
Ea
rly
bi
rd

Computer Science • 25(3) 2024 https://doi.org/10.7494/csci.2024.25.3.5964

Chafika Djaoui
Allaoua Chaoui

FORMALIZATION AND ANALYSIS OF UML
2.0 INTERACTION OVERVIEW DIAGRAM
USING MAUDE REWRITING LOGIC
LANGUAGE

Abstract The visual modeling language UML embodies object-oriented design principles.

It provides a standard way to visualize the design of a system. It exploits a rich

set of well-defined graphical notations for creating abstract models. However,

the power of UML is lessened through partially specified formal semantics. In-

deed, UML notations are semi-formal and do not lead to fully formalized and

executable semantics. Fortunately, UML diagrams are prone to early formal-

ization. Formal methods are a valuable tool that can help overcome the UML

constructs’ shortage of firm semantics. It is a powerful way to ascribe pre-

cise semantics to the graphical notations used in UML diagrams and models.

Our work aims to support the semantics of the UML Interaction Overview Di-

agram. It introduces an approach to leveraging the strengths of the Maude

Rewriting Logic language as a formal specification language. The proposal re-

lies on a model-driven engineering approach. It aims to automate the UML

Interaction Overview Diagram’s mapping to a Maude language specification.

The Maude language and its linked tools, including the Maude Model Checker,

are used to analyze and verify the resulting Maude specification. Finally, an

application example shows the feasibility and benefits of the proposed approach.

Keywords UML Interaction Overview Diagrams, formal methods, rewriting logic, Maude

language, Model-Driven Engineering (MDE), EMF, Sirus, Acceleo

Citation Computer Science 25(3) 2024: 1–23

Copyright © 2024 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

1

https://doi.org/10.7494/csci.2024.25.3.5964
https://creativecommons.org/licenses/by/4.0/

Ea
rly
bi
rd

2 Chafika Djaoui, Allaoua Chaoui

1. Introduction

Since its outset, the Object Management Group UML standard has become a general-

purpose modeling language and a vital component of the Object-Oriented systems

industry [31,32]. It has considerably influenced the specification and development of

object-oriented software systems. UML offers a standardized and visual approach to

portraying the design and architecture of software systems. It encompasses a variety

of simple graphical and textual representation techniques in different phases of the

system development cycle. These representation techniques allow the construction

of abstract representations (called models), which facilitate the development process

and reduce the complexity of the produced system [25].

UML is a semi-formal language rich in syntax and imprecise in semantics. The

software developers cannot deny the significant gap between syntax and semantics in

the UML-built models. Although the semi-formal nature of UML is an upbeat factor

for its convenience and practicality [6], the correctness checking of models requires a

firm semantics foundation. The solid semantics foundation caters to a rigorous study

of UML diagrams and provides improved accuracy in reasoning about their properties.

Nowadays, systems are getting more complicated and need ways to predict problems

early in the development process. Anticipating fault detection leads to a successful

system specification with low cost and high quality. Hence, it is advisable to map the

semi-formal UML notations to concise notations to inspect efficiently whether a model

meets the designer’s intentions [7]. Formal methods and mathematical techniques are

the more powerful approaches that lead to efficient ways to enhance the analytical

capabilities of the UML notations.

The OMG has supervised a massive revision of UML 1.X [13], to enlarge the

language expressiveness and relevance [34]. Indeed, UML has been revised noticeably

through its successive versions (it has now reached version 2.5). UML Version 2.0 has

improved the control flow views [19] through a new variant of interaction diagrams

called Interaction Overview Diagram (IOD).

An IOD is a two-level behavioral diagram that covers the overall concepts and

notations of the Activity Diagram (AD). It highlights interactions within the system

and illustrates the control flow at a high level of abstraction. It is a variant of

the AD that entails various components, such as interactions, control nodes, and

decision points at the top level, also known as the overview level. However, the

interaction level (lower level) incorporates detailed interaction diagrams that enable

more explicit venturing of specific interactions when needed. An IOD serves as a

workflow, business process viewer, or use case that requires more than one interaction

diagram to represent multiple flows within a system. Therefore, an IOD is useful

for decomposing and modeling complex scenarios that entail the representation of

many alternatives in a single diagram. At variance to AD, IOD makes explicit which

objects or actors perform activities and how they exchange messages with each other.

Being a semi-formal language, IOD comes with imprecise semantics that can lead

to misinterpretation, faulty comprehension, and errors. Hence, it is necessary to

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 3

translate the IOD into a precise specification that can be verified and analyzed through

execution.

This work presents an approach to assigning formal semantics to the IOD. It

introduces a general semantic framework for formalizing the IOD in a rewriting logic-

based formalism. Accordingly, the IOD core constructs are staffed with precise and

formal definitions. We exploit Rewriting Logic (RL) and the Maude language as a firm

notation that supports the formal specification of a range of modeling languages [26].

Maude and its associated mathematical tools emerge as a three-part benchmark: a

declarative programming language, an executable specification language, and a formal

verification framework [10]. Indeed, the Maude tool is suitable for formal specifica-

tion and early model correctness analysis [9]. In this paper, we propose a mapping

from the semi-formal IODs notations into a mathematically equivalent specification

in the Maude language. The Maude specifications allow for either execution through

simulation or verification using the underlying Maude tools. To reach our goal, we

propose to use the model-driven engineering (MDE) approach that relies on meta-

modeling and model transformations. We employ well-known standards and tools on

the Eclipse platform to automate our approach. Our automatic transformation-based

approach has the advantage of reducing design errors at the early stage of software

development with low cost and time efficiency. Concretely, our work includes the

following contributions:

• We propose a simplified EMF meta-model for IODs. Then, we generate a visual

modeling environment to edit and manipulate instances of the IOD’s meta-model.

• We define Acceleo templates for mapping IOD notations to a corresponding

Maude specification, ensuring automatic Maude code generation.

• We implement a Maude-language executable semantic framework. Hence, we

validate the correctness of the semantics of the specified IODs by simulation or

verification using the Maude model checker

The rest of the paper follows the upcoming sections: Section 2 summarizes an

overview of related works. Section 3 addresses the IOD’s key concepts. We recall

RL and the Maude language in section 4. The ensuing section outlines the IOD

formalization using Maude language as a mathematical framework. In Section 6, we

describe the MDE-based approach. Next, we delineate the implementation of the

Case study. The last section concludes the paper and gives some perspectives on this

work.

2. Related works

UML is widely used as a versatile modeling language for system specification, with a

broad scope to represent different domains. However, the UML semantics are infor-

mal and unclear, leading to varied interpretations. Strict verification and tool support

are only limited to syntactic issues [20]. The previous concerns led the UML formal-

ization research stream to define the hidden semantics under UML diagrams using

Ea
rly
bi
rd

4 Chafika Djaoui, Allaoua Chaoui

formal methods that bridge the gap between UML syntax and semantics. Due to this,

many works have attempted to combine the strengths of formal methods and UML

flexibility.

In the literature, most of the approaches have shared the idea of transforming

UMLmodels into semantic domains that own verification tools such as Petri Nets [4,5].

SPIN and its underlying verification tool PROMELA, are worth citing [23]. Unlike

other UML diagrams, the IOD has not been extensively covered. A few research

studies dealt with its formalization. To address the semantic deficiency of the IOD

authors have exploited the stochastic process algebra PEPA nets in [22]. Whittle [36]

has developed a simulation environment for building and evaluating the semantics of

IOD structures using hierarchical finite state machines. The research work in [1] has

described a method that transformed IOD to Time Petri Net with energy constraints.

It has performed an early analysis and validation of the embedded real-time systems’

time and energy conditions. Tebibel’s studies [3, 6] have attributed formal semantics

to IOD by a translation to (HCPNs). Besides the IOD control flow semantics formal-

ization, they exploited CPN tools for the resulting HCPNs simulation and analysis.

