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Abstract Diabetic retinopathy (DR) is one of the major causes of vision problems world-
wide. With proper treatment, early diagnosis of DR can prevent the progres-
sion of the disease. In this paper, we present a combinative method using
U-Net with a modified Inception architecture for the diagnosis of both the dis-
eases. The proposed method is based on deep neural architecture formalising
encoder decoder modelling with convolutional architectures namely Inception
and Residual Connection. The performance of the proposed model was vali-
dated on the IDRid 2019 contest dataset. Experiments demonstrate that the
modified Inception deep feature extractor improves DR classification with a
classification accuracy of 99.34% in IDRid across classes with comparison to
Resnet. The paper Benchmark tests the dataset with proposed model of Hy-
brid Dense-ED-UHI: Encoder Decoder based U-Net Hybrid Inception model
with 15 fold cross validation. The paper in details discusses the various metrics
of the proposed model with various visualisation and multifield validations.
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1. Introduction

Blindness and vision loss can result from diseases of the fundus. A few frequent
fundus conditions that impair vision are cataract, diabetes retinopathy, and age-
related macular degeneration [4]. Diabetes is a serious pandemic worldwide, especially
in Indian culture and around the world. As a result, there is an excess of diabetes,
which spreads disorders like DR.

Diabetes has affected more than 422 million people worldwide out of which India
ranks in the top 3 nations in terms of the number of diabetics. Half of the population,
which has increased from 108 million to 422 million in recent years, now resides
in India, China, the USA, Brazil, and Indonesia [11]. Diabetes can cause an eye
condition called diabetic retinopathy. It takes place when high blood sugar levels
harm the blood vessels in the retina, causing visual issues. Although diabetes can
result in several problems, this paper will concentrate on diabetic retinopathy. After
having diabetes mellitus for a while, diabetic retinopathy, an eye condition, develops.
It harms the tiny veins in the retina, resulting in obstruction, damage, and erratic
vein growth. The narrowing of the blood vessels in the eyes is a secondary effect of
diabetes brought on by high blood sugar levels. A reduction in the blood flow to the
retina may cause blindness. Among the symptoms of DR are lesions that develop
on the retinal surface [7]. The vessels that carry blood in the retina are harmed by
sustained high blood sugar levels, which results in diabetic retinopathy. This results
in weaker arteries, obstructions, and fluid leaks. The body may react by developing
abnormal new blood vessels, which can bleed and cause more harm. Its advancement
is aided by factors such as elevated blood sugar, high levels of blood pressure and
cholesterol as well as chronic inflammation. For early identification and treatment,
periodic vision tests and managing diabetes are essential. The small blood vessels in
the retina are harmed by high blood glucose levels, which results in DR. The macula
enlarges and thickens because of the retina producing a greater amount of the blood,
cholesterol, the latter of other lipids [28]. As sample blood is given to the retina, IrMAs
(Intraretinal Microvascular Abnormalities) start to form as new, abnormally delicate
blood vessels [16]. The rising pressure within the eye may potentially cause damage
to the optic nerve. The most efficient method for identifying early indications of
anomalies in the present clinical diagnosis is routine screening of diabetes individuals
using fundus examinations. Blindness can be prevented if DR is identified in its
earliest stages and treated right away [37].

The figure beneath shows the different stages of DR. As shown in the figure
below, there are various stages of diabetic retinopathy. Fluid leakage and microa-
neurysms are features of mild non-proliferative retinopathy. Blockages in the blood
vessels, edoema, and distortion are symptoms of moderate non-proliferative retinopa-
thy. There are more blocked vessels because of severe non-proliferative retinopathy.
A characteristic of proliferative retinopathy is the development of aberrant blood ves-
sels, which can result in hemorrhage and retinal detachment. Due to the many fundus
imaging tools, accurately grading and identifying diseases might be difficult. It may
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also be challenging to distinguish between normal and pathological regions due to oc-
clusion, shadow, reflection, or inadequate illumination in DR fundus pictures (Fig. 1).

Figure 1. Dataset visualisation

Due to the many morphologies, sizes, and colours of lesions, manual retinal lesion
assessment is laborious and demands great accuracy. Computer-assisted diagnostic
(CAD) tools make it possible to diagnose diabetic retinopathy (DR) accurately and
quickly, which helps with choosing the best course of action. To examine the Re-
gion of Interest (ROI) and determine the grade and severity of the disease, DR lesion
segmentation is essential. The conditions that received the most research attention
were glaucoma, AMD, and diabetic retinopathy [6]. Because ML techniques are more
precise than traditional segmentation methods that rely on few indicators, they have
taken their position. In comparison to conventional ML algorithms, DL, a contempo-
rary technology, has demonstrated improved performance in DR lesion classification
and segmentation [5].

In recent years, deep neural networks and particular machine learning models
have shown promise in a variety of computer vision applications, particularly in med-
ical picture analysis for Diabetic Retinopathy. Deep learning-based computer-aided
diagnostic (CAD) systems that can categories anomalies can aid in medical decision-
making and enhance patient care [25]. The rest of the paper is structured as follows.
Related works on DR image classification are presented in Section II. The information
and suggested approach are explained in Section III. The experimental analysis is pre-
sented in Section IV and discussion are presented in Section V. Section VI presents
the conclusions at the end.
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2. Literature review

Depending on their study focus and area of interest, researchers in the subject of di-
abetic retinopathy have accomplished a lot of work. Researchers have suggested and
applied a variety of machine learning techniques, as evidenced by the linked work in
the fields of medical sciences and machine learning, however for diabetic retinopathy,
a comparative analysis of these deep learning techniques is still absent. The work
completed demonstrates that a fresh technique can be used when looking at the out-
comes and comparing different machine learning algorithms for DR. In addition to
several other analysis approaches, [22] used image processing for the automated and
early detection of diabetic retinopathy. In their study, [40] suggested a method for
improving images based on morphological operations, along with threshold-centered
static wavelet transforms for the retinal fundus image and CLAHE (Contrast Limited
Adaptive Histogram Equalization) for vessel enhancement. The method used by [50]
is centered on a mixed classifier that detects retinal lesions through preprocessing, le-
sion extraction from candidates, feature formulation, and classification. The research
leads to a further development of the m-Mediods-based modelling methodology, in-
tegrating it with the Gaussian Mixture Model to create a hybrid classifier that will
increase classification accuracy. [2] investigated whether neural networks could recog-
nize the signs of diabetes present in fundus photos and compared the network against
a set of fundus images used for ophthalmologist screening. The research demonstrated
the ability to find vessels, exudates, and hemorrhages. Their network achieved greater
accuracy for the identification of diabetic retinopathy as compared to ophthalmolo-
gists. [14] contributed to the decrease in the number of features needed for the lesion
categorization using feature ranking and Adaboost in their study. They suggested
a novel two-step hierarchical classification method in which false positives or non-
lesions are eliminated in the first stage.Bright lesions are further divided into two
categories in the second stage: cotton wool patches and hard exudates. Additionally,
red lesions are still categorized as haemorrhages and micro-aneurysms (MA).

Guo et al. [18] suggested a multi-scale feature fusion technique to address tiny
lesion detection problems. To improve sensitivity, binary cross-entropy (BCE) loss
alongside balancing coefficients was applied. The computational model was trained
using full-resolution photos that were scaled to pixels without any additional pre-
processing. Yan et al. [47] presented a mutually local-global U-Net to address the
shortcomings of patchwise training, which fails to capture global context.

