of its occurrence in each of the cases involving geo-

metrical mesh simulations and low processing intensity AI of realization of this

operator makes it of fundamental importance for performance. Conclusions re-

sulting from the research the analysis of the literature incl. [4–6,8,9] allow us to

formulate the following observations:

2. The most desirable situation is when, for a given M mesh, using the P represen-

tation, you can define linear orders for (E ,⪯) and (W,⪯) vertices such as that:

AI(Geo(W(E))) → |E|
|W|

(2)

or at least

AI(Geo(W(E))) → 1 (3)

in practice, this means that each point coordinate downloaded to the processor’s

cache memory from the main memory was used for calculations at least once,

and preferably on average as many times as is the upper limit of the computa-

tional intensity AI for this mesh operator. At the same time, from the research

mentioned earlier, this coefficient assumed the value of AI(Geo(W(E))) → 0.1.

3. There is no algorithm for renumbering the elements and nodes of the computa-

tional mesh for arbitrarily selected M mesh, which allows it to iterate over the

nodes of the elements in a linear manner while maintaining the desired value of

mentioned AI characteristics. Also considered here are space-filling-curves and

their implementation in the form of Morton code [1, 3].

4. There are two types of vertices in computational meshes: edge and inner. It

can be noticed that for the meshes with stationary nodes (considered in this pa-

per), the outer (edge) nodes contain information about the area geometry, while

the inner ones do not, because they only define elements in the area surrounded

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 475

by the border. The position of the former is important for the definition of the

initial-boundary problem, but in practice it is obtained with a relatively low

accuracy (10−3 with respect to the mesh dimensions), which results from the

practical aspects of the way of mapping reality (technical drawing, photos, inac-

curacy in the production of tested elements) and significant limitations related

to the physics of modeled phenomena (thermal expansion, pressure influence,

etc.). The position of internal nodes affects the quality of the finite elements,

and thus the numerical accuracy (in particular the characteristic dimension h of

the finite element), but otherwise it is arbitrary and can be changed as long as

the quality of the elements is maintained (which is used e.g.: in r-adaptation) or

to reduce the coefficient h influencing the error of the solution (h-adaptation and

de-adaptation, r-adaptation).

5. Typically, the coordinates of points in irregular meshes are stored as floating-

point numbers, and the single or double precision decision depends on how the

degrees of freedom values are represented, so that arithmetic operations are per-

formed on the same numeric representation without overloading the processor

with type conversions. In fact, storing the position of points with an accuracy of

10−6 (single precision accuracy) or 10−15 (double precision accuracy) relative to

the actual mesh size for a given geometry is redundant.

6. The accuracy of the geometry description is based on the assumptions of the

applicability of the finite element method as the principle of physical continuity of

the modeled medium. From a geometric point of view, the significant distinction

of z points as low as one millionth in relation to the size of the studied medium

goes beyond this assumption and if the phenomenon requires such accuracy, it

also requires the use of multiscale modeling [7].

7. In an h-adaptive mesh, newly emerging vertices have coordinates that are com-

pletely dependent on the position of the vertex coordinates of the parent mesh

objects, which in practice means that the coordinates of each resulting vertex

can be expressed by some function whose arguments are parent vertices.

2. Mesh compression operator – formal description

Given is the M grid using the P representation for which are defined:

• Topological object identifier operator Guid(T)

• Vertex access operator W (E)

• Coordinate access operator Geo(V)

One can define a projection that assigns an arbitrarily selected number to the coor-

dinates of each point

C(·) : R3 → N+ (4)

what is used, among others in the definitions of space-filling curves. Then we can

define an inverse mapping to C(·):

C−1
M = D(·)M : N+ → R3 (5)

Ea
rly
bi
rd

476 Kazimierz Michalik, Lukasz Rauch

Since in the M mesh the set of points WM ⊂ R3 is defined and finite (nmax =

|{WM}|), we can write that for this mesh

CM (·) :WM → NM

C−1 = D(·) :NM → WM ,

where NM ⊂ N+ ∧ |NM | = nmax ∧maxNM = nmax

(6)