An attempt [24] has been made at formalizing the hierarchical use of IOD, by ex-

tending the work presented in [3] using timed CPNs. The approach presented in [2]

has taken full advantage of the rich description in combining different interaction

nodes into IODs. Some constructs of IODs have been formalized using a temporal

logic called TRIO. Further, the authors have verified some user-defined properties

by semantics’ implementation in the Zot tool. The proposed approach in [12] has

provided a Maude language formalization of UML IOD, with elementary interaction

nodes. An automatic translation implementing the proposed formalization has been

developed in the AToM3 tool [11]. Subsequently, the yielded Maude specification can

be validated through simulation using the Maude system.

This paper proposes an automatic approach for formalizing UML IOD models,

using the RL Maude language by integrating insights from two previous research

works, namely [12] and [21]. The latter proposed a formalization of UML AD in the

Maude language. It has treated the control nodes in UML ADs, which are chiefly

similar to the overview level in UML IOD since an IOD is a variant of an AD. At

the interaction level, our work revises and extends work [21] by introducing multiple

complex interaction scenarios with nested combined fragments (CFs). Indeed, CFs

model concurrent behaviors that complicate the analysis of the interaction nodes.

Through this work, we intend to translate the IOD into a unified logical and semantic

framework. That framework allows a rigorous and well-founded formal analysis to

ensure the correctness and reliability of UML-based software systems.

Compared to other approaches, the primary advantage of our work lies in the

versatility and universality of the Maude mathematical notations. Maude has good

representational capabilities, which allow the integration of all concepts and notions

of a language in a single semantic framework. Indeed, Maude does not use any

linguistic construction that warps and hides the specific characteristics of each lan-

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 5

guage or domain. ”Everything in the Maude specifications is a direct definition of

the language” [14]. A Maude specification is executable. Therefore, Maude gives a

formal executable specification to non-executable semi-formal UML models. More-

over, Maude boasts a highly extensible software infrastructure that functions as a

mathematical environment. Within this framework, users can leverage a plethora of

analysis techniques. Specifically simulation, model checking of invariants, and lin-

ear temporal logic (LTL) model checking, to effectively validate or verify properties

inherent in Maude executable specifications.

3. Interaction overview diagram constructs

An IOD is a behavioral diagram in UML 2.0. It gives a complete, high-level abstract

view of a system under development by showing the flow of interactions between its

components. It is a two-level diagram that strikes a balance in providing a broad

understanding of the system’s control flow and enabling in-depth exploration of spe-

cific interactions when required. It is adequate for yielding an overview of the flow of

control, including synchronization, conditional branching, and activity concurrency.

Further, it represents the interactions between different objects/actors in the system

and pictures the overall dynamics of the system in a single diagram. Being a two-

level diagram, an IOD helps designers manage the complexity of broad systems by

decomposing the information into modular and understandable components. Thus,

identifying potential issues early in the design process makes it easier to change the

system to meet the requirements and save time and effort. An IOD shares the general

structure of an AD to model the overview level of the system flow and describes inter-

actions within the system using interaction diagram nodes that illustrate the invoked

activities or operations.

Syntactically, see Figure 1, an IOD is a connected graph that uses UML AD con-

trol constructs. (Initial, Decision, Merge, Fork, Join, and Final nodes) to illustrate

control flow at the overview level. Instead of Activity elements, it uses rectangu-

lar elements to represent interaction nodes that display UML interaction diagrams.

An interaction node can be any diagram of the four interaction diagram types (Se-

quence, Timing, Communication, or another interaction diagram). In this work, we

are interested in IODs where interaction nodes are UML Sequence Diagrams (SDs).

The utilization of SDs as interaction nodes simplifies the design process and focuses

on a sequence of execution for different interactions in the system [29]. Interactions

comprise, at the Interaction level, a set of lifelines. Each lifeline symbolizes a role

attributed to an object/actor associated with a pertinent class in the system. Inter-

actions over time are depicted as methodical, top-down-arranged messages, visually

represented by arrows leading from the source lifeline to the target lifeline

Further, interactions can be regrouped compactly and concisely with Combined

Fragments (CFs). CFs (loop, alternative, Option, etc...) define multiple types of

control flows using an operator and one or more interaction operands.

Ea
rly
bi
rd

6 Chafika Djaoui, Allaoua Chaoui

Transition FinalNode Initial Node Join Node ForkNode Merge Node Decision Node

Cnd1

Cnd2

Cnd3

SD Name

Obj1 :Cls1

Operator

Obj2 :Cls2

Msg3 : Response

Msg2 : synchronous

Msg1 : Asynchronous

Msg4

Msg5

[Guard Condition]

[Guard Condition]

Interaction Node

Combined

Fragment

Interaction

Operand

Interaction

Operator

Lifeline

O
v
er

v
ie

w
 l

ev
el

In
te

ra
ct

io
n
 l

ev
el

Figure 1. Interaction Overview Diagrams Constructs

The interaction operator shows the logic of the fragment. It describes the seman-

tics of the CF and determines how to use its interaction operands. An interaction

operand is a container that groups the interaction fragments and messages exchanged,

assuming the guard condition(s). Table 1 provides information on some types of op-

erators and their corresponding descriptions.

Table 1
Some Combined Fragments Operators

Operators Description

Alt Alternative: It represents a choice of behavior (among several operands).

Option: It represents the choice of behavior. It has only one operand to

Opt be selected if the guard condition is evaluated to true. Otherwise, the

execution flow skips the behavior

It represents a breaking scenario. It has one operand with guard condition.

Break If the guard is true, the operand is chosen, and the rest of the enclosing

interaction is skipped. Otherwise, the Break operand is ignored, and the

rest of the enclosing interaction is selected.

Par Parallel: It represents the parallel execution of behaviors described within its

operands.

Loop It represents an iterated execution of behavior a defined number of times

or when a guard condition is evaluated as false.

Strict Strict Sequencing: It defines the strict ordering of the operands.

Neg Negative: It represents a set of negative traces that occur when the

system has failed.

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 7

4. Rewriting logic & Maude language

This section presents Rewriting Logic (RL) and the underlying Maude language.

Since its introduction as a unifying framework for concurrency, RL has proven its

completeness and suitability as an ideal logic for the specification and analysis of

concurrent systems, where concurrent computation is precisely represented by logical

deduction [27]. It is an executable semantic framework where different computational

models can be specified and executed. More precisely, it is excellent support for giving

precise semantics to a variety of concurrent model notations by assigning fully defined

formal executable specifications.

A specification in RL is named rewriting theory. Essentially, a rewriting the-

ory includes a signature (which makes up an equational theory) and a set of labeled

(conditional) rewriting rules. The signature characterizes the static structure of the

system (data structures and operations on them), whereas rewriting rules model the

dynamic of the system features [30]. Based on rewriting logic, Maude is a math-

ematically well-founded declarative specification and programming language where

the basic units of specification and programming are theories in RL [28]. The Maude

system supports algebraic specification execution and formal analysis technique ap-

plication. A Maude program (called a Maude module) is precisely a rewriting theory

satisfying elementary execution conditions. The calculation in Maude involves logical

inference through rewriting. Maude’s modules are user-definable and are of two types:

• The functional module defines the system’s static aspect as an equational theory.

It is a specification in membership equational logic, where data types are declared

and operations that act upon them are defined in a precise and rigorous way.

• system module specifies the behavior of a system. It models the dynamics of

concurrent systems as a set of rewriting rules that describe local transitions

between states [8].

