
Sławomir Cichoń
Marek Gorgoń

FPGA-BASED DVCPRO HD DECODER
IMPLEMENTATION USING IMPULSE C

Abstract High-level languages (HLL) for defining hardware implementation are impor-
tant in both academic and commercial research. Impulse C could be an example
of such language. This environment provides a programming model and library
of functions for parallel applications, targeting FPGA-based platforms with the
ability to partition the algorithm between software and hardware. This article’s
aim is to briefly describe DVCPRO HD, one of the intra-frame video-coding
algorithms widely used in consumer equipment. DVCPRO HD is a DCT -based
lossy video coding algorithm which uses variable-length coding (VLC) and run-
length encoding (RLE) to achieve a 5:1 compression ratio. This paper presents
DVCPRO HD video-coding-standard principles as well as decoder implemen-
tation working in real-time, compliant with the afore-mentioned standard and
implemented in Impulse C. According to the authors’ knowledge, the presented
solution is the first FPGA implementation of this coding standard which inclu-
des all three VLC stages of data re-arrangement. What is more, this is the first
DVCPRO HD implementation which utilizes Impulse C.

Keywords high definition, video decoding, high level languages, pipelined architecture,
intra-frame

2 lutego 2014 str. 1/16

Computer Science • 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.531

531

http://journals.agh.edu.pl/csci/


1. Introduction

Currently, digital images and video samples are present in almost every aspect of
life. Semi-professional cameras, with their ability to capture high-quality and high-
resolution images, recently have become readily available to most people. The images
made by such devices are compressed using GIF, JPEG, JPEG-2000, or other algori-
thms. On the other hand, todays consumers demand high-definition video capability
in their homes and personal equipment. DVD and Blu-Ray discs, along with numerous
social portals where everyone can share their own videos, triggered the development of
various motion video coding standards, including DV, DVCPRO, H.263, H.264, Dirac,
VC-1, and many others. Video coding techniques can be divided into two categories:
inter-frame and intra-frame. Inter-frame algorithms typically require more memory
space and are more computationally expensive than intra-frame algorithms; this is
largely due to dependencies between the current and previous frames. Intra-frame
coding is less complex because it uses data only from the current frame. Because
of this, achieved compression ratios are higher for inter-frame types of coding. There
are multiple platform types used to perform video encoding/decoding tasks; the most-
explored and -suitable of those are multicore-CPUs, ASICs, FPGAs, and GPUs. Each
combination of video-coding algorithm and platform is continuously being explored.
Examples of ASIC solutions are presented in [21, 25, 9]. In the past few years we
have observed rapid growth in the number of GPU platforms. Video-coding-related
research on GPU are presented in [19, 3, 18]. Because of the reconfigurable feature
of FPGA platform, it is commonly and extensively used in commercial products and
various disciplines of academic research. Recent reported work on video-coding im-
plementation using a reprogrammable chip are presented in [15, 13, 14, 10, 20, 12].
Hybrid architecture FPGA–GPU–CPU, capable of real-time processing of a stereo
video stream, is reported in [8].

Over the past several years, high level languages (HLL) have begun to play an
important role in hardware implementation design in both academic and commer-
cial research. Impulse C could be such an example [11]. This environment provides
a programming model and library of functions for parallel applications, targeting
FPGA-based platforms. FPGA-based video decoding solutions seem to adhere to
those capabilities. One of the intra-frame video-coding algorithms widely used in
consumer equipment is DVCPRO HD [23]. It is a DCT-based lossy video coding al-
gorithm which uses variable-length coding (VLC) and run-length encoding (RLE) to
achieve a 5:1 compression ratio. Similar implementation for standard definition (SD),
but in Handel-C, has been reported in [4] and [7]. This paper presents a DVCPRO
HD decoder architecture and results achieved using Impulse C. Section 2 briefly de-
scribes the DVCPRO HD video coding standard, focusing on three passes of VLC
coefficients arrangement and differences between DV and DVCPRO HD. Section 3
contains a brief overview of Impulse C high level language (HLL) as well as the de-
composition of a video-decoding algorithm into processing elements (PEs), operating
in parallel for implementation purpose. Section 4 presents the achieved results as well

2 lutego 2014 str. 2/16

532 Sławomir Cichoń, Marek Gorgoń



as the performance of our implementation. Conclusions and future work are discussed
in section 5.