Then we can assume that as long as CM is the inverse relation to DM , this relation

is a bijection between two sets with the same size (cardinality):

∀w ∈ WM GuidM (w) = n ⇔ CM (Geo(w)) = n ⇔ DM (GuidM (w)) = Geo(w)

(7)

In this way, we have obtained a relation that, for a specific grid, projects a discrete

subset of a three-dimensional space into one-dimensional space and vice versa. Then it

can be seen that the dependencies 6 will also be satisfied for any other nmax satisfying

the condition

nmax ≥ |WM | (8)

Note also that for a specific M mesh, the set of WM geometric points is contained in

a small subset of the three-dimensional space GM which is the Cartesian product of

the intervals containing the coordinates of all M mesh points.

GM ⊂ R3 : ∀w ∈ WM Geo(w) ∈ GM (9)

Thus, it is possible to define a discrete subset of GD
M of the GM space, having at least

nmax points, which include all the coordinates of the vertices contained in the M grid:

GD
M ⊂ GM ⊂ R3 : |GD

M | ≥ |WM |
∧ ∀w ∈ WM Geo(w) ∈ GD

M

(10)

One can note, that in set GD
M minimal point can defined as GD

M ∋ gmin =

[minx,miny,minz] , as well as, maximal point asGD
M ∋ gmax = [maxx,maxy,maxz].

Using set GM ⊂ R3, within it we can define another discrete subset PM including

m ≥ nmax points such that:

PM ⊂ GD
M ⊂ GM ⊂ R3 :

|PM | = m, m ≫ nmax

∧ ∀p ∈ PM

p = [xp, yp, zp] = [minx + dx · ix,miny + dy · iy,minz + dz · iz]
where xp, yp, zp,minx,miny,minz, dx, dy, dz ∈ R

ix, iy, iz ∈ N
(11)

Note that m can be written as

m = mx ·my ·mz, m,mx,my,mz ∈ N+ ∧m ≥ mx,my,mz (12)

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 477

And then the values of the natural multipliers ix, iy, iz should be defined as

ix ∈ {0, ...,mx}
iy ∈ {0, ...,my}
iz ∈ {0, ...,mz}

(13)

A previously unknown value dx, dy, dz can be defined as:

dx, dy, dz ∈ R+

dx =(maxx −minx)/mx

dy =(maxy −miny)/my

dz =(maxz −minz)/mz

(14)

It is worth noting that for the limit values i0 = [0, 0, 0] andim = [mx,my,mz],

we obtain minimum and maximum elements for the set PM , which are also for the

set GD
M :

[x0, y0, z0] =[minx + dx · 0,miny + dy · 0,minz + dz · 0] = gmin

[xm, ym, zm] =[minx + dx ·mx,miny + dy ·my,minz + dz ·mz] = gmax

(15)

Having two discrete sets GD
M and PM defined in this way, we can define a re-

lationship that will assign to each element of the set GD
M certain element of the set

PM . Since |GD
M | >> |PM | there are many points in the set PM that can be assigned

to one point in the set GD
M . So, let’s consider two cases:

∃![ipx, ipy, ipz] :[gx, gy, gz] = [minx + dx · ipx,miny + dy · ipy,minz + dz · ipz]
where [gx, gy, gz] ∈ GD

M

where ipx, i
p
y, i

p
z ∈ N

(16)

So let us note that using (6), (7) and (11) for the M grid defining the GD
M coordinate

space and the discrete subset PM defined for it, we can define mapping:

∀w ∈ WM ∧ Geo(w) ∈ PM

GuidPM (w) = np

np = ipx · m

mx
+ ipy ·

m

my
+ ipz ·

m

mz

(17)

for which np is a linear combination, depending for a constant mesh only on the

ipx, i
p
y, i

p
z, because the expressions m

mx
, m
my

, m
mz

are invariant for each point in M .