Besides its expressiveness, Maude provides formal reasoning capabilities, includ-

ing automatic validation and verification tools. For system specification verification,

Maude supports the model-checking technique. Nowadays, it is the most popular tech-

nique used to prove that a system has no faults and meets its specifications. Maude’s

model checker is a Linear Temporal Logic properties (LTL properties) verifier. Under

the right conditions, the Maude model checker tool can verify LTL properties over

a logical finite state space [15]. The result of the verification can either be:

• A fix point (a finite state space) is reached, and the formula is fully verified.

• Conversely, an actual counter-example is offered, proving the violation of the

property in question.

5. Formalization of IOD diagrams using Maude language

This section showcases the UML IOD formalization using Rewriting Logic and Maude.

By formalizing, we intend to permit the verification and validation of UML diagrams

based on the analysis results obtained from the equivalent Maude specifications. To

Ea
rly
bi
rd

8 Chafika Djaoui, Allaoua Chaoui

formalize the UML IOD using Maude language, we have first defined a Basic IOD

functional module that represents the static aspect of UML IOD described using basic

types and operations on them. This module is shown in Figure 2.

fmod BASIC-IOD is
including STRING .
sort IOD-Config .
op none : -> IOD-Config(ctor) .
op __ : IOD-Config IOD-Config -> IOD-Config(assoccomm id: none) .
***** sort of activity chart : the overview level
Sorts NodeName NodeType IntractionName Interaction .
ops Initial Final : ->NodeName .
ops InitialNode FinalNode : ->NodeType .
op<_:_> : NodeName NodeType -> IOD-Config .
op[_|_] : IntractionName Interaction -> IOD-Config .
ops Start End : -> Interaction .
 ***** Definition sort and operation of Interaction in SD Node
 *** object definition
sorts Object Oid ObjType .
ops Actor Obj : ->ObjType .
op _:_ : Oid ObjType -> Object .
*** message definition
Sorts Msg MsgId MsgType .
Ops Syn Asyn Rep : ->MsgType .
op _:_ : MsgId MsgType ->Msg .
*** exchanged and sanding Message :an interaction between objects.
Sort MsgSending .
Subsort MsgSending<Interaction .

op<_,_,_> : Object Msg Object ->MsgSending .

*** Combined Fragment definition

Sorts CombFragment OperdName Condition .

Subsort CombFragment<Interaction .

subsort String <Condition

op Par{_:_} : OperdName MsgSending ->CombFragment .

op Par{_:_} : OperdName CombFragment ->CombFragment .

op Opt{_:_} : Condition MsgSending ->CombFragment .

op Opt{_:_} : Condition CombFragment ->CombFragment .
op Alt{_:_} : Condition MsgSending ->CombFragment .
op Alt{_:_} : Condition CombFragment ->CombFragment .

**** Loop definition
sort LoopStatus .
ops Entry Exist : ->LoopStatus .
op Loop{_,_,_:_} : Nat Nat Condition LoopStatus ->CombFragment .

op Loop{_,_,_:_} : Nat Nat Condition MsgSending ->CombFragment .

op Loop{_,_,_:_} : Nat Nat Condition CombFragment ->CombFragment.

endfm

Figure 2. Basic Interaction Overview Diagram Functional Module

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 9

In the Basic IOD module, we define a new type called ’IOD Config’ that rep-

resents the current nodes of an IOD diagram instance (execution occurrence). The

’none’ constant denotes the empty configuration in an IOD. In our approach, current

nodes are the Initial node, Final node or interaction node. To specify the initial node

and final node, we define the operation ” < : > ”. The first parameter of this

operation is a constant of the ’NodeName’ sort which represents the name of the node,

whereas the second one is used to specify the type of the node, which can be ’initial

Node’ or ’final Node’.

The interaction nodes in IOD are defined by the operation ”[|]”, where the first
parameter of this operation is the name of the interaction node, whilst the second one

is used to represent an interaction inside the node (message passing between objects).

We have also defined in the second parameter two flag values (constants) denoting

the beginning of the invocation (”Start”) and the end of the invocation (”End”) of

the interaction node.

The control flow between interaction nodes in the overview level is formalized

using rewriting rules. Rewriting rules represent transitions firing or controlling nodes

with their conditions. We note the proposed overview level formalization is adapted

from [21] that formalizes UML AD using Maude language. Table 2 summarizes the

rewriting rules corresponding to the principal structures of the overview level.

Interaction nodes in the interaction level of the IOD emphasize object interac-

tions. An interaction node contains lifelines (object/Actor) and exchanged messages

to represent a single scenario as a smaller SD.

To describe the sending of messages between objects in Maude, we have created

two general sorts, called (”Object” and ”Msg”). The first one is defined using the

operation ” : ” where the first parameter is a constant of the ”Oid” sort that represents

the object name, whereas the second one is used to specify the object type. The

”Msg” sort displays a message defined by the operation ” : ” that denotes the ”id”

of the message in the first parameter and the type in the former. An exchanged

message (a simple interaction) is outlined with the operation ”< , , > ” (defined in

”MsgSending” sort) where the first parameter is the sender object, the second is the

message sent, and the last one is the receiver object. Since sent messages are attached

to the name of the interaction node where they participate, ”MsgSending” types are

declared as sub-sorts of the ”Interaction” sort, which is the current interaction.

Furthermore, interactions in IOD diagram can be represented in a compacted

form using Combined Fragments (CFs). A CF is defined by an operator which specifies

how the operands will be executed. In our approach, we define for each CF operator

an operation in Maude (as shown in Basic IOD module in Figure 2). Table 3 depicts

the rewriting rules corresponding to each operator.

We note that these rules are valid even for interactions between three objects

and more, and the proposed formalization allows the nesting of the CFs.

Ea
rly
bi
rd

10 Chafika Djaoui, Allaoua Chaoui

Table 2
Mapping Control Structures to Maude

Interaction Overview Diagram

Overview Level
Corresponding Maude Rewriting Rules

Initial to SD

rl [Initial] : < Initial : InitialNode> => [SD1|Start] .

Initial to Fork Node

rl [Initial2Frk]: <Initial : Initial Node> => [SD1 | Start] [SD2 | Start] [SD3 | Start] .

SD to SD

rl [transition] : [SD1 | End] =>[SD2 | Start] .

SD to Final Node

rl [ToFinal] : [SD1 | End] =>< Final : FinalNode> .

Merge Node

rl [Merge] : [SD1 | End] => [SD4 | Start] .
rl [Merge] : [SD2 | End] => [SD4 | Start] .
rl [Merge] : [SD3 | End] => [SD4 | Start] .

rl [Merge] : [SD1 | End] =>< Final : FinalNode> .
rl [Merge] : [SD2 | End] =>< Final : FinalNode> .
rl [Merge] : [SD3 | End] =>< Final : FinalNode> .

Join Node

rl [Joint]: [SD1 | End] [SD2 | End] [SD3 | End] => [SD4 | Start] .

rl [Joint]: [SD1 | End] [SD2 | End] [SD3 | End] => < Final : FinalNode> .

Decision Node

rl [Decision_C1] : [SD1 | End {Cond}] => [SD2 | Start] .
rl [Decision_C2] : [SD1 | End {Cond}] => [SD3 | Start] .
rl [Decision_C3] : [SD1 | End {Cond}] => < Final : FinalNode> .

Fork Node

rl [Fork]: [SD1 | End] => [SD2 | Start] [SD3 | Start] [SD4 | Start] .

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 11

Table 3
Mapping Interactions to Maude

IOD lower level Corresponding Maude Rewriting Rules

Message Passing (Simple Message)

rl [SendMsg1] : [SD1 | Start] =>[SD1 | < Obj1 : Obj, Msg1 : Syn, Obj2: Obj>] .
rl [SendMsg2] : [SD1 | < Obj1 : Obj, Msg1 : Syn, Obj2: Obj>]
 => [SD1 | < Obj2 : Obj, Msg2 : Ans, Obj1: Obj>] .
rl [SendMsg3] : [SD1 | < Obj2 : Obj, Msg2 : Ans, Obj1: Obj>]
 =>[SD1 | < Obj1 : Obj, Msg3 : Asy, Obj2: Obj>] .
rl [endSD] : [SD1 | < Obj1 : Obj, Msg3 : Asy, Obj2: Obj>] => [SD1 | End] .

