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Abstract Given the exponential growth of available data in large networks, the existence

of rapid, transparent, and explainable intrusion detection systems has become

of highly necessity to effectively discover attacks in such huge networks. To

deal with this challenge, we propose a novel explainable intrusion detection

system based on Spark, Particle Swarm Optimization (PSO) clustering, and

eXplainable Artificial Intelligence (XAI) techniques. Spark is used as a parallel

processing model for the effective processing of large-scale data, PSO is inte-

grated to improve the quality of the intrusion detection system by avoiding sen-

sitive initialization and premature convergence of the clustering algorithm and

finally, XAI techniques are used to enhance interpretability and explainability

of intrusion recommendations by providing both micro and macro explanations

of detected intrusions. Experiments are conducted on large collections of real

datasets to show the effectiveness of the proposed intrusion detection system

in terms of explainability, scalability, and accuracy. The proposed system has

shown high transparency in assisting security experts and decision-makers to

understand and interpret attack behavior.
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1. Introduction

Emerging information technologies, such as cloud computing and control systems,

have undergone rapid evolution in recent years. These systems often handle large

volumes of information across diverse infrastructures and complex networks. Con-

sequently, numerous malicious entities attempt to compromise these systems by ex-

ploiting communication networks. To secure computer systems and networks from

unauthorized access and data breaches, Intrusion Detection Systems (IDS) are im-

plemented. IDS can be broadly classified into three categories based on the detec-

tion model employed: signature-based IDS (S-IDS), anomaly-based IDS (A-IDS), and

hybrid-based IDS (H-IDS). S-IDS relies on predefined rules and signatures to detect

attacks, while A-IDS utilizes machine learning techniques to identify legitimate be-

haviors within a system. H-IDS combines both A-IDS and S-IDS approaches [2, 20].

In this research, our focus is on anomaly-based IDS that employ machine learning

techniques [22, 36, 37]. One widely used technique is clustering, which groups similar

data points, also known as clusters [26]. Various clustering methods have been pro-

posed for intrusion detection systems, including partitional, hierarchical, and other

types of clustering [13, 23, 38]. Among these methods, K-means-based clustering is

the most commonly applied due to its linear time complexity [25]. However, it suffers

from drawbacks such as sensitivity to initial cluster centers and convergence to local

optima [6]. To address the sensitivity of initial cluster centers, several optimization

techniques have been incorporated into the clustering approach [31]. One such tech-

nique is Particle Swarm Optimization (PSO) [17], which has been successfully used

to address this drawback in clustering tasks [8, 27].

However, clustering-based intrusion detection methods face challenges when deal-

ing with scalability issues in the analysis of large volumes of network traffic. To ad-

dress this, several parallel clustering methods have been developed in the literature to

handle large-scale data [9]. Many of these methods leverage the MapReduce frame-

work [11] for data processing. However, MapReduce is not well-suited for iterative

algorithms as it requires frequent disk reads and writes, leading to performance lim-

itations. To overcome the limitations of MapReduce, the Spark framework [44] has

been proposed for efficient processing of iterative algorithms. Spark is an in-memory

parallel framework that has the ability to process big data using a cluster of machines.

In comparison to the MapReduce framework, Spark demonstrates greater efficiency

and provides a significant speed improvement of approximately 10 to 100 times faster

for data processing tasks [16]. This makes it a more suitable choice for handling

large-scale data in intrusion detection systems.

In addition to addressing scalability, it is crucial to consider the need for inter-

pretability in clustering-based intrusion detection methods. Security experts require

an understanding of the rationale behind identifying certain operations as intrusions.

Unfortunately, existing clustering methods for intrusion detection often lack inter-

pretability making it challenging to explain the obtained clusters. These methods

typically function as ”black-box” systems, providing a final organization of network
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attacks without offering explanations for how the organization and attack detection

were derived. However, explanations play an essential role in enabling security experts

to transparently and effectively identify the correct attacks and implement appropri-

ate strategies to secure the system. By incorporating interpretability into clustering-

based intrusion detection methods, security experts can gain insights into the reasons

behind classifying certain operations as security attacks and allow them to define

effective security measures to protect the system.

To deal with all the discussed issues, we propose an Explainable Spark-based PSO

Clustering for intrusion detection system (E-SPSO). The proposed system is based

on the explainable artificial intelligence framework, named SHape Additive exPpla-

nations (SHAP) [24], that allows explaining reasons behind the detected intrusions.

Such explanations make the resulting prediction highly transparent for security ex-

perts. The proposed method performs parallel processing of intrusion detection tasks

based on the Spark framework and integrates the PSO technique to improve the qual-

ity of obtained attack clusters. We will show in the next sections how the proposed

intrusion detection system allows an enhance scalability, accuracy, and explainability

of cyber-defense systems in large networks. The remainder of this paper is organized

as follows: Section 2 discusses a survey of related works while Section 3 describes

the backgrounds of this work including Particle Swarm Optimization (PSO), Spark

framework, and Shapley Additive Explanations (SHAP). Then, Section 4 describes

the proposed ESPSO-IDS system. Section 5 presents performed experiments and ob-

tained empirical results. Finally, Section 6 summarises this work and discusses the

future directions.

2. Related works

This section presents the related works of intrusion detection, explainable clustering,

and explainable intrusion detection.