Ea
rly
bi
rd

478 Kazimierz Michalik, Lukasz Rauch

Further the same as in (7):

∀w ∈ WM ∧ Geo(w) ∈ PM

CP
M (Geo(w)) = np = ipx · m

mx
+ ipy ·

m

my
+ ipz ·

m

mz

⇔
DM (GuidDM (w)) = Geo(w)

⇔
DP

M (ipx, i
p
y, i

p
z) = Geo(w)

(18)

For a point from the set GD
M , there is no exact equivalent in the set PM , so we

can calculate the distance from the point g ∈ GD
M to the nearest point p ∈ PM . Note

that from the definition of PM (11) it follows that the maximum distance between two

points in PM is
√
d2x + d2y + d2z , so since we know that g does not correspond to any

of the points, it means that it must be somewhere between them, so the maximum

distance of the g point from the p point is
√
d2x + d2y + d2z/2. Using the same reasoning

as in 16 - 18 we get:

∀w ∈ WM ∧ Geo(w) /∈ PM

CP
M (Geo(w)) = np = ipx · m

mx
+ ipy ·

m

my
+ ipz ·

m

mz

⇔
DM (GuidDM (w)) = Geo(w) + cerr

⇔
DP

M (ipx, i
p
y, i

p
z) = Geo(w) + cerr

where cerr ≤

√
d2x + d2y + d2z

2

oraz lim
m→inf

cerr = 0

(19)

As a result, for the M mesh having the set of WM points, we obtained the

operator CP
M assigning a natural number to each point of this mesh and the inverse

DP
M operator reproducing the coordinates of this point based on this number with

an accuracy of at least cerr. Both of these operators depend on 12 parameters, 9 of

which are common to all points in the mesh.

In particular, it can be assumed, for example, that - depending on the number of

points in the computational grid - discrete points in the PM space will be, for example:

m32 = 4, 294967296 · 109 (i.e. as many as can be distinguished , using an integer in

32-bit notation) or m64 = 18, 44674407 · 1018 (for 64 bit numbers, respectively). This

gives a number (on average) of 103 or 106 points in each direction. Which means that

regardless of the actual coordinates in space, we are able to map a point with an error

of at most c32err = 10−3

2 or c64err = 10−6

2 relative to the span of the computational mesh

in a given direction.

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 479

3. Mesh compression – algorithm

In practical application for the M mesh using CP
M , DP

M described formally in the

previous point, the following operators were implemented:

Geo(t), t ∈ {W} ∪ {K} ∪ {S} ∪ {E}
Guid(t), t ∈ {W} ∪ {K} ∪ {S} ∪ {E}

(20)

For which actions it is necessary to implement the following algorithms:

• Create database for compressed mesh representation M (algorithm 1). It cor-

responds to the definition of the boundary space of the discrete space of real

points GD
M and the calculation of all the coefficients necessary to perform the

compression of the coordinates.

• Compression of geometric coordinates (algorithm 2). Responsible for the imple-

mentation of the operator Guid(t) of theM grid using the operator CP
M (formulas

(18), (19)).

• Geometric coordinate decompression (algorithm 3). Contrary to the above, it

is responsible for the implementation of the Geo(t) operator of the M grid using

the DP
M operator.

Algorithm 1: Computing of compressed mesh representation coefficients
Data: N - number of points in the mesh,
W [N][3] – the array with the coordinates of the points
m - number of points in PM