Alt Fragment

rl [SendMsg1] : [SD1 | Start] =>[SD1 | < Obj2 : Obj, Msg1 : Asy, Obj1: Obj>] .
*** Alt Condition 1 is true
rl [AltCond1] : [SD1 | < Obj2 : Obj, Msg1 : Asy, Obj1: Obj>]
 =>[SD1 | Alt {Cond1 : < Obj1 : Obj, Msg2 : Asy, Obj2: Obj> }] .
rl [AltCond1] : [SD1 | Alt {Cond1 : < Obj1 : Obj, Msg2 : Asy, Obj2: Obj> }] =>[SD1 | End] .
*** Alt Condition 2 is true
rl [AltCond2] : [SD1 | < Obj2 : Obj, Msg1 : Asy, Obj1: Obj>]
 =>[SD1 | Alt {Cond2 : < Obj1 : Obj, Msg3 : Asy, Obj2: Obj> }] .
rl [AltCond2] : [SD1 | Alt {Cond1 : < Obj1 : Obj, Msg3 : Asy, Obj2: Obj> }] =>[SD1 | End] .
*** Alt Condition 3 is true or else statement
rl [AltCond3] : [SD1 | < Obj2 : Obj, Msg1 : Asy, Obj1: Obj>]
 =>[SD1 | Alt {Cond3 : < Obj1 : Obj, Msg3 : Asy, Obj2: Obj>}] .
rl [AltCond3] : [SD1 | < Obj1 : Obj, Msg3 : Asy, Obj2: Obj>] =>[SD1 | End] .

Opt Fragment

rl [SendMsg1] : [SD1 | Start] =>[SD1 | < Obj1 : Obj, Msg1 : Asy, Obj2: Obj>] .

*** Opt Condition is True
rl [CondOptTrue] : [SD1 | < Obj1 : Obj, Msg1 : Asy, Obj2: Obj>]
 => [SD1 | Opt {Cond : < Obj1 : Obj, Msg2 : Asy, Obj2: Obj> }] .
rl […..] : [SD1 | Opt {Cond : < Obj1 : Obj, Msg2 : Asy, Obj2: Obj>}] =>[SD1 | End] .
*** Opt Condition is false
rl [CondOptFalse] : [SD1 | < Obj1 : Obj, Msg1 : Syn, Obj2: Obj>] =>[SD1 | End] .

Par Fragment

rl [ParFragment] : [SD1 | Start]
 => [SD1 | Par{Operend1 : < Obj1 : Obj, Msg1 : Asy, Obj2: Obj> }] .
 [SD1 | Par{Operend2 : < Obj1 : Obj, Msg2 : Syn, Obj2: Obj> }] .

rl [Par_Msg2] : [SD1 | Par{Operend2 : < Obj1 : Obj, Msg2 : Syn, Obj2: Obj> }]
 => [SD1 | Par{Operend2 : < Obj2 : Obj, Msg3 : Ans, Obj1: Obj> }] .

rl [EndPar] : [SD1 | Par{Operend1 : < Obj1 : Obj, Msg1 : Asy, Obj2: Obj> }]
 [SD1 | Par{Operend2 : < Obj2 : Obj, Msg3 : Ans, Obj1: Obj> }]
 => [SD1 | End] .

Loop Fragment

vars count max : Nat .
varcond : String .
rl [Start Loop] : [SD1 | Start] =>[SD1 | Loop{1,3, “Cond” : Entry}] .
*** Loop execution
crl [LoopMsg1] : [SD1 | Loop{ count, max, cond : Entry}]
 =>[SD1 | Loop{ count, max, cond : < Obj1 : Obj, Msg1 : Asy, Obj2: Obj>}]
 if (cond == "Cond") /\ (count < = max) .
rl [LoopMsg2] : [SD1 | Loop{ count, max, cond : < Obj1 : Obj, Msg1 : Asy, Obj2: Obj>}]
 =>[SD1 | Loop{ count, max, cond : < Obj2 : Obj, Msg2 : Asy, Obj1: Obj>}] .
*** Loop restart(with “Cond” OR “NotCond”)
rl[RestartLoopCond] : [SD1 | Loop{ count , max, cond : < Obj2 : Obj, Msg2 : Asy, Obj1: Obj>}]
 =>[SD1 | Loop{ count +1 , max, “Cond” : Entry] .
rl[RestartLoopNotCond] : [SD1 | Loop{ count , max, cond : < Obj2 : Obj, Msg2: Asy, Obj1:
Obj>}] =>[SD1 | Loop{ count +1 , max, “NotCond” : Entry}] .
**** Loop exist
crl [ExistWithoutLoop] : [SD1 | Loop{ count, max, cond : Entry}]
 =>[SD1 | Loop{ count , max, cond : Exist }] if (cond =/= "Cond") or (count > max) .
rl [EndLoop] : [SD1 | Loop{ count, max, cond : Exist]=>[SD1 | End] .

Ea
rly
bi
rd

12 Chafika Djaoui, Allaoua Chaoui

6. The MDE based approach

In this section, we outline the proposed MDE-based approach to transform the dy-

namic behaviors of systems expressed using UML IODs into their equivalent Maude

specification, by considering the defined formalization in Section 5. The approach

comprises a two-step process:

• The first step is to redefine a simplified meta-model for the IOD and build

a graphical editor for the diagram according to the proposed meta-model. To

fulfill this, we have offered the use of Eclipse Modeling Framework (EMF) [17],

which forms the basis for MDE on the Eclipse platform. Based on the proposed

IOD meta-model, we have used Sirius framework [18] to build a graphical mod-

eling editor for IOD.

• The second step is to prepare the generation of the equivalent Maude specification

of the IOD. For achieving an automatic and correct process of code generation,

we have proposed to use the Acceleo language [16] to define and implement the

transformations.

In the ensuing section, we unveil in detail our approach.

6.1. IOD Meta-Model

The development of modeling language requires providing both abstract syntax and

concrete syntax. Abstract syntax specifies the meta-model constructs, the associated

attributes, relationships, and constraints. The concrete syntax determines how the

previous constructs are connected and how they visually appear in a graphical ed-

itor. In this work, we deal with the formalization and model analysis of a subset

of the UML 2.5 meta-model concepts by using a simplified meta-model of the dia-

gram.. In Eclipse EMF, a meta-model is established in the Ecore format [33], which

is primarily a subset of UML class diagrams. We propose to meta-model the UML

IOD with the Ecore model shown in Figure 3. The root node of this meta-model

(named IOD Diagram) contains several nodes, namely (IOD Nodes), each modeling

either a control node (IOD ControlNode) or an interaction node (IOD InteractionN-

ode). These nodes are connected by edges (IOD edges). These edges can have guards

to conditionally branch the control control. There are several types of control nodes

for determining the flow direction. This follows the notion of UML AD. InitialNode,

FinalNode, DecisionNode, ForkNode, JoinNode and MergeNodes classes describe the

control flow at the overview level in the IOD. The interaction nodes are based on

the UML SD concepts. An interaction node consists of several interactions among

objects/actors. The lifelines (LifeLine class) display the interacting objects/actors by

exchanging messages (Message class). CFs (CombinedFragment class) are a compo-

sition of interactions defined by an interaction operator (which is specified through

the Type attribute), and embedded in corresponding interaction operands (the Op-

erator class). An operand can have interaction constraints (such as guards or loop

parameters for a loop operator).