Other methods researchers have developed for segmentation purposes over the
years like Fuzzy C-Means (FCM) clustering algorithms which are commonly used to
divide image pixels into diverse cluster [30], and others like region growing methods are
used to form distinct image regions based on some uniformity criteria such as grey level
and colour [39], and mathematical morphology operations are performed by analysing
the geometrical makeup of certain retina components [41,43]. However, most existing
approaches are limited to acting on a single retinal image, making it impossible to ex-
tract spatial and spectral characteristics across many spectral slices at the same time.
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Various researchers have advocated various segmentation strategies. In any event,
these approaches only work on fundus pictures and have no pathological implica-
tions [13]. It is challenging to segment the vascular vessel treemap without disconti-
nuities. Azzopardi et al. [3] created a filter called the Bar-selective Combination Of
Shifted Filter Responses (BCOSFIRE). Its parameters have an impact on the filter’s
performance. To detect retinal vessels, Wilfred Franklin and Edward Rajan [12] de-
vised the Multilayer Perceptron Neural Network. For its representation, the weight
of the feedforward network is altered using the backpropagation technique. Because
it is dependent on pixel processing, it has a lower level of accuracy of 95.03%. Par-
tovi et al. [31] proposed a model in which photos were classified using an error-based
autonomous network. It was validated using a dataset of remote sensing photos.
In the categorization of medical images, the Deep CNN (DCNN) model provided
an extended feature extraction-classification technique. Gulshan et al. [17] trained
the Deep Convolutional Neural Network (DCNN) to detect DR in retinal fundus im-
ages. Deep learning can be utilised in retinal fundus pictures to construct an algorithm
that automatically detects DR and diabetic macular edoema. The specificity and sen-
sitivity of the method for assessing DR expressed as moderate or worse DR or both
were generated based on the key decision of the ophthalmology team. The method,
which has 96.5% sensitivity and 92.4% specificity, was created using deep convolu-
tional neural networks and a large quantity of data in various grades per image. By
learning a deconvolution network, the authors of (Noh et al., 2015) [26] suggested
an improved semantic segmentation technique. The convolutional layers are adopted
from VGG16 as well, and the deconvolution network is made up of deconvolution and
unpooling layers that identify pixel-wise class labels and forecast segmentation masks.
On the same PASCAL VOC 2012 dataset, the proposed technique achieved 72.5% IoU.
Shen et al. [38] introduced a multicrop pooling method that was used in DCNN to
capture object salient characteristics in order to classify lung nodules on CT images.

In the literature [20], DR pictures were classified using a Gabor filtering and SVM
classification model. Before employing the classifier, the Circular Hough Transform
(CHT) and CLAHE models were fed with input images, yielding a detection rate of
91.4% on the STARE dataset. [36] made a contribution to the decrease in the amount
of features needed for the lesion categorization using feature ranking and Adaboost
in their study. They suggested a novel two-step hierarchical classification method in
which false positives or non-lesions are eliminated in the first stage. Bright lesions
are further separated into two categories in the second stage: cotton wool patches
and hard exudates. Additionally, red lesions are still categorized as hemorrhages and
micro-aneurysms (MA). For the diagnosis of various retinal abnormalities, the division
of the blood vessel represents a crucial prerequisite. The accuracy of the cascaded U-
Net architecture used by [36] on the DRIVE dataset was 96.92%, and its precision on
the STARE dataset was 97.40%. [24] propose a deep CNN network that simultaneously
slices arterioles and venous vessels from the DR pictures. The DRIVE dataset, on
which the framework was tested, achieved 87% sensitivity and 98% specificity. Data
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augmentation using the U-Net model was done over the DRIVE dataset by [46] which
obtained an AUROC score of 0.97 for segmenting blood vessels.

On the MESSIDOR dataset [37] classified DR fundus images using a modified
AlexNet architecture by applying the appropriate pooling, softmax, and ReLU lay-
ers.The MESSIDOR dataset showed 96.6% accuracy for the suggested model. [45]
demonstrated a DR model for classification using the InceptionV3 as architecture and
a short dataset transfer learning approach. Utilizing an SGD optimizer including
the cosine loss function for binary classification, Hagos’ technique obtained 90.9%
accuracy. In a study by [19], the referable lesion regions in DR images were exam-
ined using a generalization of the backpropagation approach and a poorly supervised
model. On the Kaggle dataset and the E-Ophtha dataset, [33]’s suggested method
has an area around the ROC curve (AUC) of 95.50% and 94.90%, respectively. An
ensemble of models trained with deep learning was used in a study by [29] to detect
red lesions in fundus images. In that technique, 3232 pixel patches were extracted
initially and put into a Deep CNN. The random forest (RF) classifier also received
hand-crafted features that were extracted in addition. Orlando’s approach demon-
strated how a hybrid feature vector with both hand-crafted and deep learning-based
features might enhance the networks’ performance and obtain 89.32% AUC. In order
to classify eye illnesses, Bali et al. [8] suggested a DFex-hybrid strategy combining
the BeeHive model, CGAN, and PSO. In the RFMiD and ODIR datasets, they ob-
tained, respectively, accuracy of 98.79%, sensitivity of 95.99%, specificity of 99.79%,
and accuracy of 97.16%, F1 score of 96.81%.

The goal of this paper is to develop an automatic diagnosis method for DR. The
paper discusses multiple deep learning techniques for the segmentation of the fundus
image as shown in Table 1. The paper is benchmarked over main dataset of IDRID for
respective classifications. The paper is capable of not only reducing the computation
time for the enhanced Dense-ED-UHI: Encoder Decoder based UNet Hybrid Inception
architectures but also is able to hybridize it with inception V3 to calculate complex
features for better extractions.

Considering the aforementioned review, we developed a unique architecture to
overcome the aforementioned restrictions. The following is a description of the main
contributions of the suggested research efforts:

1) This study uses a customised U-Net model (UHI) to semantically segment retinal
lesions. The encoder used in the model is a deep network encoder called “Incep-
tionV3”. The smaller convolutions performed by the InceptionV3 model allow for
a quicker training procedure.

2) To resize the convolution nearest neighbour, the model applies a unique up-
sampling technique that involves pixel-wise periodic shuffling convolution. Com-
pared to traditional approaches, our procedure speeds up network convergence
and creates retinal images with excellent resolution that are free of checkerboard
artefacts.
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3) Comparing the suggested model to other existing works, it produced state-of-
the-art results for the diagnosis of DR lesions.

4) A hybrid U-Net architecture with inception design and multiple kernel extractions
is used in the study to infect deep encoding.

5) Finally, the study evaluates the model’s performance across multiple classes.

Table 1
Literature review comparison

Study Methodology Advantages Disadvantages Specificity Recall AUC

[17] DL:
Convolutional
Neural Network

High accuracy
and precision

Large labelled
datasets
required

0.99 0.90 NA

[1] DL: Ensemble
of CNNs

Automated
feature learning

Computationally
intensive

0.87 0.96 0.98

[15] DL: CNN Handles
diverse lesion
morphologies

Prone to
overfitting

0.98 0.94 0.97

[42] DL: CNN Robust to noise
and variations

Data
augmentation
may be
required

0.91 0.90 0.93

[49] ML: Random
Forest

Can handle
small or
imbalanced
datasets

Parameter
tuning may
be required

0.70 0.80 NA

[34] ADL (Active
Deep Learning)

Can be used to
define the level
of severity of
retinal images
important
patches with
provision of
(ROI).