Result: Mencoded[3][3] – an array with the parameters of the encoded mesh

min = max = W [1] // Determining the minimum and maximum point in PM ;
for n ≤ N do

for i ≤ 3 do
if W [n][i] ≤ min[i] then

min[i] = W [n][i]
end
else if W [n][i] ≥ max[i] then

max[i] = W [n][i]
end
++i ;

end
++n ;

end
span = [0, 0, 0] // Determination of base coefficients of the span of PM ;
nspan = 0 ;
mm = [0, 0, 0] ;
d = [0, 0, 0] ;
for i ≤ 3 do

span[i] = max[i] − min[i] ;
nspan = nspan + span[i] ;

end
for i ≤ 3 do

span[i] = span[i]/minimum(span) // Normalizing coefficients ;
mm[i] = m

nspan
span[i] // Determination of span factors ;

d[i] = span[i]/mm[i] // Determining basis vectors ;
++i ;

end
Mencoded[1] = min ;
Mencoded[2] = d ;
Mencoded[3] = mm ;

Ea
rly
bi
rd

480 Kazimierz Michalik, Lukasz Rauch

Algorithm 2: Mesh coordinates compression algorithm.

Data: N - number of points in the mesh,

W [N][3] - the array with the coordinates of the points

Mencoded[3][3] - an array with the parameters of the encoded mesh

Result: IDS[N] - an array with parameters of the encoded mesh

min = Mencoded[1] ;

d = Mencoded[2] ;

mm = Mencoded[3] ;

for n ≤ N do

IDS[n] = 0 ;

for i ≤ 3 do

IDS[n] = IDS[n] + (W [n][i]−min[i])/d[i] ∗mm[i] ;

++i ;

end

++n ;

end

Note: in practice, multiplication by the mm factor or its inversed value

requires a few more treatments related to the representation of numbers on

the selected processor, which are omitted here as a technical detail.

Algorithm 3: Mesh coordinates decompression algorithm.

Data: N - number of points in the mesh,

IDS[N] - the array with ids of the points

Mencoded[3][3] - an array with the parameters of the encoded mesh

Result: W [N][3] - an array with parameters of the encoded mesh

min = Mencoded[1] ;

d = Mencoded[2] ;

mm = Mencoded[3] ;

for n ≤ N do

W [n] = [0, 0, 0] ;

for i ≤ 3 do

W [n][i] = min[i] + d[i] ∗ (IDS[n]/mm[i]) ;

++i ;

end

++n ;

end

Note: in practice, multiplication by the mm factor or its inversed value

requires a few more treatments related to the representation of numbers on

the selected processor, which are omitted here as a technical detail.

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 481

4. Theoretical performance analysis

Consider the case in which we want to move from standard notation of points to the

discussed compressed notation. According to the proper mesh model both memory

and compute performance should be considered.

4.1. Memory requirements

In the classical representation, the vertex coordinates are usually stored as 3 double-

precision variables of 8B each, so for nvt, nvt · 24B memory is needed. At the same

time, assuming the simplest assumption that the mesh is tetrahedral, for each of

nel we must store nelvt = 4 vertex identifiers, each occupying 4B (assuming that

the identifier is a 32-bit number). Thus, moving from the classic explicit storage of

point coordinates to a compressed discrete representation, we change the memory

requirement for storing the mesh as shown in the table 1 and in the figure 1 for 32

and 64 bit identifiers respectively.

Table 1
Comparison of the memory requirement against the number of nel elements for an uncom-

pressed and compressed mesh. Where nvt – number of vertices in the mesh, nelvt – number

of vertices in a single mesh element.

Mesh Uncompressed Compressed

int32 (nvt · 24B) + (nel · nelvt · 4B) 48B + (nel · nelvt · 4B)

int64 (nvt · 24B) + (nel · nelvt · 8B) 48B + (nel · nelvt · 8B)

Figure 1. Comparison of memory requirements for uncompressed and compressed mesh.

Ea
rly
bi
rd

482 Kazimierz Michalik, Lukasz Rauch

4.2. Computational complexity

When analyzing the algorithms presented in 3, you can notice that the algorithms

1, 2 and 3 will be performed for each set of coordinates. So assuming the classical

notation of computational complexity O(·):
1. The computational complexity for the algorithm 1 for n points in the mesh re-

quires an average of 3n comparisons to be made once and additionally about 15

arithmetic operations, which results in a linear O(n) complexity. It follows that

the computing intensity AI → 1.