2.1. Intrusion detection

Several intrusion detection systems based on machine learning techniques were pro-

posed in the literature [22, 37]. In this study, our focus is primarily on intrusion

detection systems that utilize the clustering approach. Various clustering methods

have been proposed specifically for intrusion detection systems [13, 19, 23, 38]. For

instance, Li et al. [19] proposed a system that combines the K-means algorithm with

PSO to create an effective intrusion detection system. This algorithm aims to benefit

from the characteristics of PSO to overcome the premature convergence issue faced

by the K-means algorithm. The proposed algorithm demonstrated relatively better

results compared to the traditional K-means algorithm.

Indeed, Guan et al. [13] introduced a K-means-based clustering algorithm called

Y-means specifically for intrusion detection. Y-means addresses the dependency of

the K-means algorithm on the number of clusters. It aims to automatically partition
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a dataset into a reasonable number of clusters by classifying instances into ”normal”

and ”abnormal” clusters. This approach provides a way to differentiate between

normal and potentially intrusive activities. Similarly, Liu et al. [23] proposed an

intrusion detection method based on the genetic clustering algorithm. This method

consists of two stages: nearest-neighbor clustering and genetic optimization. The

approach operates under the assumption that intrusion activities are likely to appear

as outliers among normal activities and can be grouped into separate clusters from

the normal cluster. This proposed method allowed to automatically establish clusters

and detect intruders by labeling normal and abnormal groups respectively.

Although existing clustering-based intrusion detection methods demonstrate

good performance, they often face limitations when applied to large-scale networks.

To address this challenge, the parallelization of clustering algorithms has gained signif-

icant attention due to its effectiveness in reducing runtime in large networks. Parallel

algorithms exploit multiple processing nodes to achieve a speedup compared to run-

ning the sequential version of the algorithm on a single processor. Several parallel

clustering methods have been proposed to tackle scalability challenges in intrusion

detection [4, 14, 41]. For example, Al-Jarah et al. [4] proposed IDS-MRCPSO, a par-

allel intrusion detection system based on the MapReduce framework. The proposed

system integrates a PSO technique in the clustering step to improve the quality of

intrusion detection. The use of PSO helps to overcome the sensitivity problem associ-

ated with initial cluster centers. Wu et al. [41] proposed a parallel intrusion detection

system using the MapReduce framework. They combined the differential evolution al-

gorithm with the K-medoids clustering algorithm to improve convergence efficiency in

large networks. Additionally, they introduced a dynamic Gemini population schema

to further enhance the optimization of the clustering step by maintaining solution

diversity and avoiding local optima. Peng et al. [33] proposed an intrusion detection

system based on the Mini Batch K-means clustering algorithm and Principal Compo-

nent Analysis. Firstly, they employed a pre-processing method to digitize strings and

normalize the data. Secondly, they applied Principal Component Analysis (PCA) [1]

to reduce the dimensionality of the processed data. Finally, they incorporated the

Mini Batch K-means [35] algorithm for data clustering. Recently, Ben HajKacem et

al. [14] proposed a Spark-based intrusion detection system that integrates PSO for

large-scale networks. This system offers a favorable trade-off between scalability and

accuracy. The use of PSO clustering has allowed solving the sensitivity issue related

to initial cluster centers as well as premature convergence.

Although many existing intrusion detection systems based on clustering tech-

niques are effective in analyzing large amounts of data, they often fail to provide se-

curity experts with a way to understand and interpret the results they obtain. These

methods often act as ”black-boxes” that build clusters without offering any explana-

tions for the underlying reasoning behind their formation. This lack of transparency

makes it challenging to interpret the detected intrusions, particularly for non-domain

experts, and significantly reduces user trust.
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2.2. Explainable clustering

Explainable clustering, a sub-field of eXplainable Artificial Intelligence (XAI) [28],

aims to address the issue of explainability by assisting decision-makers in interpreting

the resulting clusters and providing insightful explanations. The demand for XAI has

grown in recent years driven by the widespread use of machine learning models in

critical domains that require explanations for their decision-making processes. Two

main approaches to XAI methods have been proposed [3]: intrinsic XAI and post-hoc

XAI. Intrinsic XAI approaches focus on explaining the structure and functioning of

the model itself, but are limited to specific types of models. On the other hand,

post-hoc approaches explain the final decisions of the model by analyzing the set of

input data and can be applied to any model. Another classification of XAI techniques

involves global (macro) and local (micro) explanations [7,21]. Global techniques aim

to explain the general structure of the models by analyzing all of their decisions,

whereas local techniques aim to provide explanations for individual decisions at the

item level.

Explainable clustering methods follow a two-step process that utilizes XAI tech-

niques to provide explanations for the clusters [5, 10, 29]. The first step focuses on

assigning labels to the clusters, while the second step involves using these labels as

target variables in a classification task. Explanations are then generated based on

the resulting classification model. For instance, Morichetta et al. [29] proposed the

EXPLAIN-IT method, which employs a supervised XAI technique to interpret clus-

tering results. Initially, the authors cluster the input data using algorithms such as

K-means or DBSCAN. Subsequently, a classifier is trained on the input data, employ-

ing the obtained cluster labels as the target variable. Finally, the classifier is explained

using existing XAI models like LIME [34], which is commonly used to generate inter-

pretations for individual predictions made by any classifier. Similarly, Horel et al. [15]

also introduced a two-step method to explain the resulting clusters. First, a classifier

is trained to assign cluster labels. Then, the Single Feature Introduction Test (SFIT)

is applied to identify statistically significant features that characterize each cluster.