2. Description of a problem solution

The subject of this work is 1440 x 1080 video signal, compressed using the DVCPRO
HD algorithm, compliant with the standard [23]. This video-coding specification de-
fines a lossy intra-frame only, DCT-based coding method with a compression ratio
up to 5:1. Video input uses YCrCb color space with 4:2:2 chroma sub-sampling. The
standardization document [23] describes in detail each of the functional steps present
in the video coding process:

• Shuffling of macro blocks and video segment composition,
• Forward 2D-DCT,
• Weighting of DCT coefficients, with different matrices for luminance and chro-

minance,
• Quantization to reduce DCT coefficient value,
• Variable Length Coding to limit amount of data,
• Compressed data arrangement at block level, macro block level, and video seg-

ment level.

Similar steps are also present in the 61834-2 [1] and DV standard [22], which are
predecessors of the DVCPRO HD. The main differences between DVCPRO HD and
DV are associated with chroma sub-sampling, DCT modes, and quantization steps.
Instead of 8-8-DCT and 2-4-8-DCT as found in DV coding, DVCPRO HD defines
two modes: 8-8-frame-DCT, which is identical to 8-8-DCT, and 8-8-field-DCT mode,
which is different from 2-4-8-DCT mode. In the 8-8-field-DCT mode, pixels from two
vertical adjacent DCT blocks need to be rearranged to form two DCT blocks with
pixels from the same fields, as shown in Figure 1.

Different DV standards apply the same DCT mode under different terms. For
example, 8-8-DCT from [1] is mathematically the same as 8-8-frame-DCT defined in
[23]. This is typical 2D DCT transformation on 8x8 blocks of data (either luminance
or chrominance). 2-4-8-DCT is present only in [1] and is calculated on blocks with
a major difference between half-frames (pixels from odd- and even-line numbers). It is
calculated using a different formula than 8-8-DCT mode. Unlike DV, the same DCT
mode is applied to the whole macro block in DVCPRO HD. Quantizer matrices are
defined separately for luminance and chrominance. This causes different luminance
values reduction than chrominance, which implies a better visual perception. The only
lossy operation is the quantization of AC coefficients prior to VLC coding. During
the video-decoding process, inverse operations of all of the above steps need to be
performed. The most computationally-complex operations are 2D-IDCT and VLC
decoding. Hardware implementations for 2D-IDCT have been widely reported in the
past [16, 6, 2]. The most computationally-complex part is related to compressed video
segment data re-arrangement, which needs to be done in three passes (each at the

2 lutego 2014 str. 3/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 533



Figure 1. Pixels rearrangement in the 8-8-field DCT.

different data sets). Moreover, the second and third passes use the remaining data
from the previous pass. During coding, DCT coefficients are arranged with a zig-zag
order and, after quantization, one or more successive AC coefficients are coded using
predefined tables defined by the standard [23] into code words with length between
3 and 16 bits. Finally, Run Length Encoding (RLE) is applied. As the last step,
compressed data is placed in the compressed data stream. However, the size of the
compressed video segment (five macro blocks taken from different places within the
frame during a process called ’shuffling’) and the single macro block are fixed. These
macro blocks are chosen in the shuffling process. Its purpose is to average the video-
data stream and minimize loss of data during data arrangement after VLC coding.
Fixed bit rate reduction applied without shuffling would generate different distortions,
depending on the picture details. Typically less-detailed areas are located on the frame
borders, while more-detailed parts are located at the center of the frame. Shuffling
will average the amount of data to be coded as well as help to achieve a goal of
not exceeding the defined 385 bytes after coding. Data arrangement in a compressed
macro block dedicated area is shown in the picture below (Fig. 2).