2. For the algorithm 2 , note that we can omit the initial assignments as they are

only for spelling clarity. In the main loop, run for each of n points, the operation

is performed three times, but it contains the dependency carried in the loop of the

Read-After-Write (RAW) and Write-After-Write (WAW) classes due to IDS[n],

so unfortunately there is no optimization here. Ultimately, this algorithm also

has a complexity of O(n) for n points. At the same time, it is worth noting that

the computational intensity in this case is also AI → 1.

3. The 3 algorithm is analogous to the algorithm 2 , so its computational complexity

is O(n) and its computational intensity is AI → 1.

Note that using the above compression method, we have defined a linear order

that satisfies the AI → 1 processing intensity condition.

5. Performance tests

Figures 2, 3 and 4 show graphs showing how the access time to vertex data changes

depending on their number, threads and access method. A simple operation of cal-

culating the sum of the coordinates of all element vertices was selected as a test case.

Two extreme cases of vertex index organization were chosen as the access method:

1. according to linear order, which is the optimal case for an uncompressed repre-

sentation as it provides the best use of the data. In practical 3D meshes, this

case never occurs,

2. in random order, which represents the pessimistic case of a real 3D computa-

tional mesh. In practical adaptive meshes, depending on the numbering methods

adopted, there is usually some small indexing locality.

The graphs presented in Figures 2 and 3 show very clearly that in practically

every case the disproportion between the results for compression and its absence

increases more than linearly in favor of the former. It can also be seen that only in

the case of the linear organization of indexes, which is unreal, the results obtained

with a normal notation are comparable with a compressed one. The compressed

variant shows practically the same results for both extreme cases of vertex index

organization, which indicates independence from indexing organization. For each

pair (regular, compressed) processed by the same number of threads, the compressed

representation is faster. When examining the acceleration of calculations shown in

the figure 4, it can be seen that in specific cases the obtained acceleration due to the

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 483

compressed representation is different. In particular, you can see the impact of access

to the processor cache for smaller numbers of items for which vertices are retrieved.

Figure 2. Times obtained in test case for 1k - 10k elements.

This algorithm allows very efficiently, both in the context of the memory used

and the computation time, to obtain data on the coordinates of vertices, especially in

Ea
rly
bi
rd

484 Kazimierz Michalik, Lukasz Rauch

Figure 3. Times obtained in test case for 100k - 1M elements.

the case where the data would lie in distant memory areas. The following conclusions

can be drawn from the analysis of the obtained results:

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 485

Figure 4. Computational speedup based on times obtained in test cases.

• Regardless of the selected case, the obtained results show that the compressed

mesh is always faster in providing information about the coordinates of the ver-

tices in the element than the standard storage of them in the memory (figure 2),

• as the number of nodes increases, the solution time decreases by more than ten

times compared to the standard approach (figure 3),

• the applied solution is scalable, as shown in the picture 4.

5.1. Comparison with the space filling curves

The analysis of the literature mentioned at the beginning shows that the function-

ality simislar to the discussed solution is provided by the use of curves filling the

space, in the form of Z curves, which are implemented using Morton’s code. It is a

well-known and widely used solution, also for assigning grid identifiers, e.g. in the

computing package p4est [6] or in other applications. For comparison with the algo-

rithm discussed in this paper, the highly efficient libMorton library used in practical

applications was chosen [1]. It allows you to use both the standard encoding / decod-

ing algorithm of Morton’s code, as well as an implementation based, among others,

on on logical tables, the so-called lookup tables.