2.3. Explainable intrusion detection

Several works related to explainable intrusion detection systems were proposed in the

literature [18, 39, 43]. Neupane et al. [32] conducted a study on existing explainable

intrusion detection systems, which are primarily based on SHAP [24] and LIME [34]

methodologies. Wang et al. [39] proposed a framework that utilizes SHAP to gener-

ate explanations for intrusion detection systems (IDS). This framework provides both

local and global explanations to enhance the interpretation of IDS. The local expla-

nation focuses on interpreting individual instances based on input features, whereas

the global explanation reveals relationships between feature values and different at-

tack types. Furthermore, Younisse et al. [43] also proposed an explainable intrusion

detection system by combining deep neural networks with interpretable model pre-

dictions. Their system utilizes SHAP to provide both local and global explainability
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for improving the interpretation of IDS. In addition, in the context of Internet of

Things (IoT) networks, Keshk et al. [18] proposed an explainable intrusion detection

system. They developed an IDS using a Long Short-Term Memory (LSTM) model for

cyber-attack identification and utilized the SPIP (S: Shapley Additive exPlanations,

P: Permutation Feature Importance, I: Individual Conditional Expectation, P: Par-

tial Dependence Plot) technique to produce explanations for the model’s decisions.

The proposed system achieved high detection accuracy, efficient processing time, and

improved interpretability compared to other IDS systems.

Despite the significant efforts to enhance the transparency and explainability of

IDS, there are still several limitations and open challenges that need to be addressed.

One major challenge is generating explanations in large-scale IDS systems. The vast

amount of data in such systems poses difficulties in maintaining scalability while en-

suring IDS accuracy. Developing techniques that can handle the volume and velocity

of data in real-time while still providing meaningful and interpretable explanations,

remains an interesting and complex challenge. Additionally, most of the existing

explainable intrusion detection systems are built for IDS based on supervised clas-

sification approaches. These systems require labeled data for training and rely on

predefined attack types. However, in real-world scenarios, there may be unknown

or novel attack types that have not been labeled or encountered before. Therefore,

exploring the explainability of IDS based on unsupervised approaches is an important

area that has yet to be extensively studied in the literature.

3. Background

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally proposed by Kennedy and Eber-

hart in 1995 [17]. PSO is inspired by the behavior of birds in a flock. It mimics their

social interactions while searching for food. The algorithm has been widely applied to

solve various optimization problems. In PSO, a population of particles forms a swarm.

Each particle represents a potential solution to the optimization problem. At time t,

each particle Pi is characterized by its current position xi(t) in the search space, its

velocity vi(t), and its personal best position pbestPi(t) along with the corresponding

fitness value pbestFi(t). The personal best position of a particle represents the best

solution it has encountered and is defined as follows:

pbestPi(t+ 1) =

{
pbestPi(t) if f(pbestPi(t)) <= f(xi(t+ 1))

xi(t+ 1) if f(pbestPi(t)) > f(xi(t+ 1))
(1)

The global best position represents the best fitness value of any particle and is defined

as follows:

gbestP (t+ 1) = min (f(y), f(gbestP (t))) (2)
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where y ∈ {pbestP0(t), ..., pbestPS(t)}. The particle position and velocity are updated

using the following formula:

xi(t+ 1)← xi(t) + vi(t) (3)

vi(t+ 1)← wvi(t) + c1r1(pbestPi(t)− xi(t)) + c2r2(gbestP (t)− xi(t)) (4)

where w is the inertia weight, xi(t) is the position of the particle Pi at time t, vi(t)

is the velocity of the particle Pi at time t, c1 and c2 are two acceleration coefficients,

and r1 and r2 are two random values in the range [0, 1]. The main algorithm of PSO

is shown in Algorithm 1. The algorithm begins by creating an initial population of

particles from the input dataset R. Then, it enters a loop until the convergence criteria

are met. Within each iteration, the fitness value of each particle is calculated. The

personal best position of each particle is updated using Equation (1). The global best

position is updated using Equation (2). The velocities and positions of the particles

are then updated using Equations (3) and (4), respectively. The algorithm continues

iterating until the convergence criteria are reached.

Algorithm 1 PSO main algorithm

1: Input: Input dataset R

2: Output: Particle information

3: Create an initial population of particles from R.

4: while Convergence not reached do

5: Calculate the fitness value of particles.

6: Update the personal best position of each particle using Equation (1).

7: Update the global best position using Equation (2).

8: Update the velocities and positions using Equations (3) and (4), respectively.

9: end while

3.2. Spark framework

MapReduce [11] is a parallel programming framework based on the map and reduce

phases. Each phase involves input and output < key/value > pairs. During the

map phase, map functions are executed in parallel to process each key and value

pair and lead to the generation of a collection of intermediate < key′/value′ > pairs.