STAtus carries information about the status of the macro block indicating error
and concealment information, ignored in the presented solution. QNO is the quantiza-
tion number applied to the macro block data. DC consists of the DC coefficient (mean
value of pixels within the DCT block) and class of the DCT block. AC is the area
where compressed DCT coefficients with non-zero frequency are arranged. Naturally,
data from some macro blocks does not occupy the entire dedicated area; on the other
hand, there is some data that requires more space. To resolve this, the compressed
video segment data is arranged in three passes:

2 lutego 2014 str. 4/16

534 Sławomir Cichoń, Marek Gorgoń



Figure 2. Data arrangement in the compressed macro block.

1. Pass 1: Compressed DCT block data distribution within dedicated block area -
DCT block level.

2. Pass 2: Distribution of excessive data which remains after Pass 1 in the free space
in different blocks within the same macro block - macro block level.

3. Pass 3: Distribution of excessive data which remains after Pass 2 in the free space
in different blocks within different macro blocks within the current segment –
video segment level.

4. Data that could not be arranged in any of above steps is discarded.
This idea is presented on the Figure 3.
The same idea has been applied in other DV coding algorithms in the family,

like 61384-2 and DV. Additional research has been done on standard definition DV
video sequence to compare the influence of the number of passes in compressed data
arrangement on decoding quality. Peak Signal to Noise Ratio (PSNR) has been chosen
as quality measure calculated with the formula below:

RMSE =

√√√√ 1
3MN

M∑

i=0

N∑

j=0

[(
Rij −R∗

ij

)2
+
(
Gij −G∗

ij

)2
+
(
Bij −B∗

ij

)2]
(1)

where:
Rij, Gij, Bij – color values of the examined frame,
R∗
ij, G

∗
ij, B

∗
ij – color values decoded using reference decoder.

PSNR = 20log10
255

RMSE
(2)

DV software codec libdv [24] has been used as a software decoder. It was modified
to allow disabling of each VLC pass. As a reference decoder, MainConcept Reference
Demo version has been used [17]. PSNR values have been calculated for each number
of passes used during decoding. Four experiments have been conducted for a chosen
video sequence which is about 900 frames long. In the first experiment, MainConcept
was used to decode a compressed-video sequence. In the second, third, and fourth
experiment, the libdv decoder was used with the first pass only, first and second pass
only, and all three passes respectively.

2 lutego 2014 str. 5/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 535



Figure 3. Data arrangement in the compressed macro block.

Results show that in dynamic scene where there are lot of details, all three passes
can gain up to 5dB when compared to a single pass. The above results show that, to
achieve higher decoding quality in terms of PSNR, implementing all three passes of
VLC decoding can be beneficial.

Motion video decoding algorithms must meet at least one requirement – they
must operate in real-time. Implementation of the algorithm in real-time is possible
with a number of platforms mentioned in the 1 section. The use of FPGA allows us
to design an energy-efficient decoder which can be integrated in different classes of
devices. It is possible to use it in embedded systems, commercial products, or in high-
quality broadcast equipment. Using reprogramming and changing the configuration
of the FPGA, the standard of the applied decoder can be easily changed by fitting
the reconfigurable logic to the type of image signal received. In this way, one can
avoid the necessity of using separate decoders for each standard. A reconfigurable
solution with high probability can also be adapted to the new, not yet established
standards, allowing the user to avoid the necessity of replacing the unit each time
a new standardization is introduced. To achieve the real-time processing goal, an
FPGA-based platform has been chosen, which allows the entire algorithm to be broken