While the idea and implementation of Morton’s code was the subject of the

above-mentioned In the publication, it should be noted that, formally, Morton’s code

is a linear mapping of R3 → N, but it requires prior writing of the real coordinates

of the discussed subset in the form of integers. Most often this is done using the

Ea
rly
bi
rd

486 Kazimierz Michalik, Lukasz Rauch

so-called normalize to the range [0, 1] or [0,MAX], where MAX is the largest integer

that can be written in the selected representation. Normalizing is not strictly part

of Morton’s encoding, so it is not implemented in the libMorton library and not has

been included in the comparison. It should also be emphasized that Morton’s code

from a numerical point of view converts two numbers into a number with twice the

bit representation. Therefore, to keep the single precision of the point variables in

3D, after normalizing it, use Morton’s code (x32, x32) → (x64). The analysis of the

obtained results, presented in the figure 5, clearly shows that the developed algorithm

is more efficient than Morton’s code in the process of encoding / decoding coordinates

by an order of magnitude. You can also see that this difference is stable and holds,

regardless of the size of the task. Also for Morton (x16, x16) → (x32) encoding the

presented solution is more efficient. It should be emphasized that for Morton coding

it is necessary to perform additional normalization each time, not included in the

graphs.

Figure 5. Performance comparison between presented algorithm

and Morton code (logarithmic scale).

5.2. Comparison with available mesh management packages

During the analysis of the developed algorithm, a comparison was also made of the

speed of the operator Geo(W (Element)) realized with the algorithms 2 and 3 in

comparison with one of the most famous high computing packages performance. The

Portable, Extensible Toolkit for Scientific Computation (PETSC) was chosen as a

representative, having at least 767 use cases documented by publications in scientific

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 487

and technical calculations according to the authors of the [2] package. As PETSC

is modular software, the library directly responsible for meshing management, which

is libMesh in PETSC, was used to maintain the objectivity of the comparison. The

latest (2016) version of PETSC and libMesh was used. The aim of the test task was to

compare the access time to the coordinates of the vertices of the elements, assuming

a standard tetrahedral mesh with a cuboid geometry. The attached examples with

the available documentation were adopted as the basis for the correct definition of

the task. For reference, an example was also checked in which the vertices and their

coordinates are stored in a regular array. The multiple attempts are summarized in

the graph 6.

Figure 6. Performance comparison between presented algorithm

and PETSC/libMesh (logarithmic scale).

The diagram 6 shows that for a representative test task the developed algorithm is

about an order of magnitude faster than the libMesh implementation used in PETSC.

6. Disadvantages and limitations

The above method has the following disadvantages and limitations, partly due to the

method itself, and partly characteristic of methods implementing similar functionality.

For meshes using non-stationary vertices, the described method requires updating

identifiers and compressed entry, which has a negative impact on the performance

of the application. The compressed representation of the points has a (very slight,

but still) approximation error. For large adaptive meshes, it is required to use the

Ea
rly
bi
rd

488 Kazimierz Michalik, Lukasz Rauch

representation based on 64-bit numbers due to the geometric narrowing of the area of

available points to choose from with the reduction of the linear size of the elements.

For example, for an object calculation mesh with a length of 1[m] the linear size of the

finite element would have to be smaller than 0.0006153[m] = 0.6[mm]. For the 64-bit

representation, the corresponding size would have to be smaller than 3·10−7[m], which

is 2 orders of magnitude smaller than e.g. the expansion of iron at room temperature

and an order smaller than the size of some grains in steel (the material can no longer

be considered a continuous medium). In extreme cases, the method may result in

assigning the same identifier to two different points.

7. Conclusion

Operator for providing geometrical coordinates for vertices based on on-the-fly recre-

ation of coordinates was presented both formally and in practice. Necessary algo-

rithms were provided for this task along with performance analysis. Presented tests

shown that, for selected cases, new approach is around 10x faster then naive imple-

mentation and algorithm used in well know libMesh package. Also for given tests

promising scalability results were obtained, showing increasing efficiency of algorithm

for bigger meshes.

References

[1] Baert J., Lagae A., Dutré P.: Out-of-core Construction of Sparse Voxel Octrees. In:

Proceedings of the 5th High-Performance Graphics Conference, pp. 27–32, HPG

’13, ACM, New York, NY, USA, 2013. doi: 10.1145/2492045.2492048.