Can be
improved
through data
mining and
data exchange
methods

0.95 0.92 NA

[48] Deep DR It is useful for
DR severity
classification

The model is
too complex

0.97 0.97 NA

[35] Deep learning
methods

It assigns pixel
values for
determining
the importance
and evaluation
of forecasted
category

Parameter
tuning may
be required

0.90 0.90 NA

Proposed
Model

UHI Network Described in
section 3

After
Hyperparameter
Tunning

0.997 0.989 0.999
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3. Methodology

The methodology, experiment design, and workflow employed in the proposed frame-
work in Figure 2 were used in this section’s full explanation of the dataset. The
following shown below is the proposed architecture

Figure 2. Flow diagram

3.1. Dataset rescription

The open-access Indian Diabetic Retinopathy Image Dataset (IDRid) focuses on dia-
betic retinopathy, an eye-related consequence of diabetes. The dataset is intended to
support study and advancement in the area of retinal analysis of images, particularly
for the detection and grading of diabetic retinopathy. There are 516 retinal pictures



Ea
rly

bir
d

Eye disease segmentation using hybrid neural encoder decoder. . . 9

in all, each with a resolution of 4288 × 2848. The pixel-level annotation has provided
a binary mask for each distinct DR deformity, such as haemorrhages, hard-exudates,
soft-exudates, and microaneurysms. Furthermore, every 516 photos have been graded
and given the DR severity [21]. The data description in Table 2.

Table 2
Data description

S. No Keypoints Description

1 Content The IDRid dataset includes fundus photographs of the retina.
516 high-resolution retinal pictures make up the entire collection.

2 Annotation Expert-verified ground truth labels describing the existence
and severity of diabetic retinopathy are added to each image
in the collection as annotations. The labels, which vary from 0
to 4, represent the International Clinical Diabetic Retinopathy
severity levels from "No DR" (zero) to "Proliferative DR" (four).

3 Image
formats

The uncompressed TIFF format used by the IDRid dataset
preserves the high-resolution details required for analysis and
diagnosis.

4 Dataset
division

A training set as well as a testing set were created from the
dataset. There are 413 images in the training set and 103 images
in the testing set. This category enables researchers to assess
how well their algorithms function on hypothetical data.

5 Terms of
usage

In accordance with the rules of the Creative Commons
Attribution 4.0 International (CC BY 4.0) licence, the IDRid
dataset is available for research purposes. This means that,
as long as the original authors are properly credited, you are
free to use the dataset, modify it, and redistribute it for any
non-commercial reasons

3.2. Implementation details

For model training, a GPU with 8GB of RAM is used. In the papers of [9, 10],
both attempted were some of the earliest papers to utilise U-Net for image segmen-
tation. In these studies, it is discussed how to segment retinal lesions in images of
diabetic retinopathy using the U-Net design. Since then, the U-Net architecture has
been widely used for a variety of medical picture segmentation applications, including
the identification of diabetic retinopathy. After being initially presented for broad
biomedical image segmentation tasks, the U-Net architecture has now been adopted
and used in a number of medical imaging areas, including diabetic retinopathy.

While segmenting retinal structures and lesions in images of diabetic retinopathy
has shown the U-Net architecture to be useful, there are certain restrictions as well.
Utilising U-Net for diabetic retinopathy has some drawbacks, including a restricted
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capacity to capture global context. U-Net may not successfully consider greater spa-
tial connections and contextual signals because of its encoder-decoder architecture,
which places a heavy emphasis on local information. This constraint may reduce
the model’s capacity to incorporate global data necessary for precise categorization
of diabetic retinopathy, which may have an adverse effect on the model’s general
efficacy. Additional architectural alterations or the incorporation of other methodolo-
gies might be required to improve the integration of global context and increase the
categorization accuracy in order to counteract this limitation.

The study adopts concepts from the Inception design and inserts them into the
neural network instead of using the conventional U-Net architecture. The detec-
tion becomes simpler as Inception design combines numerous kernel sizes to collect
information on various scales and at various granular levels. Additionally, U-Net In-
ception improved feature representation, led to a more thorough knowledge of the
retinal image, and may improve the performance of the suggested model as a whole.
Additionally, the expansive to contract cross-linking helps produce the extremely pre-
cise segmented output image. There are four blocks of encoder units in the U-Net
contract chain. Each encoder unit has two convolution layers that are followed by
a max-pooling layer. Every time a pooling process is used, the feature elements are
doubled. The bottleneck, which consists of two convolution layers with one at the
top, is the essential component that separates contractile and expanded techniques.
A U-Net expanding path is being performed by four decoder units and consists of two
convolution layers, a de-convolution layer, and two comparable feature maps using
the contract trail. The Table 3 below discusses the brief difference between the both.

The proposed work with the dataset split into the training, validation, and testing
set for DR classification in retinal pictures. In the Figure 3 seen below, the paper
proposes a detailed overflow of utilising four benchmark datasets to train the images,
follow the methods and update if required. Following this, testing the dataset is
done and if the model performs up to the expectations, it can be utilised in the field
of medical imaging. The Figure 3 and Figure 4 describe the primary steps of data
preprocessing the the following order

1) Training – Testing and Validation Split, as discussed, the training data 70% is
used to train and reiterate the model. Testing and validation process used to
analyse the fitting parameter and ensure precise modelling.

2) Data preprocessing, it includes various steps like Normalisation of the given input
sequences, Filterining Scaling etc.

3) Mask Encoding or One Hot encoding is done to create a binary mask for multiple
classes used.

4) Model creation, hyperparameters and other units are discussed below.
5) Post training cycle is completed the model goes through a vivid evaluation for

Cross validation across all metrics such as accuracy, precision, recall, sensitivity,
specificity.
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Table 3
Difference between U-Net Inception and Standard U-Net

Aspect UHI: U-Net Inception Standard U-Net
Architecture The U-Net framework

incorporates concepts from
the Inception architecture.

Encoder-decoder as well as
skip connections are part of
the original U-Net architecture.

Multi-scale
feature
extraction

Uses various kernel sizes to
efficiently capture data at
various scales.

Focuses heavily on skip
connections for the extraction
of local features.

Global context Due to the incorporation of
modules inspired by Inception,
the global context may be
captured more successfully.

Capability to capture the
global context is somewhat
limited.

Fine detail
representation

Possibility of enhanced fine
detail representation in retinal
pictures.

May rely more heavily on skip
connections to express fine
details..

Performance
potential

Possibility of improving
categorization accuracy by
using data from multiple
scales.

Established performance
on tasks involving the
classification of diabetic
retinopathy.

Complexity May add to the complexity
of the architecture and
processing.

Architecture that is less
complex and contains fewer
extra parts.

Figure 3. Data Split and Implementation
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The figure below talks about the proposed U-Net Inception model for Diabetic
Retinopathy classification. The primary aims the figure postulates to demonstrate is
that training and testing sets are passed via various preprocessing pipelines after which
the train images are segregated with loss function and back propagation utilities of the
deep network inclusive of weights, biases, layers and hyperparameters as in Figure 4.

Figure 4. Data evaluation and cross validation set

The following is a description of the various building blocks’ intended architec-
tural details.

3.2.1. Encoder unit

The encoder is essential for capturing and extracting hierarchical characteristics from
the input retinal pictures in the U-Net Inception Net structure for diabetic retinopa-
thy classification. It is made up of convolutional layers which combine input data with
filters to extract features. The encoding layers steadily increase the filter depth, en-
abling the neural network to capture intricate information important for categorising
diabetic retinopathy.