2 lutego 2014 str. 6/16

536 Sławomir Cichoń, Marek Gorgoń



down into smaller parts. Each part has been implemented in a dedicated processing
element (PE). Processing elements are organized in the pipeline architecture for the
best performance. The Impulse C language has been chosen as the design language.
Finally, the problem to solve can be defined as: implementation of the FPGA-based
DVCPRO HD video decoder using Impulse C, which meets real-time requirement.
Since [23] defines a 25-fps frame rate, this directly determines maximal processing
time of a single frame to 40 ms. The total number of compressed video segments
in the frame is equal to 1215. Upper limit of processing time and number of clock
cycles, in which decoding of each video segment needs to be performed, can now be
calculated as:

dTV Sdecodee =
1

frame rate · number of V S =
1

25 · 1215
≈ 33µs (3)

Assuming FPGA clock frequency 200 MHz

dNV Sdecodee =
freqCLK

frame rate · number of V S =
200 · 106

25 · 1215
≈ 6584 (4)

Based on the number of clock cycles needed for each individual processing element
to complete and number of video segments within the single video frame, theoretical
frame rate achieved by the implemented decoder can be specified using the equation:

frame rateMAX =
freqCLK

dNV Sdecodee · number of V S
(5)

Figure 4. PSNR value for the video sequence with different number of data re-arrangement
passes utilized.

2 lutego 2014 str. 7/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 537



dNV Sdecodee defines maximal number of clock cycles of each processing element within
the pipeline architecture to fulfill the real-time requirement. It is very important to
calculate this formula prior to implementation, because Impulse C is an untimed,
high-level language. The number of clock cycles used for processing cannot simply
be obtained from the C code. One of the methods to gather such information during
hardware simulation is presented in section 4.

3. Applied algorithms and methods. Software and hardware
used

Impulse C is an ANSI C based language. It provides a library of functions and multiple
bits data types. It also provides a programming model for FPGA-based platforms.
Impulse C has been designed to simplify the expression, verification, and compilation
of complex applications consisting of multiple parallel processes. Impulse C allows
us to design mixed software/hardware targets. CoDeveloper includes the Impulse C
libraries and associated software tools such as Application Monitor, Stage Master
Explorer, and Stage Master Debugger. These allow us to simulate and debug the
solution at the C language level as well as the generated HDL level. Both VHDL and
Verilog code can be generated from Impulse C project. Impulse C defines three main
communication mechanisms between software and hardware processes:

• Stream co stream, in forms of synchronous FIFOs, which can be used to syn-
chronize processes, as well as data exchange.
• Signal co signal, typically are used to synchronize processes. They can also carry

32-bit value.
• Shared memory co memory, for data exchange between processes.

CoBuilder is the hardware generation tool that converts the Impulse C applica-
tion onto programmable hardware for acceleration. CoBuilder analyzes the application
code, extracts those processes that have been specified for implementation in hardwa-
re, and creates optimized (HDL format) hardware descriptions ready for synthesis
into an FPGA device. The hardware platform is supported by a set of optional libra-
ries, platform-specific libraries, examples, and documentation called Platform Support
Package (PSP). An initial study by the authors discovered stream ineffectiveness wi-
thin the implementation in regards to data throughput. Because of this, Impulse C
signals and memories are used within the presented implementation.

All decoding steps have been implemented in Impulse C, while some of decom-
pression stages have been decomposed into smaller parts due to complexity or de-
pendencies between data during decoding. The Impulse C environment allows us to
define software/hardware co-design. The designer can declare any number of proces-
ses, which are processing element equivalent, to be run as software processes or to
be synthesized and run on target FPGA. The designer can choose which process will
be run on CPU and which on FPGA. Impulse C defines standard generic functions
to communicate between processes, and PSP implements those interfaces for specific

2 lutego 2014 str. 8/16

538 Sławomir Cichoń, Marek Gorgoń



hardware platform. Figure 5 describes hardware processes in the proposed implemen-
tation.

Figure 5. DVCPRO HD decoder functional block diagram.