Then, the shuffle phase compiles a list of all intermediate values associated with

a particular intermediate key. After that in the reduce phase, the reduce function

merges all intermediate values that belong to the same intermediate key. The data

flow of the MapReduce framework is depicted in Figure 1. Input and output data

for MapReduce are stored in a distributed file system accessible from the cluster of

machines. Hadoop has implemented the MapReduce framework [40] and provides

a distributed file system called Hadoop Distributed File System (HDFS) for data

storage on the machines. Despite its high performance, the MapReduce framework is

not suitable for iterative algorithms. The need to read and write data from disks in

each iteration can significantly decrease the algorithm’s efficiency.
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Figure 1. Data flow of MapReduce framework

Spark [44] is a parallel framework and one of the most widely used Big Data

parallel processing frameworks. The high efficiency of Spark is due to resilient dis-

tributed datasets (RDDs) allowing to perform in-memory processing. RDDs can be

stored in memory and used in multiple consecutive operations. Spark is integrated

with Hadoop allowing it to read data from Hadoop Distributed File System (HDFS).

Moreover, Spark provides a set of in-memory operators that enable faster data pro-

cessing on distributed environments compared to standard MapReduce. The Spark

framework supports two types of operators that can be applied to RDDs: transfor-

mations and actions. Transformations are used to apply a function to all elements of

an RDD and return new RDDs. Actions, on the other hand, either return a value

to the program or write the computation result to an external storage. This work

employed the following Spark functions:

• mapToPair(func): Creates a new RDD by applying the function func to all

elements of the RDD.

• flatMapToPair(func): Creates a new RDD by applying the function func to

each element of the RDD and merging the results.

• groupByKey(nums): Groups and distributes the values for each key in the RDD

into a single sequence.

• partitionBy(Partitioner): Creates a copy of the RDD partitioned using the

specified partitioner.
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• filter(condition): Creates a new RDD that stores only the elements satisfying

a given condition.

• collect(): Creates an array that stores all the elements in a particular RDD.

• saveAsTextFile("..."): Saves the elements of the RDD in a text file at the

specified file path directory.

By utilizing these functions, Spark enables efficient and flexible data processing in

distributed environments.

3.3. SHAP (SHapley Additive exPLanations)

SHAP is a XAI technique which is used to analyze predictions made by machine

learning models [24]. It is based on game theory and provides explanations by de-

tecting how each feature contributes to the accuracy of the predictions. SHAP also

provides the most important features and their impact on model prediction. It deals

with the Shapley values to evaluate each feature’s impact on the machine learning

prediction model. Shapley value is calculated as the (weighted) average of marginal

contributions. It is defined by the impact of feature value on the prediction overall

potential feature coalitions. Shapley value for an instance x is computed as follows:

ϕjr (x) =
∑

S⊆{j1...jm}\{jr}

| S |!× (m− | S | −1)!
m!

× δjr (5)

with

δjr = [fS∪jr (x)− fS(x)] (6)

where ϕjr (x) represent the Shapley value for feature value with the index jr ∈ [1..m],

S is a subset of the features employed in the prediction model., |S| is the carnality

of S, m is the number of features, fS∪jr (x) and fS(x) are the prediction function for

the set of feature values in S with and without including the feature jr respectively.

The Shapley value ϕjr (x) quantifies how much the feature jr influences the prediction

model, either positively or negatively. To this end, the model is trained with and

without including this feature and then predictions from the two models are compared

for all subset features S ⊂ {j1, ..., jm}\{jr}. A large positive value for ϕjr (x) indicates

that the feature jr has a significant positive influence on the prediction. However,

a large negative value for ϕjr (x) shows that the feature jr has a significant negative

contribution on the prediction.

4. Proposed explainable Spark-based PSO clustering method

for intrusion detection

In order to simultaneously solve the issues of large amounts of network traffic data and

the complexity of explaining the built intrusion detection model, we propose a new

design of an explainable Spark-based PSO clustering approach for intrusion detection.
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As shown in Figure 2, E-SPSO consists of three main phases: data detector modeling

phase, data labeling phase and model explaining phase.

Phase 1 : 
Data Detector Modeling 

Phase 3 : 
Model Explaining

Set of data records

Local
Explantation 

Global
Explantation 

Cluster 1 Cluster 2 

Phase 2 : 
Data Labelling 

Attack Normal

Figure 2. The main phases of the proposed explainable Spark-based PSO clustering approach

for intrusion detection. Phase 1: Data detector modeling, phase 2: Data labeling and phase 3:

Model explaining

In the first phase, we propose to exploit a Spark-based PSO clustering method [30]

to guide the intrusion detection model by generating global best centers of obtained

clusters. The use of particle swarm optimization for the clustering task is a very

efficient way since particle swarm optimization avoids the sensitivity problem of initial

cluster centers as well as premature convergence. In the second phase, we assign a
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cluster label to testing data by computing distances between the testing data and

the final global best centers. In the third phase, we propose to explain the built

intrusion detection model by exploiting XAI SHAP method capabilities. In fact,

the transparency and the easy interpretation of the intrusion detection model are

almost as important as the classification accuracy. Hence, an intelligent SHAP-based

process is designed having as outputs detailed explanations of the global structure of

the intrusion detection model as well as local explanations regarding the assignment

of each connection to any specific class.

4.1. Phase 1: Data detector modeling

The data detector modeling phase consists of applying the parallel particle swarm

optimization clustering method through the Spark framework. The use of particle

swarm optimization in the clustering task is an efficient solution to avoid the sensitiv-

ity problem of initial cluster centers. The proposed method is a partitioning clustering

type that uses representatives, called also centers, to model the clusters. The initial

centers are selected randomly from the input data, then the centers are updated based

on the swarm particle velocities until the convergence is achieved. The best cluster

centers are then used in the data labeling phase by computing the average minimum

distances between the data and the cluster centers.