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 13

Figure 3. Interaction Overview Diagram Meta-Model

Using the proposed Ecore model, we can generate a user-friendly tree-based editor

for the UML IOD modeling language. This editor allows easy editing and viewing

of model instances through EMF. To develop its graphical modeling editors, we use

the Sirius framework. Eclipse, EMF, and Sirius technology grant the creation of

customized graphical modeling environments. The users can create, visualize, and

update IOD models by using the custom modeling environment. (see the palette

toolbar in Figure 5).

6.2. Maude Code generation

The next step is to transform the UML IOD specification into its equivalent Maude

specification. According to the presented formalization in Section 5. The trans-

formation is performed by using the Acceleo transformation language. Acceleo is

a template-based technology. It includes tools for creating custom code generators

that allow the automatic generation of any code from a data source available in an

EMF format. Acceleo models faithfully translate the IOD formalization into corre-

sponding constructs in the Maude language. To establish Maude’s specification, we

have defined a set of atomic mapping rules from the elementary elements and struc-

tures in the source model into elementary constructs in the target model (as defined

in Section 5: Figure 2, Table 2, and Table 3). The Maude code generation process is

composed of a set of Acceleo templates. Figure 4 shows some templates.

Ea
rly
bi
rd

14 Chafika Djaoui, Allaoua Chaoui

[template public IOD2Maude (anIOD_Diagm : IOD_Diagm)]

[comment @main/]
-----Maude code generation of the overview level
 [file (anIOD_Diagm.Name.concat('.maude'),false,'UTF-8')]

mod [anIOD_Diagm.Name/] is
including BASIC-IOD .
[for (aIOD_InteractionNode :IOD_InteractionNode|anIOD_Diagm.eContents(IOD_InteractionNode))]

including [aIOD_InteractionNode.Name/] .
[/for]
Op [anIOD_Diagm.Name/] :-> IOD-Config .
Eq [anIOD_Diagm.Name/] = <Initial:InitialNode> .
--- Maude code generation of control flow between interaction nodes

[anIOD_Diagm.GenControlFlow()/]
endm

[/file]

-----Maude code generation of the interaction nodes level
 [for (anIOD_InteractionNode :IOD_InteractionNode|anIOD_Diagm.eContents(IOD_InteractionNode))]

[file (anIOD_InteractionNode.Name.concat('.maude'),false,'UTF-8')]

Mod [anIOD_InteractionNode.Name/] is

including BASIC-IOD .
---The objects/actors definition

[anIOD_InteractionNode.GenObject()/]
---The messages definition

[anIOD_InteractionNode.GenMessage()/]
---The CF definition

[anIOD_InteractionNode.GenCombinedFragment ()/]

--- Maude code generation of the interactions: messages exchange
op[anIOD_InteractionNode.Name/] :-> IntractionName.
[anIOD_InteractionNode.GenInteractions()/]
endm

[/file]

[/for]
 [/template]

[comment : GenControlFlow template: generation of control flow in Maude /]
[template private GenControlFlow (anIOD_Diagm :IOD_Diagm)]

--- code Maude generation of sequential transition
[for (aIODEdge :IOD_Edge|anIOD_Diagm.eAllContents(IOD_Edge)

->select(a|(a.source.oclIsKindOf(InitialNode) and a.target.oclIsKindOf(IOD_InteractionNode))

or (a.source.oclIsKindOf(IOD_InteractionNode) and a.target.oclIsKindOf(IOD_InteractionNode))

or (a.source.oclIsKindOf(IOD_InteractionNode) and a.target.oclIsKindOf(FinalNode))))]

[if aIODEdge.source.oclIsKindOf(InitialNode)and aIODEdge.target.oclIsKindOf(IOD_InteractionNode)]

rl ['['/]Initial]:<Initial:InitialNode>=>['['/][aIODEdge.target.Name/]|Start].
[elseif aIODEdge.source.oclIsKindOf(IOD_InteractionNode)andaIODEdge.target.oclIsKindOf(IOD_InteractionNode)]

rl['['/][aIODEdge.source.Name/]['-To-
'/][aIODEdge.target.Name/]]:['['/][aIODEdge.source.Name/]|End]=>['['/][aIODEdge.target.Name/]|Start].
[elseif aIODEdge.source.oclIsKindOf(IOD_InteractionNode)andaIODEdge.target.oclIsKindOf(FinalNode)]

rl['['/]ToFinal]:['['/][aIODEdge.source.Name/]|End]=><Final:FinalNode>.
[/if]
[/for]
--- code Maude generation of control nodes
[for (aIOD_ControlNode :IOD_ControlNode|anIOD_Diagm.eAllContents(IOD_ControlNode)

->select(a|not(a.oclIsKindOf(InitialNode)ora.oclIsKindOf(FinalNode))))]
[if aIOD_ControlNode.oclIsKindOf(ForkNode)] [aIOD_ControlNode.GenForkNode()/]

[elseif aIOD_ControlNode.oclIsKindOf(MergeNode)] [aIOD_ControlNode.GenMergeNode()/]

[elseif aIOD_ControlNode.oclIsKindOf(DecisionNode)] [aIOD_ControlNode.GenDecisionNode()/]

[elseif aIOD_ControlNode.oclIsKindOf(JoinNode)] [aIOD_ControlNode.GenJoinNode()/]
[/if]
[/for]
[/template]

[comment : GenObject template: generation of Objects/actors definitions in Maude /]

[template private GenObject(anIOD_InteractionNode : IOD_InteractionNode) post(tokenize('\n'))]

[if anIOD_InteractionNode.lifeline<>null]

ops

[for (aName : String|anIOD_InteractionNode.lifeline.Name->asSet())][aName/] [/for] :-> Oid .
[/if]
[/template]

Figure 4. Some Acceleo templates to generate Maude code

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 15

The templates browse the source model elements (instance of the UML IOD

metamodel) and generate the corresponding Maude code. The main Acceleo tem-

plate is named IOD2Maude(). It generates the equivalent Maude code for both levels

of the diagram: the overview level and the interaction level. For the overview level,

it generates a source Maude code file for the statements of the corresponding Maude

modules for each interaction node. After that, the GenControlFlow() template gener-

ates the Maude code for the control flow between the interaction nodes. The GenCon-

trolFlow() template first generates the equivalent rewriting rule for each sequential

transition firing. Afterward, according to the defined semantics, the appropriate tem-

plate is used to generate the corresponding rewriting rule(s) for each type of control

node. The main template generates a text file for each interaction node at the inter-

action level. The text file saves the resulting Maude code from the mapping of the

underlined interaction objects, messages, CFs and interactions by applying different

templates. For example, the GenObjet() template is applied for the generation of the

node-underlined object/actor Maude specification.

7. Case study

The efficiency of our approach is assessed through an online virtual bookstore [35]

example. A virtual bookstore is a digital framework that allows customers to purchase

books online. The bookstore typically has a wide selection of accessible books for

sale, which can be easily searched and filtered based on various criteria. Customers

can access the online bookstore through a front-end-user interface. They can enter

keywords to search for specific titles or authors, browse the books listed in the library,

view book details, and order books. To order books, customers can add books to their

shopping cart, view their orders, and make secure online payments. Figure 5 shows

an IOD that depicts the behavioral aspect of the online bookstore system. The IOD

portrays essential nodes, namely: initial, final, decision, merge, and four interaction

nodes (OrderBooks, ConnectToSystem, RegisterOrder, and OrderPayment). Each

interaction node includes a UML SD that involves three actors: the customer, the

lib interface (user interface), and the lib system control. The latter monitors the

overall operations of the online bookstore system. It carries out operations, including

inventory management and payment processing for books.