[2] Balay S., Adams M.F., Brown J., Brune P., Buschelman K., Eijkhout V.,

Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., Rupp K., Smith B.F.,

Zhang H.: PETSc Web page, http://www.mcs.anl.gov/petsc, 2014. http://

www.mcs.anl.gov/petsc.

[3] Bangerth W., Burstedde C., Heister T., Kronbichler M.: Algorithms and Data

Structures for Massively Parallel Generic Adaptive Finite Element Codes, ACM

Trans Math Softw, vol. 38(2), pp. 14:1–14:28, 2012. doi: 10.1145/2049673.2049678.

[4] Berger M., Colella P.: Local adaptive mesh refinement for shock hydrodynamics,

Journal of Computational Physics, vol. 82(1), pp. 64 – 84, 1989. doi: http://

dx.doi.org/10.1016/0021-9991(89)90035-1.

[5] Berger M.J., Oliger J.: Adaptive mesh refinement for hyperbolic partial differential

equations, Journal of Computational Physics, vol. 53(3), pp. 484 – 512, 1984.

doi: http://dx.doi.org/10.1016/0021-9991(84)90073-1.

[6] Burstedde C., Wilcox L., Ghattas O.: p4est: Scalable Algorithms for Paral-

lel Adaptive Mesh Refinement on Forests of Octrees, SIAM Journal on Sci-

entific Computing, vol. 33http://epubs.siam.org/doi/pdf/10.1137/100791634(3),

pp. 1103–1133, 2011. doi: 10.1137/100791634. http://epubs.siam.org/doi/pdf/

10.1137/100791634.

http://doi.acm.org/10.1145/2492045.2492048
https://doi.org/10.1145/2492045.2492048
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://doi.acm.org/10.1145/2049673.2049678
http://doi.acm.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
http://www.sciencedirect.com/science/article/pii/0021999189900351
https://doi.org/http://dx.doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://www.sciencedirect.com/science/article/pii/0021999184900731
http://www.sciencedirect.com/science/article/pii/0021999184900731
https://doi.org/http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://epubs.siam.org/doi/abs/10.1137/100791634
http://epubs.siam.org/doi/abs/10.1137/100791634
https://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/100791634
https://doi.org/10.1137/100791634
http://epubs.siam.org/doi/pdf/10.1137/100791634
http://epubs.siam.org/doi/pdf/10.1137/100791634

Ea
rly
bi
rd

Mesh compression algorithm for geometrical coordinates in computational meshes 489

[7] Efendiev Y., Hou T.Y.: Multiscale finite element methods : theory and applica-

tions, Surveys and tutorials in the applied mathematical sciences, Springer, New

York, NY, 2009. http://opac.inria.fr/record=b1127939.

[8] Garimella R.V.: Mesh Data Structure Selection for Mesh Generation and FEA Ap-

plications, International Journal of Numerical Methods in Engineering, vol. 55(4),

pp. 451–478, 2002.

[9] Tautges T.J., Meyers R., Merkley K., Stimpson C., Ernst C.: MOAB: A Mesh-

Oriented Database, SAND2004-1592, Sandia National Laboratories, 2004. Report.

Affiliations

Kazimierz Michalik
AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science,
Krakow, Poland, kazimierz.michalik@agh.edu.pl

 Lukasz Rauch
AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science,
Krakow, Poland, lrauch@agh.edu.pl

Received: 26.12.2023

Revised: 04.01.2024

Accepted: 04.01.2024

http://opac.inria.fr/record=b1127939
kazimierz.michalik@agh.edu.pl
lrauch@agh.edu.pl

	Motivation
	Mesh compression operator – formal description
	Mesh compression – algorithm
	Theoretical performance analysis
	Memory requirements
	Computational complexity

	Performance tests
	Comparison with the space filling curves
	Comparison with available mesh management packages

	Disadvantages and limitations
	Conclusion