It is important to note that the proposed method stores for each particle the

following information: position vector, velocity vector and fitness value. The particle

information is updated in each iteration using the information from the previous

iteration. The proposed method is composed of three MapReduce jobs namely, Data

assignment and fitness computation, Personal and global best update and Position and

velocity update.

4.1.1. Data assignment and fitness computation

In the first MapReduce job, E-SPSO starts by initializing particle information. The

positions of particles are randomly selected from the input data as initial cluster cen-

ters. Then, the data is divided into chunks where each chunk is assigned to a map

function. The particle information are then transferred to all chunks. The map func-

tion first assigns each data record to the nearest cluster center in each particle by

computing distances. Then, the map function generates a key-value pair as output

where the key represents the couple < particleID, centerID > and the value repre-

sents the minimum distance between a single data and the centerID in a particleID.

Once all data are assigned to the nearest cluster, a reduce function is applied to com-

pute the fitness value by merging data from different map functions. The fitness value

is computed as follows:

Fitness =

∑k
j=1

∑|Cj |
i=1 dis(di, Cj)

k
(7)

with dis(di, Cj) represents the distance between a data record di and the cluster

center Cj . |Cj | represents the number of data records assigned to the center Cj , and
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k represents the total number of clusters. The reduce function in the MapReduce job

generates key-value pairs as output where the key represents the particle ID, and the

value represents the fitness value.

Let D = {d1, d2, ..., dn} be the set of data records. Let P (t) =

{P1(t), P2(t), ..., PS(t)} be the set of particle information, where Pc(t) =

{xc(t), vc(t), pbestPc(t), pbestFc(t)} represents the information of particle c in iter-

ation t. Here, xc(t) is the position, vc(t) is the velocity, pbestPc(t) is the best posi-

tion, and pbestFc(t) is the best fitness of particle c. Let F = {F1, F2, ..., FS} be the

set of fitness values, where Fc represents the fitness value of particle c. The main

steps of Data assignment and fitness computation MapReduce job are described in

Algorithm 2.

Algorithm 2 Data assignment and fitness computation MapReduce job

1: Input: Input dataset D
2: Output: Fitness values F
3: P (t) ← Initialize particle information from D
4: Divide the data D into m RDD D = {D1...Dm}
5: % Map Phase

Let Dp be an RDD assigned to map task p.
6: for each di ∈ Dp do
7: for each Pc ∈ P (t) do
8: xc(t) ← Extract positions from Pc(t)
9: Assign each data point to its nearest cluster centroid by computing distances.
10: Let mindis the minimum computed distance.
11: Let CentroidID the index of the cluster centroid where the data point ri is assigned.
12: Let ParticleID the index of the particle Pc.
13: end for
14: Emit (key: ParticleID, CenterID/value: mindis)
15: end for
16: % Reduce Phase
17: for each Pi ∈ P (t) do
18: Calculate fitness value Fi using Equation (7).
19: Emit (key: ParticleID /value: Fi)
20: end for

4.1.2. Pbest and gbest update

Once all particle fitness values are computed, they are automatically distributed to

RDD collections. Given that the computation of pbest (personal best) and gbest

(global best) is not an expensive operation, they are computed locally without using

the parallel framework. Let pbestF (t) = {pbestF1(t), pbestF2(t), ..., pbestFS(t)} be

the set of personal best fitness values where pbestFi(t) represents the pbest fitness

of particle i at iteration t. Let pbestP (t) = {pbestP1(t), pbestP2(t), ..., pbestPS(t)} be
the set of personal best positions where pbestPi(t) represents the pbest position of

particle i at iteration t. Let gbestP be the position of the best particle. The main

steps of the pbest and gbest update MapReduce job are described in Algorithm 3.
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Algorithm 3 pbest and gbest update MapReduce job

1: Input: F, pbestF (t), pbestP (t)
2: Output: pbestF (t+ 1), pbestP (t+ 1), gbestP
3: gbestP ← ∅
4: for each Pi(t) ∈ P (t) do
5: pbestFi(t+ 1)← ∅
6: pbestPi(t+ 1)← ∅
7: if (pbestFi(t) ≤ Fi) then
8: pbestFi(t+ 1)← pbestFi(t)
9: pbestPi(t+ 1)← pbestPi(t)
10: else
11: pbestFi(t+ 1)← Fi

12: pbestPi(t+ 1)← xi(t+ 1)
13: end if
14: end for
15: Let i∗ is the index of a particle having the best fitness value.
16: gbestP ← xi∗ (t)

4.1.3. Position and Velocity update

During the MapReduce job, the E-SPSO algorithm begins by assigning particle in-

formation to different map functions. Each map function then performs velocity and

position updates using Equations (3) and (4). The reduce function groups all the

intermediate key-value pairs computed by the map functions. After the reduce phase

is completed, the particle information is distributed among RDD collections which are

stored in memory for the next iteration. Let x(t) = {x1(t), x2(t), ..., xS(t)} represent
the set of position values, where xi(t) denotes the position of particle i at iteration

t. Similarly, let v(t) = {v1(t), v2(t), ..., vS(t)} denote the set of velocity values where

vi(t) represents the velocity of particle i at iteration t. The main steps of the Position

and Velocity Update MapReduce job are described in Algorithm 4.