The diagram starts at the initial node and leads to the first interaction node that

models the book order. In this node, the system iterates over each keyword in the

search query and retrieves a list of matching books. Once the system has retrieved

a list of books for each keyword in the search query, it creates a new list of books that

fits all the keywords in the query. The last list is added to a search results set and

displayed to the user. Customers can cancel the order at any point before completing

the checkout process. In this scenario, the diagram concludes at the final node. Before

finalizing the order, the online bookstore invites the customer to log into his account

if he is not already logged in. For a new customer, the online bookstore asks him to

create a new account. Once a customer has connected to his account, he can complete

Ea
rly
bi
rd

16 Chafika Djaoui, Allaoua Chaoui

the order. He will confirm the details of his order in the RegisterOrder interaction

node by entering his shipping and billing information. Then, in the OrderPayment

interaction node, he makes the payment using a secure online payment system. The

OrderPayment interaction node introduces a new actor named CreditCardOperator.

This actor manages the responsibility of transaction payments between the bookstore

and the customer.

RegisterOrder

1: RegisterFinishedOrder
2: CustomerID&CardID

3: PendingOrderSummary
4: OrderSummary

CancelOrder CustommerConnected

Account

DataBase

CreditCard

Operator

1: CreditCard
Number&Pin

2: CardNumber&Pin alt

1: LoginWarning

3: CardNumber&Pin
[Login]

2: LoginUser
Log &Password

3: SendCredentials alt
4: Check 4: AutorizationCode

[PaymentApproved]
6: Package
TrackingNumber

5: TrackinCode

[Register]

9: LoginToNewAccount

6: CreateNewAccount

[PaymentDeclined] 7: InvalidCard

8: InvalidCard 9: InvalidCard &

PaymentDeclined

OrderBooks

LibInterface
Customer

LibSystem
Control

1: CreateShoppingCart

loop

[NoBookSelected]

2: Keywords

5: ListBooks 4: FoundBooksList

6: SelectedBook
7: AddToCartSelectedBook

opt

[Quantity>Stock]

loop

[Quantity>Stock]

9: BookQuantity
HierThanStockLimit

8: BookStockLimit

11: AddBookNewQuantity

12: OrderSummary
13: OrderSummary

[parameters]

10: BookNewQuantity

3: SearchBooks

CustommerNotConnected

OrderPayment
[parameters]

[parameters]

ConnectToSystem
[parameters]

LibInterface

5: Createaccount

7: UserLog&Passsword

8: AccountValid

LibInterface
Customer

LibSystem
Control

LibInterface
Customer

LibSystem
Control Customer

Figure 5. Specification of the Online Bookstore IOD

7.1. Generation of Maude specification

To thoroughly assess the virtual bookstore model, it is imperative to map it into its

equivalent Maude specification. The bookstore model Maude formalization follows

patterns and instructions specified in the Acceleo templates. Acceleo templates define

how to navigate the elements of the bookstore as the EMF input model and what code

to generate. After the Acceleo template execution, the corresponding Maude code to

the model of the virtual bookstore is generated. We have used Maude’s modularity

feature to generate separate Maude modules for the overview level and each interaction

node. Figure 6 shows the Maude system module of the OnlineBookStore IOD. It

outlines the Maude specification of the virtual bookstore model.

This module includes the Basic IOD functional module, where the static aspect of

the diagram (actors, messages, CFs, interactions) is declared using different types and

operators. Each interaction node’s code is also included by calling its corresponding

Maude module. In addition, this module defines the operator OnlineBookStore as

IOD-Config sort. It corresponds to the name of the IOD model. It also introduces

the OnlineBookStore equation to indicate the first state of the IOD’s execution. The

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 17

module ends with the equivalent rewriting rule(s) for each sequential transition firing

or control node.

 mod OnlineBookStore is

 including BASIC-IOD.

 including OrderBooks .

 including ConnectToSystem .

 including RegisterOrder .

 including OrderPayment .

 op OnlineBookStore : -> IOD-Config .

 eq OnlineBookStore = < Initial : InitialNode > .

 --- The control flow between interactions

 rl [Initial] : < Initial : InitialNode > => [OrderBooks | Start] .

 rl [Decision-CancelOrder] : [OrderBooks | End] => < Final : FinalNode > .

 rl [Decision-CustomerNotConnected] : [OrderBooks | End] => [ConnectToSystem | Start] .

 rl [Decision-CustomerConnected] : [OrderBooks | End] => [RegisterOrder | Start] .

 rl [ConnectToSystem-To-RegisterOrder] : [ConnectToSystem | End] => [RegisterOrder | Start] .

 rl [RegisterOrder-To-OrderPayment] : [RegisterOrder | End] => [OrderPayment | Start] .

 rl [ToFinal] : [OrderPayment | End] => < Final : FinalNode > .

endm

Figure 6. The Generated OnlineBookStore System Module: the overview level of IOD

Each interaction node is depicted in a different system module. For example, The

RegsterOrder system module, shown in Figure 7, contains the rewriting rules specify-

ing interactions (exchanging messages) between different objects in the RegisterOrder

interaction node.

mod RegisterOrder is

including BASIC-IOD .

 --- The objects

 ops Customer LibInterface LibSystemControl : -> Oid .

 --- The OrderSummary messages

 ops RegisterFinishedOrder CustomerID&CardID PendingOrderSummary OrderSummary : -> MsgId .

 --- The interaction

 op RegisterOrder : -> IntractionName .

 rl [RegisterFinishedOrder] : [RegisterOrder | Start]

 => [RegisterOrder | < Customer : Skm , RegisterFinishedOrder : Syn , LibInterface : Obj >] .

 rl [CustomerID&CardID] : [RegisterOrder | < Customer : Skm , RegisterFinishedOrder : Syn , LibInterface : Obj >]

 => [RegisterOrder | < LibInterface : Obj , CustomerID&CardID : Syn , LibSystemControl : Obj >] .

 rl [PendingOrderSummary] : [RegisterOrder | < LibInterface : Obj , CustomerID&CardID : Syn , LibSystemControl : Obj >]

 => [RegisterOrder | < LibSystemControl : Obj , PendingOrderSummary : Syn , LibInterface : Obj >] .

 rl [OrderSummary] : [RegisterOrder | < LibSystemControl : Obj , PendingOrderSummary : Syn , LibInterface : Obj >]

 => [RegisterOrder | < LibInterface : Obj , OrderSummary : Syn , Customer : Skm >] .

 rl [RegisterOrderEnd] : [RegisterOrder | < LibInterface : Obj , OrderSummary : Syn , Customer : Skm >]

 => [RegisterOrder | End] .

endm

Figure 7. The Generated RegisterOrder System Module

From the RegisterOrder Interaction Node

Ea
rly
bi
rd

18 Chafika Djaoui, Allaoua Chaoui

7.2. Simulation

We invoked the RL Maude system to perform the resulting Maude specification anal-

ysis by simulation. The simulation process involves evolving the system to observe its

behavior. In the Maude system, the simulation is composed of iterations where the

initial state of the diagram changes by applying one or more rewriting rules. Besides

the generated file, the user can limit the number of rewriting steps in the simulator

if (s/he) wants to check intermediate states. Otherwise, the simulator continues the

simulation operation until reaching a final state for a correct design. The results of

the simulation of the library Maude specification are presented in Figure 8. We notice

that when the simulator starts from the initial node, the final node is reached.