The encoder uses down sampling techniques like max pooling or stride convolu-
tion to increase the number of feature channels while decreasing the spatial dimensions
of the feature map. This down sampling aids in obtaining more advanced depictions
of the input and summarizing the data. The incorporation of the Inception module
into the encoder is one of the unique features of the U-Net Inception Net. The In-
ception module includes of a max pooling branch and parallel convolutional branches
that use different kernel sizes, notably 1×1, 3×3, and 5×5. These branches catch
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features at many scales and assist the network in simultaneously learning local and
global knowledge. The encoder of the U-Net Inception Net improves the network’s
capacity to collect complex and multi-scale information that are necessary for pre-
cise diabetic retinopathy categorization by including the Inception module. Overall,
the U-Net Inception Net encoder collects pertinent and discriminative characteristics
from the input retinal images, creating a rich representation which is further used in
the later phases of the architecture for classifying diabetic retinopathy.

3.2.2. Inception unit

The U-Net Inception Net design for classifying diabetic retinopathy includes the
Inception module, which was first introduced in GoogLeNet. By obtaining multi-
scale and multi-level features, it improves a network’s feature extraction capabilities.
The Inception module includes of a max pooling branch and parallel convolutional
branches with various kernel sizes, such as 1×1, 3×3, and 5×5. The network may
collect data at multiple scales since every branch captures characteristics at a distinct
receptive field size. The 1×1 convolutions are in charge of dimensionality reduction
and input channel reduction, which helps to reduce computational complexity.

The U-Net Inception Net is capable of recording local as well as global informa-
tion by integrating the Inception module. The concurrent branches within the module
allow the network to simultaneously learn complicated and varied information. This
is especially helpful in the classification of diabetic retinopathy, because the network
must collect information at numerous scales due to the presence of various lesions,
including microaneurysms and exudates. The U-Net Inception Net’s capacity to ex-
tract discriminative characteristics pertinent to diabetic retinopathy is improved by
the Inception module. The network may collect both fine-grained minutiae and high-
level semantic data by combining multi-scale features. This aids in increasing the
classification task’s accuracy and resilience, allowing for more precise detection and
assessment of diabetic retinopathy (DR) in retinal pictures.

3.2.3. Skip connections

A key element of the U-Net design, which includes the U-Net Inception Net, for
the classification of diabetic retinopathy is skip connections. These connections are
essential for enhancing information transfer and maintaining spatial details across the
network.Skip links create immediate connections among the encoding and decoding
pathways in the U-Net Inception Net. These links make it possible to combine multi-
scale along with multi-level features, which makes it easier to integrate low-level and
high-level data. The feature maps from the respective encoder layers to the decoder
layers are concatenated to create the skip connections.

The U-Net Inception Net successfully blends semantic detail from the decoder
with low-level fine-grained features from the encoder by including skip connections.
This gives the network a thorough comprehension of the linked features in the input
retinal images. In addition to improving the network’s capacity to precisely classify



Ea
rly

bir
d

14 Akanksha Bali, Kuljeet Singh, Vibhakar Mansotra

diabetic retinopathy lesions, it aids in the preservation of spatial information. Ad-
ditionally, skip connections help to solve the issue of a data bottleneck that might
develop in deep networks. A network is able to access feature maps from various
scales and levels by simply linking the encoding and decoding paths, which improves
gradient flow and solves the vanishing gradient issue. The skip connections in the U-
Net architecture Inception Net architecture, in general, promote efficient knowledge
propagation, enable the integration of multi-scale data, and contribute to the precise
identification of diabetic retinopathy lesions by fusing local information with global
context.

3.2.4. Bottleneck

The bottleneck, which sits in the middle of the encoder and decoder paths, acts as a
bridge to collect the input data in its most compressed and abstract form. The bot-
tleneck in the U-Net Inception Net is often made up of several convolutional layers
including Inception modules.These layers and modules are created to capture highly
discriminative properties, which are essential for correctly classifying lesions associ-
ated with diabetic retinopathy.

The U-Net Inception Net gains the capacity to collect characteristics at various
scales and levels of abstraction by including Inception modules within the bottle-
neck.The Inception modules’ parallel convolutional branches make it easier to extract
detailed information, allowing the network to pick up on intricate patterns and struc-
tures found in retinal images. The bottleneck’s job is to compile the encoder’s learnt
representations and get them ready for the decoding path. It seeks to decrease the
computational difficulty of the network while capturing the fundamental properties
that are most pertinent to the classification task.

The bottleneck efficiently compresses the data, making the retinal pictures’ rep-
resentation more condensed and expressive. It allows the network to generate precise
predictions throughout the succeeding decoding and classifying stages by collecting
the most discriminative properties.

3.2.5. Activation function

In order to introduce non-linearity and improve the network’s capacity to learn intri-
cate correlations between the input data and the target labels, activation functions
are crucial. The Rectified Linear Unit (ReLU), Leaky ReLU, and Exponential Lin-
ear Unit (ELU) are frequently used activation functions in the U-Net Inception Net.
ReLU is a widely used activation function that maintains positive values while setting
negative values to zero. Leaky ReLU avoids the dying ReLU problem by permitting
a modest non-zero slope for negative values. ELU has a smooth curve for negative
values, unlike ReLU, which does not. The non-linear mapping among labels for dia-
betic retinopathy (DR) and the input retinal pictures are simulated with the help of
these activation functions. The U-Net Inception Net can capture complex patterns
and data by incorporating non-linearity, which enhances its ability to distinguish be-
tween different types of diabetic retinopathy lesions and properly categorize them.
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The selection of the activation function is influenced by the specific requirements for
the classification task as well as the characteristics of the dataset.

3.2.6. Decoder unit

Upsampling the feature maps and regaining the lost spatial resolution are under the
purview of the Decoder. The decoder for the U-Net Inception Net commonly consists
of upsampling layers like bilinear interpolation or transposed convolutions. These
layers expand the feature maps’ spatial dimensions, enabling the network to recreate
the retinal pictures’ more minute details.

The decoder also includes skip connections that combine the feature maps from
the associated encoder layers. In order to accurately classify data, these skip con-
nections are essential for maintaining spatial data as well as combining low-level and
high-level properties. The U-Net Inception Net’s skip connections make it easier to
combine multi-scale features, giving the network access to both fine-grained specifics
and high-level semantic data. This helps gather pertinent data from many levels of
abstraction and enhances the network’s comprehension of diabetic retinopathy lesions.
The decoder in the U-Net Inception Net successfully reconstructs the spatial details
of the retinal pictures using upsampling operations and skip connections, providing
the data required for precise diabetic retinopathy categorization.

3.2.7. Hyperparameter set

The performance of the U-Net Inception Net architecture for the categorization of
diabetic retinopathy is strongly influenced by a number of hyperparameters. During
optimisation, the learning rate defines the step size, which affects convergence speed
and stability. The batch size regulates how many samples are handled during each
training iteration, which has an impact on both the accuracy and efficiency of gradi-
ent estimation. The U-Net Inception Net’s ability to learn complicated characteristics
depends on how many layers it has. Deeper networks can capture more detailed pat-
terns but need more computer power. Regularisation factors that avoid overfitting
and regulate the amount of regularisation used include dropout and L1 or L2 reg-
ularisation. The model’s non-linear behaviour showcased in Figure 5 and capacity
to represent complicated relationships are significantly influenced by the selection of
activation functions, such as ReLU, Leaky ReLU, or ELU.

Choosing the best hyperparameter values for diabetic retinopathy classification
employing the U-Net Inception Net architecture typically requires experimentation
and validation on a different validation set. Techniques like grid search or random
search may be used to explore various configurations. The metrics used to evaluate
the performance are iou_score, focal loss, dice loss, accuracy, binary accuracy, AUC
and ROC, Specificity, Sensitivity.
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a) b)

Figure 5. Data evaluation and cross validation set: a) Unet architecture; b) Inception V3
convolutional network

4. Results

4.1. IDRID

Specific kinds of diseases that are frequently seen in visual pictures include hard exu-
dates, soft exudates, haemorrhages, and microaneurysms. These kinds of lesions are
frequently a sign of several visual illnesses, such retinopathy caused by diabetes. An
extensively used collection containing retinal pictures annotated for these abnormal-
ities is called IDrid (Indian Diabetic Retinopathy Image collection). Let’s talk about
the traits associated with these tumours and the criteria needed for segmenting them.