Algorithm 4 Position and Velocity update MapReduce job

1: Input: gbestP , P (t)
2: Output: P (t+ 1)
3: % Map Phase
4: Divide the data P (t) into m RDD D = {P 1...Pm} Let P p(t) be an RDD assigned to a map

task p.
5: xi(t+ 1)← ∅
6: vi(t+ 1)← ∅
7: Update the new position value xi(t+ 1) using Equation 4
8: Update the new velocity value vi(t+ 1) using Equation 3
9: Emit(key: 1/value: Pi(t+ 1))
10: % Reduce Phase
11: Group outputs from the different map functions and update the new particle information P (t+1)

12: Emit (P (t+ 1))
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4.2. Phase 2: Data labeling

Once the data detector modeling phase is completed, the global best cluster centers

are extracted from the final particle’s information. In this phase, the detection model

is evaluated by computing distances between the testing data and the global best

centers. To accomplish this, the testing data is assigned to their nearest clusters

based on the computed distances.

The next step involves the cluster labeling process where the correct labels are

predicted for the clusters generated during the testing data assignment. Cluster

labeling is performed by determining the maximum intersection percentage between

the true labels of the testing data and the assigned clusters generated during the

testing data assignment phase. The main steps of the labeling phase are described in

Algorithm 5.

Algorithm 5 Data labelling phase

1: Input: Testing data T , Final Particle information P
2: Output: Labelled data
3: Let C() the k centers extracted from the final particle P .
4: for each ti ∈ T do
5: Compute distances between ti and C .
6: Assign ti to its nearest center.
7: end for
8: Apply the cluster labeling.

True Classes 

Predicted Clusters 

C1 (Normal) C2 (Attack) C3 (Attack) 

Figure 3. An illustrative example of the clusters labeling process

Figure 3 provides an illustrative example to aid in understanding the cluster

labeling process. Let’s examine the labeling process for each cluster: Cluster C1

consists of 3
4 normal connections and 1

4 attack connections. As a result, it is labeled as

”normal connections”; Cluster C2 comprises 1
3 normal records and 2

3 attack records,

leading to its labeling as ”attack cluster”; Similarly, cluster C3 contains 1
3 normal
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connections and 2
3 attack connections, resulting in its classification as an ”attack

cluster”.

4.3. Phase 3: Model explaining

This phase aims to build detailed explanations on the built classes resulting from the

previous phase. These explanations allow cybersecurity experts to better understand

and interpret the resulting classification of the connections in terms of local and

global levels. Local explanations have the objective to explain the reasons behind

the prediction of each connection to any class in terms of feature values while global

explanations try to explain important feature values at the level of classes. This

phase is based on explaining predictions using the SHAP method capabilities. First,

the resulting classes are used as the label class variables of the explainable process.

Then, local and global explanations are generated by applying the SHAP technique.

Concerning local explanations, we calculate for each record and each feature the

Shapley value regarding the assigned class. These Shapley values measure how much

each feature, for each record, contributes to the final prediction. These local explana-

tions support cybersecurity experts to better understand the reasons behind assigning

a connection to any specific normal or attack class. Experts can also analyze the pos-

itive and negative contribution of each feature of each connection on the predicted

class label. Concerning global explanations, we calculate further explanations regard-

ing the importance and contributions of the features when building each class. We

use local Shapley values of each data record as a ”single unit” to build an overall score

for each class. The global explanation is performed as follows :

Gj =
1

n

n∑
i=1

|ϕj(xi)| (8)

where ϕj(xi) is the Shapley value of the feature j for the record xi, Gj refers to the

overall Shapley value of the feature j and n is the total number of records in the

dataset. Global shapley values are then sorted in decreasing order to generate the

most important feature of the model.

5. Experiments and results

5.1. Dataset description

In order to evaluate the performance of the proposed method, we used a Big intrusion

detection dataset1 which is well suited for intrusion detection problems. This dataset

contains a standard set of data records which includes a wide variety of normal and

attack connections in a military network environment. Each record in the dataset

represents a connection between two IP addresses. The data is classified into nor-

mal traffic and four kinds of attacks namely, denial of service (DOS), probe (PROB),

remote to local (R2L) and user to root (U2R). Each connection in the dataset is
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described by 3 categorical and 38 numerical features for a total of 41 features. The

detailed descriptions of the features are given in [12]. The training dataset contains

4, 898, 431 data records collected during seven weeks of network traffic while the test-

ing dataset contains 311, 029 records collected during two weeks.

In order to evaluate the scalability of the proposed method, we extract 4 different

data samples from the whole training data set. To simplify the names of the data

samples, we will use the notations Train20, Train40, Train80, and Train100 to denote

an extracted data set that stores 20%, 40%, 80%, and 100% of the whole training

data set. Statistics of these datasets are summarized in Table 1.

Table 1
Summary of the data samples

Dataset Number of records Normal Attack

Train20 979,686 194,556 785,130

Train40 1,959,372 389,112 1,570,260

Train80 3,918,745 778,225 3,140,520

Train100 4,898,431 972,781 3,925,650

5.2. Data pre-processing

A set of pre-processing techniques was applied to the training and testing datasets.

Firstly, records with missing values were eliminated as distances cannot be computed

for these records. Additionally, columns containing categorical features were removed

to retain only the numerical features. Subsequently, a min-max normalization within

the range of [0, 1] is applied to the obtained dataset. This normalization step helps

address bias issues arising from features that exhibit significant variation between their

minimum and maximum values. The normalization is performed using the following

equation:

xijnew
=

xij − xjmin

xjmax
− xjmin

(9)

where xij is the value of record i for feature j, xijnew
is the normalized value of record

i for feature j, xjmin
is the minimum value of feature j and xjmax

is the maximum

value of feature j.