Figure 8. The Simulation of the Virtual Bookstore IOD within Maude System

7.3. Verification and analysis

This section illustrates the use of the Maude LTL model checker to perform the

verification and analyses. LTL is a formalism for expressing system properties using

predicates. As Maude supports equational logic, the LTL properties are expressed

using equations. To verify a property, We need to define it manually. After its

definition, the property is embedded in the specification module, where the system

and its behavior are defined. Consider the virtual bookstore specification in the

example. A temporal property that the specification must satisfy is termination. The

property means that when the system starts from the initial node, it always reaches

the final node. We define two predicates (Start and Final) to express the termination

property in a new module called IODPREDS. The IODPREDS module encompasses

the property along with the bookstore system specification. See Figure 9). The

termination property is expressed in LTL as follows:

[] <> Final(< Final : FinalNode >)

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 19

mod IOD-PREDS is

 protecting OnlineBookStore.

 including SATISFACTION .

 subsort IOD-Config < State .

 op Start : IOD-Config -> Prop .

 op Final : IOD-Config -> Prop .

 var config : IOD-Config .

 eq < Initial : InitialNode > config |= Start (< Initial : InitialNode >) = true .

 eq < Final : FinalNode > config |= Final (< Final : FinalNode >) = true .

endm

Figure 9. IOD-PREDS Module

The IODCHECK module verifies this propriety (see Figure 10). In Figure 11,

Maude’s LTL model checker result shows that the property is verified successfully for

the diagram.

 mod IOD-CHECK is

 protecting IOD-PREDS .

 including MODEL-CHECKER .

 including LTL-SIMPLIFIER .

endm

red modelCheck (OnlineBookStore, [] <> Final (< Final : FinalNode >)) .

Figure 10. Check the LTL Termination Property

Figure 11. LTL Termination Property Result

Ea
rly
bi
rd

20 Chafika Djaoui, Allaoua Chaoui

8. Conclusion

In this work, we have proposed a formal and an MDE-based approach to tackle UML

IOD formalization and analysis using the Maude language. We have defined a subset

of aspects of IODs using the EMF framework in the Eclipse environment. Further,

we have used the Sirius framework to develop a visual modeling tool for editing and

manipulating IOD models. Acceleo is a template-based framework for model transfor-

mation and code generation technology. Specifying the IOD early in the development

cycle can help identify issues and gaps in system requirements. The choice of the

RL and Maude language made the analysis techniques and verification tools accessi-

ble. We have shown how using Maude allows for simulation and execution analysis.

We have also exploited the underlying LTL model checker to verify the diagram’s

correctness. In our case, we have checked the termination property using LTL formu-

las. The performance of the proposed approach has been evaluated through a virtual

bookstore example. In this paper, we have mainly addressed the formalization of

SD-type interaction nodes. In future works, we plan to embrace the proposed work

for complex concurrent control flow paths and different types of interaction diagrams

in IOD interaction nodes. We also plan to check other properties using Maude model

checking and annotate the analysis results in the UML IOD diagram.

9. Tool and Acceleo templates

The program code and Acceleo templates in this work are publicly available through

the GitHub repository1, necessary to run and execute for interpreting, replicating,

and building on the findings reported in the paper.

Acknowledgements

The authors thank the reviewer(s) for their insightful comments and suggestions. The

authors are also grateful to the Editor-in-Chief, the Editor, and the Editorial Office

Assistant(s) for managing this manuscript.

References

[1] Andrade E., Maciel P., Callou G., Nogueira B.: Mapping UML interaction

overview diagram to Time petri net for analysis and verification of Embedded

real-time systems with Energy constraints. In: 2008 International Conference on

Computational Intelligence for Modelling Control & Automation, pp. 615–620,

IEEE, 2008. doi: 10.1109/cimca.2008.44.

[2] Baresi L., Morzenti A., Motta A., Rossi M.: From interaction overview diagrams

to temporal logic. In: International Conference on Model Driven Engineering

Languages and Systems, pp. 90–104, Springer, 2010. doi: 10.1007/978-3-642-

21210-9 9.

1https://github.com/IODFormalization/IOD TO MAUDE

https://doi.org/10.1109/cimca.2008.44
https://doi.org/10.1109/cimca.2008.44
https://doi.org/10.1109/cimca.2008.44
https://doi.org/10.1109/cimca.2008.44
https://doi.org/10.1007/978-3-642-21210-9_9
https://doi.org/10.1007/978-3-642-21210-9_9
https://doi.org/10.1007/978-3-642-21210-9_9
https://doi.org/10.1007/978-3-642-21210-9_9
https://github.com/IODFormalization/IOD_TO_MAUDE

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 21

[3] Bennama M., Bouabana-Tebibel T.: Validation environment of UML2 IOD based

on hierarchical coloured Petri nets, International journal of computer applications

in technology, vol. 47(2-3), pp. 227–240, 2013. doi: 10.1504/ijcat.2013.054372.

[4] Bernardi S., Donatelli S., Merseguer J.: From UML Sequence Diagrams and

Statecharts to Analysable Petri Net Models. In: Proceedings of the 3rd Interna-

tional Workshop on Software and Performance (WOSP ’02), pp. 35–45, 2002.

doi: 10.1145/584369.584376.

[5] Bernardi S., Merseguer J.: Performance evaluation of UML design with Stochastic

Well-formed Nets, Journal of Systems and Software, vol. 80(11), pp. 1843–1865,

2007. doi: 10.1016/j.jss.2007.03.025.

[6] Bouabana-Tebibel T.: Semantics of the interaction overview diagram. In: 2009

IEEE International Conference on Information Reuse & Integration, pp. 278–283,

IEEE, 2009. doi: 10.1109/iri.2009.5211565.

[7] Bowen J.P., He J.: An algebraic approach to hardware compilation, Modern

Formal Methods and Applications, pp. 151–176, 2006.

[8] Bruni R., Meseguer J.: Semantic foundations for generalized rewrite theories,

Theoretical Computer Science, vol. 360(1-3), pp. 386–414, 2006. doi: 10.1016/

j.tcs.2006.04.012.

[9] Clavel M., Durán F., Eker S., Escobar S., Lincoln P., Martı-Oliet N., Meseguer

J., Rubio R., Talcott C.: Maude manual (version 3.1), SRI International Univer-

sity of Illinois at Urbana-Champaign http://maude lcc uma es/maude31-manual-

html/maude-manual html, 2020.

[10] Clavel M., Durán F., Hendrix J., Lucas S., Meseguer J., Ölveczky P.: The Maude

formal tool environment. In: Algebra and Coalgebra in Computer Science: Second

International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007.

Proceedings 2, pp. 173–178, Springer, 2007.

[11] De Lara J., Vangheluwe H., Alfonseca M.: Meta-modelling and graph grammars

for multi-paradigm modelling in AToM 3, Software & Systems Modeling, vol. 3,

pp. 194–209, 2004. doi: 10.1007/s10270-003-0047-5.

[12] Djaoui C., Kerkouche E., Chaoui A., Khalfaoui K.: A graph transforma-

tion approach to generate analysable maude specifications from UML inter-

action overview diagrams. In: 2018 IEEE International Conference on Infor-

mation Reuse and Integration (IRI), pp. 511–517, IEEE, 2018. doi: 10.1109/

iri.2018.00081.

[13] Dobing B., Parsons J.: Dimensions of UML diagram use: a survey of practi-

tioners, Journal of Database Management (JDM), vol. 19(1), pp. 1–18, 2008.

doi: 10.4018/978-1-60566-060-8.ch104.