4.1.1. Hard Exudates

In the retina, triglycerides seep through injured veins, forming brownish or white
plaques known to be hard discharges. They frequently take the form of tiny, rounded,
or longitudinal tumours with distinct margins. As their buildup can cause blurred
vision and act as a sign of the seriousness of diabetes-related retinopathy, these hard
discharges must be segmented in order to be quantified and their development tracked.

4.1.2. Soft Exudates

Puffy white or yellowish blemishes referred to as cotton fibre areas, soft discharges
are the result of strokes of the ocular sensory fibre layer brought on by poor blood
flow. These resemble amorphous tumours with hazy edges. Soft exudates must be
segmented in order to determine their amount and location because they can be an
indication of ocular hypoxia.
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4.1.3. Haemorrhages

Blood leaks into the retinal cells during haemorrhages, which happen as veins burst.
They resemble irregularly shaped, black lesions that are red or dark in colour. As they
can reflect the extent of retinal harm and the evolution of diabetes-related retinopathy,
haemorrhages must be segmented in order to determine their existence and pinpoint
where they are.

4.1.4. Microaneurysms

These tiny, rounded expansions of the capillaries in the retina are believed to be the
first symptoms of retinopathy caused by diabetes. They appear as tiny, rounded
lesions that are brilliant red. Since the existence and growth of microaneurysms can
suggest the possibility of progressing to more severe retinal stages, segmenting them
is crucial for their measurement and management.

4.2. Retinopathy grade classification

From Table 4 and Figure 6 with a specificity of 0.909091 for type 0 retinal degenera-
tion, cases who lack Retinopathy that can be identified with excellent precision. The
F1-score value for third-degree retinopathy grade is 0.917197, which indicates that
it is possible to forecast grade 3 retinopathy with an adequate level of recall as well
as accuracy. Recall and sensitivity are used equally in this list. For example, the
recall/sensitivity for retinopathy grade 2 is 0.972222, meaning that roughly 97.2% of
cases of grade 2 retinopathy were effectively detected by the model. The detection
rate for grade 1 retinopathy is 0.941176, meaning that the model correctly identified
cases of grade 1 retinal with a 94.1% accuracy. Prediction of category wise classes.

a) b)

Figure 6. Loss and accuracy plot for Retinopathy Grade Classification: a) loss training
validation plot; b) accuracy training validation plot
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Table 4
Classwise metric distribution (testing)

Class Accuracy Precision Recall or Sensitivity F1-Score Specificity
Retinopathy
grade = 0

0.912621 0.955224 0.914286 0.934307 0.909091

Retinopathy
grade = 1

0.941748 0.941176 1.000000 0.969697 0.842857

Retinopathy
grade = 2

0.902913 0.897436 0.972222 0.933333 0.941935

Retinopathy
grade = 3

0.873786 0.972973 0.867470 0.917197 0.900000

Retinopathy
grade = 4

1.000000 1.000000 1.000000 1.000000 1.000000

Figure 7. Class wise prediction

4.3. Classification Risk of macular edema

The percentage of correctly predicted cases to all occurrences is what is meant by
the term “accuracy”, which measures overall competence. We can see the accuracy
for every category in the following table. For example, the prediction accuracy for
category 0 is 0.953995 (as per the training loss 8), meaning that in almost 95.4% of
cases, the algorithm correctly predicted the likelihood of macular edema level 0. The
model’s prediction at classifying True Positives amongst the Predicted Classes that
are positive is measured in the “Precision” row. For example, the precision for class
1 is 0.991736, indicating that the algorithm successfully identified cases of macula
edema level 1 with a high precision of 99.2%.
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a) b)

Figure 8. Loss and accuracy risk of macular edema: a) loss training validation plot; b) ac-
curacy training validation plot

It is the same as sensitivities in Table 5 and 6. For example, the recall/sensitivity
for category 2 is 1.000000, meaning that every incidence of macular edema level 2 was
successfully detected by the algorithm, resulting in an ideal recall. Better performance
is indicated by a higher F1 score. For instance, the F1 rating for class 1 is 0.979592,
Indicating a strong equilibrium between recall and precision in classifying macular
edema level 1. For instance, the specificity for class 0 is 0.971910, showing an elevated
degree of reliability in detecting cases without macular edema at level 0.

Table 5
Class wise metric distribution (training)

Class Accuracy Precision Recall or Sensitivity F1-Score Specificity
Retinopathy
grade = 0

0.951456 0.950000 0.966102 0.957983 0.931818

Retinopathy
grade = 1

0.961165 0.989011 0.967742 0.978261 0.900000

Retinopathy
grade = 2

0.990291 0.981818 1.000000 0.990826 0.979592

Table 6
Class wise metric distribution (testing)

Class Accuracy Precision Recall or Sensitivity F1-Score Specificity
Retinopathy
grade = 0

0.953995 0.977876 0.940426 0.958785 0.971910

Retinopathy
grade = 1

0.963680 0.991736 0.967742 0.979592 0.926829

Retinopathy
grade = 2

0.956416 0.924051 1.000000 0.960526 0.907216



Ea
rly

bir
d

20 Akanksha Bali, Kuljeet Singh, Vibhakar Mansotra

The class wise prediction is showcased in Figure 9.

Figure 9. Edema class wise prediction

Table 7 highlights the distribution of samples of data throughout distinct cat-
egories of lesion types, possibly linked to medical imaging analysis. The table pro-
vides the total number of the samples for each given lesion type. “Hard Exudates”
form the most prevalent class with 350 samples, next to “Soft Exudates” with 150
samples, “Hemorrhages” with 120 samples, and “Microaneurysms” with 110 samples.
These values represent how often each lesion type occurs in the dataset, offering vital
information into the dataset’s makeup. Such information is critical for creating reli-
able artificial intelligence models, since the class distribution might affect the model’s
accuracy and generalization.

Table 7
Data samples per class

Lesion Type Number of Samples
Hard Exudates 350
Soft Exudates 150
Hemorrhages 120
Microaneurysms 110

The provided table highlights the dataset’s variety and identifies probable pat-
terns or abnormalities in lesion incidence. In medical settings, this knowledge supports
both scientists and clinicians in knowing the cause of certain problems, guiding di-
agnosis, treatment techniques, and future study. It is vital to remember that the
application of these figures should be determined considering the unique clinical en-
vironment and the aims of the study, whether it’s for boosting diagnostic accuracy or
identifying disease features.
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4.3.1. Hard exudates

The difference in the predicted and actual classes of hard exudates is measured using
a loss operation, and a median loss of 0.057894 is the mean of the function through-
out train. Better model scores in accurately representing the characteristics of hard
exudates is shown by a smaller loss. The accuracy of the model appears to be stable
throughout various training iterations based on Figure 10, Figure 11 and Figure 12, as
indicated by a small variance of 0.014040. The amount of variance in the performance
of the model is indicated by the least loss of 0.035471 to the largest loss of 0.090734.
The model performs well overall in categorising pixels into either hard exudates or
non-hard exudates, according to the mean accuracy of 0.999293. This shows that the
model properly picks up on the characteristics that set hard exudates apart and can
correctly distinguish these from various ocular components. The model’s accuracy re-
mains constant across assessments, as seen by the low standard deviation of 0.000162.
The range of variation in the model’s accuracy across several samples is highlighted
by the least accurate value of 0.998942 and the highest accuracy of 0.999645.
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Figure 10. Training IOU_score
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Figure 11. Focal+dice loss
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Train Test Valid

Accuracy 0.999257 0.999327 0.999326

Binary Accuracy 0.969272 0.968051 0.968795

AUC 0.999835 0.999873 0.999871

Specificity 0.934805 0.932559 0.934836

Sensitivity 0.969272 0.999873 0.999326

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Accuracy Binary Accuracy AUC Specificity Sensitivity

Figure 12. UHI model performance

Figure 13 and Figure 14 illustrates the prediction of Unet Inception and Resnet
Models.