5.3. Evaluation measures

In order to evaluate the scalability of the proposed method, we use the Speedup

measure [42] which consists of fixing the dataset size and varying the number of

machines. The Speedup measure is defined as follows:

Speedup =
T1

Tm
, (10)

1https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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where T1 is the running time of processing data on 1 machine and Tm is the running

time of processing data on m machines.

In order to evaluate the quality of the proposed method, we use true positives,

true negatives, false positives, and false negatives. A true positive (TP) indicates that

the intrusion detection system detects precisely a particular attack that has occurred.

A true negative (TN) indicates that the intrusion detection system has not made

a mistake in detecting a normal connection. A false positive (FP) indicates that a

particular attack has been detected by the intrusion detection system but that attack

did not actually occur. A false negative (FN) indicates that the intrusion detection

system is unable to detect the intrusion after a particular attack has occurred. We

use in this paper the True Positive Rate (TPR) and False Positive Rate (FPR) that

are defined in Equation (11) and Equation (13) respectively.

TPR =
TP

TP + FN
(11)

FPR =
FP

FP + TN
(12)

Furthermore, we use the Area Under Curve (AUC) measure [46] to combine the TPR

and FPR which is considered a good indicator of these rates. The AUC can be defined

as follows:

AUC =
(1− FPR)× (1 + TPR)

2
+

FPR× TPR

2
(13)

A greater value of these measures indicates better quality results.

5.4. Evaluation of the clustering quality

We evaluate the accuracy of the proposed method (E-SPSO) compared to four ex-

isting methods: K-means [25], PSO [27], MRKM [45] and MRPSO [4]. We use in

the experiments the following parameters: the number of particles equal to 10, the

number of iterations equal to 50, the inertia weight equal to 0.72 and the acceleration

coefficients equal to 1.49. Table 2 reports the TPR, FPR and AUC values obtained

by the proposed method using different training data sample sizes. The obtained

results show that the proposed E-SPSO gives nearly the same results as the existing

MRPSO. In addition, we observed that TPR value of E-SPSO using the whole train-

ing data (i.e Train100) reaches its best value compared to those obtained in smaller

training datasets. Furthermore, Table 2 shows that E-SPSO obtains the lowest FPR

for Train100 dataset.
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Table 2
Comparison of the accuracy of E-SPSO with existing methods

Dataset Method TPR FPR AUC

Train20

K-means 0.789 0.214 0.758

PSO 0.879 0.015 0.927

MRKM 0.789 0.214 0.758

MRPSO 0.903 0.038 0.933

E-SPSO 0.848 0.096 0.875

Train40

K-means 0.876 0.155 0.733

PSO 0.841 0.019 0.901

MRKM 0.876 0.155 0.733

MRPSO 0.911 0.021 0.945

E-SPSO .856 0.085 0.902

Train80

K-means 0.798 0.087 0.828

PSO 0.899 0.113 0.914

MRKM 0.798 0.087 0.828

MRPSO 0.935 0.013 0.961

E-SPSO 0.879 0.068 0.944

Train100

K-means 0.871 0.149 0.719

PSO 0.939 0.013 0.963

MRKM 0.871 0.149 0.719

MRPSO 0.939 0.013 0.963

E-SPSO 0.883 0.059 0.905

For instance, the E-SPSO has a high TPR value (0.883) for Train100 while it is

equal to 0.848 for Train20 dataset. In addition, E-SPSO has a low FPR of 0.059 for

Train100 compared to the value of 0.096 for Train20 dataset. The obtained high scores

of TPR and the low values of FPR show that the proposed method can effectively

distinguish between normal and attack data records. Better scores are shown as the

size of the training dataset increases.

5.5. Evaluation of the scalability

We firstly evaluated the running time of the proposed method compared to the existing

methods. Figure 4 shows the obtained running times for the 4 training data samples.

The obtained results show that the proposed method is faster than existing methods.

For instance, the E-SPSO is faster by a factor of 3.72 and 1.04 than PSO and MRPSO

respectively for Train100 dataset. This result can be explained by the effectiveness

of the parallel framework Spark when processing large-scale data. Hence, we can

conclude that the parallel PSO clustering method based on Spark framework can be

a good solution to handle large intrusion detection problems.
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Figure 4. Comparison of the running times of E-SPSO with existing methods.
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Figure 5. Evaluation of Speedup results using an increasing number of machines
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After that, we evaluated the scalability of the proposed method using an increas-

ing number of machines. Figure 5 shows the Speedup results using different training

data sizes with different numbers of machines. This figure shows good Speedup results

as the data size increases. For example, the Speedup value when running E-SPSO

using 4 machines for Train20 is 3.57 while it is 3.90 for Train100 data. In addition,

the proposed method shows approximately a linear speedup when the number of ma-

chines increases. This can be explained by the benefits of the in-memory processing

of the Spark framework which can significantly reduce the network cost when the

number of machines increases.

5.6. Evaluation of the local explanation

To provide local explanations, we utilized a force plot diagram to visually illustrate the

contribution of each feature in the decision-making process of the model. The length of

each feature’s representation along the horizontal axis indicates its importance in the

decision-making process. The colors red and blue are used to indicate the influence of

a particular feature on the decision to assign records to a specific class. The red color

signifies that a feature with a specific value may boost the assignment to that class.