Some of processes defined can be directly mapped to decoding phases, as descri-
bed in coding standard [23]. Those are: VLC Decoder, Inverse Quantizer/Weighting,
and 2D-IDCT. Inverse DCT has been split into two one-dimensional stages according
to the most popular Loeffler fast DCT proposal [16]. There are additional hardware
processes:

• Video Segment Parser: decodes from the compressed data stream common macro
block and block parameters, that are used later in the decoding process, e.g. DCT
mode, quantization class, DC coefficients.
• Transfer: writes coded AC coefficients into dedicated buffers.
• VLC Parser Pass1: parses VLC codeword till End Of Block (EOB) symbol or

end of dedicated DCT block area is reached. Then it copies the data to another
buffer for the particular DCT block. This buffer will be appended with data
parsed during Pass2 and Pass3.
• VLC Parser Pass2: parses the data left after pass 1 for each macro block, and

places the data in to DCT buffer.
• VLC Parser Pass3: similar as in VLC Parser Pass2, but it parses the data at the

current video segment level.
• Deshuffler: places pixels in the appropriate places in the buffer.
• SegmentWriter: writes decoded macro blocks into specific areas of the decom-

pressed frame memory buffer in external SDRAM, depending on XY coordinates
of the processed macro block.

2 lutego 2014 str. 9/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 539



• SignalCombiner: terminates all output processing completion signals from PEs
and passes only one signal to DecoderController after receiving all signal confir-
ming the completion of processing for each PE.
• DecoderController: receives signal from SignalCombiner of processing completion

in the current iteration, triggers next iteration processing along with additional
input data.

Shared memory banks between software and hardware processes are:

• CompressedFrame: memory bank shared between Producer software process and
hardware process called Transfer on FPGA. Used to store the compressed frame
data read from the file. Size of the buffer: 486000 Bytes.
• DecompressedFrame: memory bank shared between FPGA, SegmentWriter pro-

cess, and Consumer. Used to store decoded frame. Size of the buffer is: 6220800
Bytes.

Each of the hardware processes involved in the decoding process has defined one
input signal and one output signal for synchronization purpose. All output signals
from processing elements are connected to Signal Combiner. Its role is to commu-
nicate current video segment decoding completion upon reception of a completion
signal from all decoding processes. Processing of the next video segment can not be
started if all PEs have not completed the processing from the previous segment. Data
between hardware processes are exchanged using BRAMs. Signals are used for syn-
chronization purposes between PEs, and they also carry input data specific to the
currently processed video segment. An example of two hardware processes and their
inter-communication applied in the reported solution is presented in Figure 6.

Figure 6. Inter-process communication and synchronization.

2 lutego 2014 str. 10/16

540 Sławomir Cichoń, Marek Gorgoń



The DRC AC2020 (Fig. 7) has been chosen as a hardware platform. It is a high-
performance computing system which communicates with the outside world over Hy-
perTransport bus. The module is equipped with Virtex-5 LX220 FPGA as well as two
DDR memory banks with 2 GB each. Details on this high-performance computing-
hardware platform family can be found on the manufacturer website [5]. The module
is placed in the second processor socket (instead of the CPU) on the motherboard of
the server, which allows the AC2020 to work as a coprocessor in PC-like architecture.
This solution allows us to access the AC2020 memory from both FPGA and CPU.

Figure 7. DRC AC2020 reconfigurable processing unit.

Impulse C allows us to define not only hardware, but also software processes.
To implement compressed and decompressed frame data transfer from the memory
shared between FPGA and CPU, two software processes have been defined (typically
in Impulse C) called Producer and Consumer. Producer, in general, transfers data
using streams directly to FPGA; however, since the hardware platform is equipped
with memory which can be shared between FPGA and CPU, it has been utilized
instead of the stream. Upon compressed data transfer, Producer triggers FPGA by
posting a signal to kick off the decoding process. Results of the decoding process
are stored in the second memory bank, which is also shared with the CPU. Upon
decoding completion, FPGA triggers another software process called Consumer; this
transfers the decompressed data and stores it in an output file which can be used for
verification or used to visualize the result. The sequence of decoding a single frame
is shown in Figure 8. It describes a synchronization method between software and
hardware processes.