Figure 13. Mask prediction and BBox using Dense-ED-UHI: Encoder Decoder based Unet
Hybrid Inception (proposed model)
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Figure 14. Comparison with other state of the art backbone (Resent50)

As per Table 8 the median amount of correctly anticipated hard exudates is rep-
resented by the median true positive value, which is 34116.49. This score sheds light
on the algorithm’s precision in hard exudate detection and segmentation. The vari-
ance in true positives among various evaluations is shown by the standard variation of
13782.728251. The range of variance in the model’s ability to recognise hard exudates
is shown by the smallest value of 11497 and the highest number of 71688.

Table 8
Statistical analysis

Statistical test Loss Accuracy True positives AUC Specificty Sensitivity

mean 0.057894 0.999293 34116.490000 0.966475 0.999851 0.929403

std 0.014040 0.000162 13782.728251 0.009651 0.000046 0.019548

min 0.035471 0.998942 11497.000000 0.942636 0.999746 0.881022

25% 0.046062 0.999188 23017.000000 0.959663 0.999817 0.915989

50% 0.057263 0.999304 31707.500000 0.967367 0.999855 0.930924

75% 0.069872 0.999411 43709.000000 0.974321 0.999885 0.945510

max 0.090734 0.999645 71688.000000 0.982697 0.999944 0.962151

AUC (Area Under the Curve) whose value is 0.966475 represents the algorithm’s
overall efficacy in identifying hard and non-hard exudates. Stronger discriminating
skills are indicated by a larger AUC, with numbers near 1 signifying outstanding
results. The model’s capacity to accurately recognise non-hard secretions is demon-
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strated by its average specific of 0.999851. The algorithm’s ability for correctly recog-
nising hard exudate regions is indicated by a median sensitivity value of 0.929403.
For assessing the model’s effectiveness in accurately identifying hard exudates, the
two metrics are crucial.

Overall, the statistical assessment of rigid exudates offers insightful information
about the effectiveness of the categorization approach. The model is efficient in cap-
turing the features of hard exudates, as evidenced by its minimal loss and excellent
accuracy. The simulation is able to differentiate among hard and non-hard exudates,
as evidenced by its elevated AUC and accuracy values. Yet, the model could at times
overlook some hard exudates given the significantly reduced sensitivities. These data
points act as crucial indicators for assessing and enhancing the categorization algo-
rithm’s efficacy for hard exudates in ocular pictures.

4.3.2. Haemorhages

Valuable information about its efficacy in identifying and categorising haemorrhages in
retinal pictures may be learned from the statistical examination of the haemorrhages
dataset. The model properly classifies pixels as haemorrhages or non-hemorrhages
with an average accuracy and absolute accuracy of 0.999264, respectively. This shows
the the simulation accurately depicts haemorrhages’ distinctive characteristics and
can separate these from various other ocular formations. The durability of the model
is further supported by the low standard deviation of 0.000230 (as per Table 9), which
shows that the correctness of the model is constant across several evaluations. The
range of variance in the model’s accuracy across several samples is highlighted by
the least precision of 0.998607 and the highest confidence of 0.999657. Figure 15,
Figure 16 and Figure 17 describe the training and UHI network on Haemorrhages
dataset.

Table 9
Statistical analysis

Statistical test Accuracy Binary accuracy AUC Specificty Sensitivity

mean 0.999264 0.999264 0.974184 0.999812 0.939016

std 0.000230 0.000230 0.008255 0.000072 0.018514

min 0.998607 0.998607 0.956402 0.999574 0.901336

25% 0.999184 0.999184 0.968939 0.999759 0.927588

50% 0.999331 0.999331 0.973982 0.999836 0.938238

75% 0.999403 0.999403 0.979575 0.999862 0.948270

max 0.999657 0.999657 0.990752 0.999934 0.976834
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Figure 15. Training IOU_score
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Figure 16. Focal+dice loss

The average value of 0.974184 for the AUC (Area Under the Curve) indicates
that the algorithm has a high capacity to discriminate among haemorrhages and
non-hemorrhages. Higher accuracy is indicated by a larger AUC, with numbers near
1 suggesting good discriminating. Consistent achievement with regard to of AUC is
indicated by a small variance of 0.008255. The AUC values of 0.956402, 0.990752, and
0.956402 respectively show the range of variance in the model’s capacity to discrimi-
nate between various samples. In addition, the algorithm’s ability to precisely detect
non-hemorrhage pixel is demonstrated by its average specific of 0.999812, which adds
to its total accuracy. The model’s capacity to correctly detect haemorrhage pixels is
shown by its average sensibility, which is 0.939016.
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Train Test Valid

Accuracy 0.999244 0.999469 0.998732

Binary Accuracy 0.999244 0.999469 0.998732

AUC 0.977122 0.979326 0.972912

Specificity 0.998805 0.999862 0.999685

Sensitivity 0.946274 0.947909 0.939895

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

Figure 17. UHI model performance

For assessing the algorithm’s effectiveness in accurately identifying haemorrhages,
both metrics are essential. The ranges of quartiles (25%, 50%, and 75%) give informa-
tion about the metrics’ dispersion and show the variation of the model’s effectiveness
in various samples. The algorithm’s excellent precision, good discrimination capac-
ity, and even effectiveness in properly recognising haemorrhage and non-hemorrhage
pixels are all demonstrated by the statistical evaluation of the haemorrhages dataset.
The findings show how well the algorithm performs haemorrhage detection and seg-
mentation in ocular pictures, which can be useful for identifying and tracking reti-
nal disorders.

The initial picture in this illustration is a macular the fundus picture with
retinopathy caused by diabetes symptoms. Numerous anomalies, such as exudates
and microaneurysms, are visible in the picture. Specialists create the appropriate
mask, which shows the areas that are important where these aberrations are found.
The mask assists in emphasising the regions that require focus for additional inves-
tigation and evaluation. The network processes the picture for classification utilising
the Dense-ED-UHI: Encoder Decoder based Unet Hybrid Inception model. Intricate
characteristics may be captured and accurate segmentation operations can be carried
out using the UNet Fusion framework. The aneurysm and exudate zones are correctly
identified and highlighted on the segments map produced by UNet Inception, which
closely matches the surface truth mask. Figure 18 and 19 illustrates the prediction of
Unet Inception and Resnet Models.
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Figure 18. Mask prediction and BBox using Dense-ED-UHI: encoder decoder based unet
hybrid inception (proposed model)

Figure 19. Comparison with other state of the art backbone (Resent50)
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4.3.3. Microaneurysms

Figure 20, Figure 21 and Figure 22 describe the training and UHI network on Mi-
croaneurysms dataset. As per Table 10 and Figure 22 the algorithm has an excellent
degree of general precision in detecting microaneurysms, as indicated by a median
accuracy of 0.999264. It indicates that a large number of pixels in the picture, com-
prising all genuine positives and true negatives, are classified properly by the model.