[14] Durán F., Eker S., Escobar S., Mart́ı-Oliet N., Meseguer J., Rubio R., Tal-

cott C.: Programming and symbolic computation in Maude, Journal of Logical

and Algebraic Methods in Programming, vol. 110, 100497, 2020. doi: 10.1016/

j.jlamp.2019.100497.

https://doi.org/10.1504/ijcat.2013.054372
https://doi.org/10.1504/ijcat.2013.054372
https://doi.org/10.1504/ijcat.2013.054372
https://doi.org/10.1145/584369.584376
https://doi.org/10.1145/584369.584376
https://doi.org/10.1145/584369.584376
https://doi.org/10.1016/j.jss.2007.03.025
https://doi.org/10.1016/j.jss.2007.03.025
https://doi.org/10.1016/j.jss.2007.03.025
https://doi.org/10.1109/iri.2009.5211565
https://doi.org/10.1109/iri.2009.5211565
https://doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1007/s10270-003-0047-5
https://doi.org/10.1109/iri.2018.00081
https://doi.org/10.1109/iri.2018.00081
https://doi.org/10.1109/iri.2018.00081
https://doi.org/10.1109/iri.2018.00081
https://doi.org/10.1109/iri.2018.00081
https://doi.org/10.4018/978-1-60566-060-8.ch104
https://doi.org/10.4018/978-1-60566-060-8.ch104
https://doi.org/10.4018/978-1-60566-060-8.ch104
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497

Ea
rly
bi
rd

22 Chafika Djaoui, Allaoua Chaoui

[15] Eker S., Meseguer J., Sridharanarayanan A.: The Maude LTL model checker,

Electronic Notes in Theoretical Computer Science, vol. 71, pp. 162–187, 2004.

doi: 10.1016/s1571-0661(05)82534-4.

[16] Foundation E.: Acceleo, homepage, [Online]. Available:. https : / /

www.eclipse.org/sirius/. Accessed November 2023.

[17] Foundation E.: EMF, homepage Eclipse Modelling Framework (EMF), Online.

Availabal. https://www.eclipse.dev/modeling/emf/. [Accessed November-2023].

[18] Foundation E.: Sirius, homepage, [Online]. Available:. https://www.eclipse.org/

sirius/. Accessed November 2023.

[19] Frick G., Scherrer B., Müller-Glaser K.D.: Designing the software architecture

of an embedded system with uml 2.0. In: Software Architecture Description &

UML Workshop, p. 39, 2004.

[20] Hammal Y.: A formal semantics of UML statecharts by means of timed petri

nets. In: International Conference on Formal Techniques for Networked and Dis-

tributed Systems, pp. 38–52, Springer, 2005. doi: 10.1007/11562436 5.

[21] Kerkouche E., Khalfaoui K., Chaoui A.: A rewriting logic-based semantics and

analysis of UML activity diagrams: a graph transformation approach, Inter-

national Journal of Computer Aided Engineering and Technology, vol. 12(2),

pp. 237–262, 2020. doi: 10.1504/ijcaet.2020.10026291.

[22] Kloul L., Küster-Filipe J.: From Interaction Overview Diagrams to PEPA Nets,

Online Proceedings of the 4th Workshop on Process Algebras and Timed Activities

(PASTA’05), vol. 104, 2005.

[23] Lilius J., Paltor I.P.: vUML: a Tool for Verifying UML Models, Tech. rep., Turku

Centre for Computer Science, 1999.

[24] Louati A., Jerad C., Barkaoui K.: On CPN-based verification of hierarchical

formalization of UML 2 Interaction Overview Diagrams. In: 2013 5th Interna-

tional Conference on Modeling, Simulation and Applied Optimization (ICMSAO),

pp. 1–6, IEEE, 2013. doi: 10.1109/icmsao.2013.6552703.

[25] McUmber W.E., Cheng B.H.: A general framework for formalizing UML with for-

mal languages. In: Proceedings of the 23rd International Conference on Software

Engineering. ICSE 2001, pp. 433–442, IEEE, 2001.

[26] Meseguer J.: Rewriting logic and Maude: a wide-spectrum semantic framework

for object-based distributed systems. In: International Conference on Formal

Methods for Open Object-Based Distributed Systems, pp. 89–117, Springer, 2000.

doi: 10.1007/978-0-387-35520-7 5.

[27] Meseguer J.: Specifying, Analyzing and Programming Communication Systems

in Maude. In: Communication-Based Systems: Proceeding of the 3rd Interna-

tional Workshop held at the TU Berlin, Germany, 31 March – 1 April 2000,

pp. 93–101, Springer, 2000. doi: 10.1007/978-94-015-9608-4 7.

[28] Meseguer J.: Twenty years of rewriting logic, The Journal of Logic and Algebraic

Programming, vol. 81(7-8), pp. 721–781, 2012. doi: 10.1016/j.jlap.2012.06.003.

https://doi.org/10.1016/s1571-0661(05)82534-4
https://doi.org/10.1016/s1571-0661(05)82534-4
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://www.eclipse.dev/modeling/emf/
https://www.eclipse.dev/modeling/emf/
https://www.eclipse.dev/modeling/emf/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://doi.org/10.1007/11562436_5
https://doi.org/10.1007/11562436_5
https://doi.org/10.1007/11562436_5
https://doi.org/10.1504/ijcaet.2020.10026291
https://doi.org/10.1504/ijcaet.2020.10026291
https://doi.org/10.1504/ijcaet.2020.10026291
https://doi.org/10.1109/icmsao.2013.6552703
https://doi.org/10.1109/icmsao.2013.6552703
https://doi.org/10.1109/icmsao.2013.6552703
https://doi.org/10.1007/978-0-387-35520-7_5
https://doi.org/10.1007/978-0-387-35520-7_5
https://doi.org/10.1007/978-0-387-35520-7_5
https://doi.org/10.1007/978-94-015-9608-4_7
https://doi.org/10.1007/978-94-015-9608-4_7
https://doi.org/10.1007/978-94-015-9608-4_7
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.jlap.2012.06.003

Ea
rly
bi
rd

Formalization and analysis of UML 2.0 interaction. . . 23

[29] Mishra A.: Dynamic Slicing of UML Interaction Overview Diagram. In: 2019

IEEE 9th International Conference on Advanced Computing (IACC), pp. 125–

132, IEEE, 2019. doi: 10.1109/iacc48062.2019.8971586.

[30] Padua D.: Encyclopedia of parallel computing, Springer Science & Business Me-

dia, 2011.

[31] Platt R., Thompson N.: The evolution of UML. In: Encyclopedia of Information

Science and Technology, Third Edition, pp. 1931–1936, IGI Global, 2015.

[32] Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference

Manual, 2nd Ed., Addison-Wesley Longman Ltd., 2004.

[33] Steinberg D., Budinsky F., Merks E., Paternostro M.: EMF: eclipse modeling

framework, Pearson Education, 2008.

[34] Störrle H., Hausmann J.H.: Towards a formal semantics of UML 2.0 activities,

Software Engineering 2005, 2005.

[35] Wazlawick R.S.: Object-oriented analysis and design for information systems:

modeling with UML, OCL, and IFML, Elsevier, 2014.

[36] Whittle J.: Extending interaction overview diagrams with activity diagram con-

structs, Software & Systems Modeling, vol. 9, pp. 203–224, 2010.

Affiliations

Chafika Djaoui
Mohamed Seddik Ben Yahia University, Department of Computer Science, Jijel, Algeria,
MISC Laboratory, Department of Computer Science and Its Applications, Constantine,
Algeria, c.djaoui@univ-jijel.dz

Allaoua Chaoui
University Constantine 2-Abdelhamid Mehri, MISC Laboratory, Department of Computer
Science and Its Applications, Faculty of Ntic, Constantine, Algeria,
allaoua.chaoui@univ-constantine2.dz

Received: 17.12.2023

Revised: 06.05.2024

Accepted: 22.05.2024

https://doi.org/10.1109/iacc48062.2019.8971586
https://doi.org/10.1109/iacc48062.2019.8971586
c.djaoui@univ-jijel.dz
allaoua.chaoui@univ-constantine2.dz

	Introduction
	Related works
	Interaction overview diagram constructs
	Rewriting logic & Maude language
	Formalization of IOD diagrams using Maude language
	The MDE based approach
	IOD Meta-Model
	Maude Code generation

	Case study
	Generation of Maude specification
	Simulation
	Verification and analysis

	Conclusion
	Tool and Acceleo templates