To achieve real-time performance defined by eq. (4), a number of implementation
iterations have been simulated. To measure Impulse C code performance, the following
additional functionality has been added:

2 lutego 2014 str. 11/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 541



• Additional hardware process ClockCounter, in forms of infinite loop that incre-
ments the clock cycle counter and stores its value in the global variable, which
can be accessible by other PEs.
• Each hardware process has been instrumented to check the number of clock

cycles at their entry and exit points. These values are subtracted to calculate the
duration of the current iteration in each PE.
Data collected during hardware simulation, either using Stage Master Debugger

or HDL simulation, was essential in bottleneck identification. It was also the input
for confirmation of real-time processing of the designed decoder.

4. Results

The DVCPRO HD video decoding algorithm has been implemented and verified in
both software and hardware simulations in the Impulse C environment. It has been al-
so verified in terms of functionality as well as real-time requirements on the hardware
platform DRC AC2020. It has been proven that the real-time performance condition
was fulfilled; i.e., the frame rate shall not be less than 25 fps at an FPGA clock fre-
quency of 200 MHz. Thirteen hardware processes have been designed and organized
in the pipeline architecture for best performance of the decoder. Data between pro-
cessing elements is exchanged by BRAM and signals. Detailed results obtained are
presented in the Table 1.

Table 1
DVCPRO HD decoder synthesis report.

FPGA device Frequency SLICE occupied BRAM used

Virtex-5 200 MHz 20 390 out of 34 560 112 out of 192
5vlx220ff1760-2 58% 58%

Impulse C code has been additionally instrumented to gather the number of clock
cycles used for each PE in every iteration (each video segment decoding) during the
single-frame decoding process. The data has been collected during hardware simu-
lation and has been used to determine bottleneck and worst-performing processes.

Figure 8. Single frame decoding sequence.

2 lutego 2014 str. 12/16

542 Sławomir Cichoń, Marek Gorgoń



Iteratively, the performance of the pipeline has been improved to finally exceed the
desired frame rate. All hardware processes, with the exception of those related to
VLC decoding, require a constant number of clock cycles to be completed. Each vi-
deo segment consists of a different number of VLC code words, which implies that
these processes will have different duration for each of data sets. The Table 2 presents
the detailed number of processing cycles for every PE. For VLC related processes,
average values are provided. The worst-performing processing element is Deshuffle;
however, it can be optimized. Having said that, it is not a crucial part of the decoding
algorithm, and a non-optimal solution was accepted since the goal for the entire de-
coding process has been met. All values in the table are lower than those calculated
in the eq. (4). Processes like Transfer and VSParser have relatively short durations
compared to the longest one. Processing times of all other processes are within the
same order of magnitude.

Table 2
Duration of hardware processes (number of clock cycles).

HW process VSParser Transfer VLCParserPass1

Num. of CLK cycles 386 117 avg. 1556/ max. 2584

HW process VLCParserPass2 VLCParserPass3 InverseVLC

Num. of CLK cycles avg. 2147/ max. 2726 avg. 2602/max. 3685 avg. 3060/ max. 3564

HW process InverseQNOWght IDCTStage1 IDCTStage2

Num. of CLK cycles 3186 3094 3094

HW process Deshuffle WriteSegment

Num. of CLK cycles 3764 3072

The above results have confirmed real-time performance of the presented DVC-
PRO HD implementation. Based on the number of clock cycles of the slowest proces-
sing element, an achieved theoretical frame rate value can be calculated using below
formula:

frame rateMAX =
freqCLK

dNV Sdecodee · number of V S
=

=
200 · 106

3764 · 1215
= 43fps

(6)

This value far exceeds the requirement for real-time processing of the decoder.

5. Conclusions and future work

The DVCPRO HD decoding algorithm solution has been designed and implemented
in Impulse C. The solution has been verified on the DRC AC2020 hardware platform.
According to the authors’ knowledge, the presented solution is the first FPGA imple-
mentation of this coding standard with all three VLC stages of data re-arrangement.