On the other hand, the blue color indicates that a feature with a specific value boosts

the assignment to the other classes. In Figure 6, instead of analyzing a single record

for local feature importance, we chose to randomly select 10 data records from each

class. This approach provides a more significant analysis of the feature contributions

as it considers a broader range of records for each class.

Figure 6(a) presents the force plot diagram for an average of 10 data records

that were correctly classified by the model as a DOS attack. This figure shows that

the feature same srv rate plays a significant role in determining the assignment of

records to the DOS attack class, with a value of 0.01. This lower value of same -

srv rate increases the probability of assigning the record to the DOS attack class.

Furthermore, the features diff srv rate with a value of 0.08 and count with a value of

113 also result in a higher probability of assigning the data record to the DOS attack

class.

Besides, Figure 6(b) focuses on an average of 10 data records classified as PROB

attacks. The figure highlights that features such as src bytes = 0, dst host rerror -

rate = 0.25, and dst bytes = 0 contribute significantly to the decision of classifying

a record as a PROB attack. Notably, the feature dst host same srv = 0.52 reduces

the probability of assigning a record to the PROB attack class. Moving on to Figure

6(c) that provides a local explanation for 10 data records that were correctly classified

as R2L attacks, the features num compromised=2, hot = 3, and src bytes = 2.42 play

a significant role in the decision to classify a record as an R2L attack. Higher values

of these features greatly increase the likelihood of the record being classified as an

R2L attack. Concerning Figure 6(d) that presents a local explanation for 10 data

records that were correctly assigned to the U2R attack class, the feature duration

with a value of 12 contributes positively to the final classification, indicating that
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a longer duration increases the likelihood of the connection being assigned to the

U2R attack class. Additionally, features such as dst bytes = 0 and src bytes = 7.045

also positively contribute to this decision.

(a) Average of 10 data records assigned to class DOS

(b) Average of 10 data records assigned to class PROB

(c) Average of 10 data records assigned to class R2L

(d) Average of 10 data records assigned to class U2R

Figure 6. Force plot diagram illustrating local feature contribution in the decision of as-

signing records to each attack class, based on an average of 10 data records per class. The

varying colors, red and blue, indicate whether a feature increases or decreases the probability

of assigning records to a particular attack class

5.7. Evaluation of the global explanation

The global explanation of E-SPSO results aims to provide detailed insights into the

key features that played a crucial role in the classification of attack classes. To build

such explanations, we used the SHAP feature-summary-plot as shown in Figure 7.

Each dot in the figure represents a data record from the used dataset. The dot’s

vertical position represents the feature while the horizontal position represents the

impact of that feature value on the model’s classes (local to each class). The color

of each dot indicates the value of the corresponding feature for that record, with red

representing high values, purple representing medium values, and blue representing

low values.

Figure 7(a) illustrates that high values of the src bytes feature increase the prob-

ability of the connection being classified as a DOS attack by 20% to 30%. Conversely,

low values of the dst bytes feature increase the probability of the model identifying the

records as DOS attacks. Figure 7(b) demonstrates the global explanation of PROB

attacks. Low values of the src bytes feature increase the probability of a prediction
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as a PROB attack by 1% to 30%, while large values of the dst host same srv feature

increase the probability of the connection being classified as a PROB attack by 10%

to 30%.

(a) class DOS (b) class PROB

(b) class U2R(c) class R2L

Figure 7. Top 20 important features that were crucial in building each attack class.
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Then, Figure 7(c) provides the global explanation of R2L attacks. Low values of

the dst srv count feature increase the probability of a prediction as an R2L attack by

1% to 30%. Additionally, the figure shows that large values of the logged in feature

can increase the probability of the connection being classified as an R2L attack by up

to 30%. The last sub-figure, Figure 7(d), illustrates the global explanation of U2R

attacks. Low values of the dst srv count feature can increase the probability of the

records being considered as U2R attacks by up to 30%. Moreover, large values of the

dst host same src and logged in features can increase the probability of the connection

being classified as a U2R attack by up to 20%.

6. Conclusion

We proposed in this work an explainable Spark-based PSO clustering for an effective

intrusion detection system that deals with the issues of scalability, accuracy, and ex-

plainability of intrusion detection. The proposed system uses parallel clustering and

explainable artificial intelligence capabilities to build local micro and macro explana-

tions. It includes three independent phases: data detector modeling, data labeling,

and model explaining. The first phase aims to build clusters based on Spark-based

PSO clustering, the second phase assigns an attack label to each build group while the

third phase is devoted to the generation of local and global explanations. Empirical

experiments performed on real-world data from the military environment have shown

a significant improvement of the scalability, accuracy, and explainability of intrusion

detection.

The output of the proposed system relies on the quality of defined features. The

initial selection of features on such applications has a large impact on model outputs

and also on the explainability of results. It would be interesting to include a pre-

step of feature selection to extract the most important features when building attack

clusters. Besides, we considered in this work a pre-configured number of clusters

(known in advance). However, in real-life intrusion detection problems, it would be

interesting to integrate automatic techniques for estimating the number of existing

attack classes. Another interesting future direction to improve this work is to integrate

other XAI techniques such as LIME which may improve the model interpretability.
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