Accuracy in Binary: The accuracy in basic measure similarly exhibits a high
average value of 0.999264. This statistic, which solely takes into account true positives
and true negatives, assesses the precision with which microaneurysms are classified.
The elevated score shows how well the representation can separate microaneurysms
from other areas of the image.

Table 10
Statistical analysis

Statistical test Accuracy Binary accuracy AUC Specificty Sensitivity

mean 0.999264 0.999264 0.974184 0.999812 0.939016

std 0.000230 0.000230 0.008255 0.000072 0.018514

min 0.998607 0.998607 0.956402 0.999574 0.901336

25% 0.999184 0.999184 0.968939 0.999759 0.927588

50% 0.999331 0.999331 0.973982 0.999836 0.938238

75% 0.999403 0.999403 0.979575 0.999862 0.948270

max 0.999657 0.999657 0.990752 0.999934 0.976834
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Figure 20. Training IOU_score
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Figure 21. Focal+dice loss

The system’s capacity to accurately detect non-microaneurysm areas in the pic-
ture is demonstrated by its average specificity of 0.999812 for the dataset. This
means that the algorithm has a small percentage of fake positives and an elevated
genuine negative rate. AUC (Area Under the Curve): The region underneath the
Receiver Operating Characteristics (ROC) curve is represented by the AUC value
of 0.974184. It gives an indication of how well the simulation can distinguish among
microaneurysm-prone and non-prone locations. The statistical model performs better
at differentiating among the two groups based on the area under the curve (AUC).

Train Test Valid

Accuracy 0.99974 0.999681 0.99964

Binary Accuracy 0.99974 0.999681 0.99964

AUC 0.913566 0.875894 0.914899

Specificity 0.99997 0.999965 0.999958

Sensitivity 0.9761484 0.9677475 0.9768875
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Figure 22. UHI model performance
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A median rating of 0.939016 indicates how well the algorithm can identify mi-
croaneurysms. It displays the real negative percentage, which shows how well the
algorithm can detect all of the microaneurysms visible in the picture. According
to the statistical results, the algorithm does a good job of detecting microaneurysms
generally. The model’s efficiency in reliably classifying microaneurysm areas is demon-
strated by its outstanding accuracy, dichotomous accuracy, and AUC scores. Further-
more, the model’s excellent sensitivity and specificity scores show that it can reliably
detect most aneurysm and distinguish non-microaneurysm locations. It’s significant
to keep in mind that the usual deviation numbers reveal information about the model’s
efficacy and inconsistency across different examples or datasets. The accuracy, cate-
gorical precision, AUC, particularity, and sensitivities have relatively small variances,
which shows that the algorithm performs consistently throughout the assessed data.

In conclusion, the statistical evaluation shows that the algorithm consistently
performs well throughout various data sets and reaches a high level of precision and
efficacy in recognising microaneurysms. These findings point to the algorithm’s pos-
sibility of helping doctors identify and diagnose microaneurysms promptly, and this is
essential for treating patients with diabetes along with different ocular illnesses. Fig-
ure 23 and Figure 24 illustrates the prediction of Unet Inception and Resnet Models.

Figure 23. Mask prediction and BBox using Dense-ED-UHI: encoder decoder based unet
hybrid inception (proposed model)
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Figure 24. Comparison with other state of the art backbone (Resent50)

4.3.4. Soft exudates

The training and UHI networks on the hemorrhages dataset are shown in Figure 25,
and Figure 26. The method has an outstanding level of general precision in recogniz-
ing soft exudates, as shown by a median accuracy of 0.999521, as shown in Table 11
and Figure 27. The efficiency of the Hybrid UNet Inception model on the Soft Exu-
dates IRID datasets seems nothing short of remarkable. The algorithm demonstrates
its exceptional capacity to precisely categorise soft exudates with absolute accuracy
scores of roughly 99.95% on the initial training, testing, and validation sets. Addition-
ally, the AUC values are excellent, especially on the test and validation sets, where
they are 99.90% and 99.99%, respectively, demonstrating the model’s great ability to
distinguish between positive and negative instances. In order to reduce the number of
false positives in medical imaging analysis, the model also excels in specificity, scoring
over 99.97% on all datasets. Furthermore metrics, sensitivity – which measures the
model’s capacity to identify positive cases – remains quite high, particularly for the
test and validation sets, where it is 96.08% and 96.31%, respectively. In clinical set-
tings, when avoiding false positives is crucial, this minor trade-off between specificity
and sensitivity may be acceptable. After further validation and testing, the Hybrid
UNet Inception model exhibits strong and encouraging performance, demonstrating
its potential value in real-world clinical applications.

Table 11
Statistical analysis

Statistical test Accuracy Binary accuracy AUC Specificty Sensitivity
mean 0.999264 0.999264 0.974184 0.999812 0.939016
std 0.000230 0.000230 0.008255 0.000072 0.018514
min 0.998607 0.998607 0.956402 0.999574 0.901336
25% 0.999184 0.999184 0.968939 0.999759 0.927588
50% 0.999331 0.999331 0.973982 0.999836 0.938238
75% 0.999403 0.999403 0.979575 0.999862 0.948270
max 0.999657 0.999657 0.990752 0.999934 0.976834
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Figure 25. Training IOU_score
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Figure 26. Focal+Dice Loss

Train Test Valid

Accuracy 0.999545 0.999485 0.999671

Binary Accuracy 0.999545 0.999485 0.999671

AUC 0.981519 0.999047 0.999875

Specificity 0.999788 0.999668 0.999818

Sensitivity 0.929511 0.960885 0.963076
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Figure 27. UHI model performance
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Figures 28 and Figure 29 show how the Unet Inception and Resnet Models predict.

Figure 28. Mask prediction and BBox using Dense-ED-UHI: encoder decoder based unet
hybrid inception (proposed model)

Figure 29. Comparison with other state of the art backbone (Resent50)

4.4. Comparative analysis

The comparison Table 12 illustrates how the Dense-ED-UHI model fared better than
other evaluated models when specificity and accuracy were taken into account.

The model put out by [21] outperformed earlier research, achieving a sensitiv-
ity of 80.32% and a specificity of 99.83% across many datasets. In their analysis
on the e-ophtha dataset for exudates identification, Chudzik et al. [9] found that
specificities were higher than 99.97% and sensitivities ranged from 84.58% to 86.66%.
Li et al.’s [23] work on the DDR dataset revealed an accuracy of 82.84%, whilst Play-
out et al.’s [32] research attained a sensitivity of 80.02% and a specificity of 82%.
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Xia et al. [44], in comparison, obtained 82% sensitivity and 98.3% specificity on the
CHASE dataset and 81.2% sensitivity and 98% specificity on the DRIVE dataset.
Sensitivities and specificities were found to be between 80 and 83% in Oh et al.’s [27]
research using ETDRS datasets.

Table 12
Comparative study

Study Dataset Sensitivity Specificity Accuracy

Imani et al. [21]
HEIMED, e-ophtha,
DIARETDB 80.32% 99.83% –

Chudzik et al. [9] e-ophtha (exudates) 86.66% 99.98% –

Chudzik et al. [10] e-ophtha (exudates) 84.58% 99.97% –

Playout et al. [32] e-ophtha (exudates) 80.02% – 82%

Li et al. [23] DDR – – 82.84%

Xia et al. [44]
DRIVE 81.2% 98% 95.4%

CHASE 82% 98.3% 97%

Oh et al. [27]
ETDRS 7SF 83.38% 83.41% 83.3%

ETDRS F1-F2 80.60% 80.61% 80.6%

5. Discussion

The presented research focuses on addressing the challenges of diabetic retinopathy
(DR) through a novel approach employing a combinative method utilizing U-Net
with a modified Inception architecture. One of the leading causes of visual impair-
ment worldwide is diabetic retinopathy, for which prompt identification is essential to
successful treatment. Deep neural architecture, notably encoder-decoder modelling
using convolutional architectures like Inception and Residual Connection, is included
into the suggested model. To improve performance in image processing tasks like
semantic segmentation or image-to-image translation, the U-Net and Inception ar-
chitectures are combined. Prominent for its effectiveness in semantic segmentation,
the encoder-decoder structure of the U-Net architecture allows for accurate localiza-
tion. Conversely, GoogLeNet’s Inception design, which minimises computational cost
by using convolutional filters of different widths inside a single layer, is excellent at
collecting multi-scale information. By combining these designs, Inception modules
are added to the U-Net encoder (3 and 4), improving feature extraction at various
scales. Similar changes are made to the decoder, where layers of upsampling combine
with feature concatenation from scale-matched encoder features. Most importantly,
skip connection retention guarantees gradients and spatial information are preserved
during training. The last layers are customized for each job; for pixel-wise predic-
tions, they usually consist of convolutional layers followed by sigmoid or softmax
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activations. This combination combines the multi-scale feature extraction power of
Inception with the accurate localization expertise of U-Net to provide better results,
especially in applications where collecting data at several sizes is critical.

The efficiency of the modified Inception deep feature extractor is shown by the
study’s validation on the IDRid APTOS 2019 contest dataset, which produced an
exceptional classification accuracy of 94.21% across classes, outperforming the com-
parison with Resnet. The suggested model attains a segmentation test accuracy of
99.90% on the IDRid dataset across various classes, surpassing Resnet. Specifically, it
achieves testing accuracies of 92.62% for retinopathy grade classification and 95.80%
for DME classification. Moreover, the model demonstrates mean accuracies of 99.89%,
99.84%, 99.96%, and 99.97% for Hard Exudates, hemorrhage, Microaneurysms, and
Soft Exudates respectively. A hybrid dense-ED-UHI model, an encoder-decoder-based
U-Net with an inception architecture, is used in the article. It is cross-validated 15
times across four classes of IDRID dataset.

The model performs very well; the haemorrhages dataset examination confirms
this, with mean accuracy and binary accuracy reaching 99.84%. The model is suc-
cessful in identifying true positives and negatives, as seen by the AUC and sensitivity
values, which highlight the model’s accuracy in differentiating between advantageous
and harmful scenarios. In the context of DR classification systems, the research em-
phasizes the relevance of the custom U-Net model with Inception architecture and
a novel up-sampling technique employing pixel-wise periodic shuffling convolution.
The comprehensive validation of the proposed framework against extant literature
presents it as a promising advancement that might lead to better outcomes and ther-
apies for people with visual impairment worldwide. When it comes to particularity
and accuracy, the Dense-ED-UHI model performs better than the other models that
were assessed. The dataset’s ability to properly identify and distinguish retinal dis-
orders is supported by its excellent accuracy scores. Because of the model’s proven
specificity, false positives are less likely to occur and unfavourable instances are ac-
curately recognised. Together, these results highlight the Dense-ED-UHI model’s
effectiveness and dependability, highlighting its potential for accurately classifying
retinal disorders.

Lastly, with regard to microaneurysms, the mathematical models show remark-
able precision and binary accuracy. With a 99.96% median accuracy, AUC values,
sensitivity values, and correct classification of unfavourable situations, the model
demonstrates its ability to discriminate between advantageous and harmful cases
while effectively identifying true positives. The high sensitivity values demonstrate
even more how well the model categorises unfavourable situations. The study report
concludes by presenting a unique strategy for treating diabetic retinopathy using an
advanced combinative technique. The suggested approach, verified on many datasets,
has exceptional precision and efficacy in categorising retinal disorders, presenting en-
couraging opportunities for enhanced identification and management in the worldwide
context of visual impairment.
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6. Conclusion

Although one is caused by ageing and the other by varied reasons, diabetic retinopa-
thy is complicated, multifaceted diseases, and our understanding of these diseases is
continually changing. Our systems of categorising these have undergone numerous
revisions over time, and they have had to be revised and updated to keep pace with
medical knowledge and technological developments. A new classification system must
consider the tremendous advancements made in the last few decades in disease patho-
physiology, imaging technologies, artificial intelligence, and treatment. In the training
set as well as the test set, the accuracy of the model was 92.5%, demonstrating its
capacity to make accurate assumptions about unobserved data. At 99.66% on the
test set, the level of sensitivity, or real positive rate, is also incredibly high. The
simulations exhibit remarkable accuracy for the examination of hard exudates, with
an average precision of 99.93%. The sensitiveness scores, with a mean sensitivity of
92.94%, show how well the models can detect true positives. The models’ high ability
to differentiate among both positive and negative situations is reflected in the AUC
values, which range from 0.9426 to 0.9827. The precise classification of adverse cases
by the models is highlighted by their elevated specific values, which range from 0.9996
to 0.9999. The data analysis indicates that the models are effective in recognising and
categorising exudates that are hard overall.

The hypotheses performed exceptionally well in the evaluation of the haemor-
rhages dataset, with a mean accuracy and binary accuracy of 99.93%. The AUC
values, which range from 0.9564 to 0.9908, show how well the models can distinguish
between both benign and detrimental cases. The algorithms’ extremely sensitive val-
ues, which range from 0.9013 to 0.9768, indicate their accuracy in detecting genuine
positives. The precise classification of negative cases by the models is highlighted by
their elevated sensitivity values, which range from 0.9996 to 0.9999. These findings
show that the algorithms are capable of identifying and categorising haemorrhages
The new DR classification systems make use of a customised UHI or U-Net model
to conceptually segment using Inception as a spatial up-sampling method that uses
pixel-wise periodic shuffling convolution. It has been thoroughly validated by compar-
ison to the body of literature and should lead to better treatments and results for the
millions of individuals who suffer from visual loss globally. In terms of correctness and
accuracy, the Dense-ED-UHI: Encoder Decoder based Unet Hybrid Inception models
scored better than other models that were evaluated. High accuracy ratings were at-
tained, demonstrating the datasets’ capacity to appropriately diagnose and separate
the retinal diseases. The algorithm furthermore showed good specificity, demonstrat-
ing its capacity to accurately recognise the adverse cases (non-pathological areas) and
prevent false positives. These findings demonstrate the efficiency and dependability
of the Dense-ED-UHI: Encoder Decoder based Unet Hybrid Inception framework for
segmenting retinal disease.

The mathematical models are highly accurate and binary accurate when it comes
to microaneurysms, with a median accuracy of 99.93%. The AUC numbers, which
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range from 0.9564 to 0.9908, show how well the models can distinguish among both
beneficial and detrimental cases. The sensitive values, which range from 0.9013 to
0.9768, show how well the models are able to detect true positives. The precise
classification of unfavourable cases by the models is highlighted by their elevated
sensitivity values, which range from 0.9996 to 0.9999. The Dense-ED-UHI: Encoder
Decoder based Unet Hybrid Inception structure’s ability to use the structure known
as Inception and gather global as well as local pigment data within the image which
constitutes one of its main advantages. This enables the model to effectively record
fine details in retina pictures by utilising multi-scale characteristics.

In conclusion, segmenting retinal disease can greatly benefit from the application
of deep learning models, particularly the UHI system and the possible integration of
the Classification network for broad category classification. These simulators have
proven to be highly accurate, durable, and capable of automating and assisting in the
early identification and recognition of retinal disorders. Continuing this field’s study
and development could result in better healthcare.
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