2 lutego 2014 str. 13/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 543



What is more, this is the first DVCPRO HD implementation using synthesizeable
high-level language. All goals which were set at the start of the project, including
real-time processing, have been achieved. The Impulse C language, as well as the
DRC platform, proved to be useful for the implementation of such complex algori-
thms like video decoding, and met demanding performance requirements. Future work
can include live demo design, with on-the-fly displaying decoded video on a computer
screen. Further improvements and optimizations can also be sought to lower the maxi-
mum necessary clock frequency, in order to achieve real-time processing and to prove
the applicability of HLL-designed implementations in low-power-demanding systems.
Future work may also include a comparison of other decoding quality indicators, to
evaluate and better understand the influence of the number of VLC data arrangement
passes on the decoding quality.

Acknowledgements

Authors wish to thank the ACC Cyfronet and Department of Electronics, for providing
a hardware platform. The work presented in this paper was supported by AGH UST
grant 11.11.120.612.

References

[1] CENELEC: Recording — Helical-scan digital video cassette recording system
using 6,35 mm magnetic tape for consumer use (525-60, 625-50, 1125-60 and
1250-50 systems). Part 2: SD format for 525-60 and 625-50 systems (IEC 61834-
2:1998), 1998.

[2] Chen W. H., Smith C. H., Fralick S. C.: A fast computational algorithm for the
discrete cosine transform. IEEE Transactions on Communications, vol. 25, pp.
1004–1009, 1977.

[3] Cheung N. M., Fan X., O. C. A., Kung M. C.: Video Coding on Multicore Graphics
Processors. IEEE Signal Processing Magazine, vol. 27, pp. 79–89, 2010.

[4] Cichoń S., Gorgoń M., Pac M.: Handel-C design enhancement for FPGA-based
DV decoder. Reconfigurable Computing Architectures and Applications, Lecture
Notes in Computer Science, LNCS, pp. 128–133, 2006.

[5] DRC Computing: Accelium Coprocessors Product Datasheet webpage, 2013.
http://www.drccomputer.com/pdfs/DRC_Accelium_Coprocessors.pdf.

[6] Eijndhoven van J., Sijstermans F.: Data Processing Device and method of Com-
puting the Cosine Transform of a Matrix, Patent WO 9948025, 1999.

[7] Gorgoń M.: Architektury rekonfigurowalne do przetwarzania i analizy obrazu oraz
dekodowania cyfrowego sygnału wideo. UWND AGH, Kraków, 2007.

[8] Greisen P., Heinzle S., Gross M., Burg A P.: An FPGA-based processing pipe-
line for high definition stereo video. EURASIP Journal on Image and Video
Processing, 2011.

2 lutego 2014 str. 14/16

544 Sławomir Cichoń, Marek Gorgoń



[9] Hsiao Y. M., Chang F. P., Chu Y. S.: High speed multimedia network ASIC design
for H.264/AVC. In: The 5th IEEE Conference on Industrial Electronics and
Applications (ICIEA), 2010.

[10] Huang H. J., Fang C. H., Fan C. P.: Very-large-scale integration design of a low-
power and cost-effective context-based adaptive variable length coding decoder
for H.264/AVC portable applications. IET Image Processing, vol. 6, pp. 104–114,
2012.

[11] Impulse Accelerated: CoDeveloper User Guide, 2013.
http://www.impulseaccelerated.com/ReleaseFiles/Help/iAppMan.pdf.

[12] Kalali E., Adibelli Y., Hamzaoglu I.: A high performance and low energy intra
prediction hardware for HEVC video decoding. In: Conference on Design and
Architectures for Signal and Image Processing (DASIP), 2012.

[13] Kim S., Kim H., Chung T., Kim J. G.: Design of H.264 video encoder with C to
RTL design tool. In: International SoC Design Conference (ISOCC), 2012.

[14] Kinsman A. B., Nicolici N.: A VLSI Architecture and the FPGA Prototype for
MPEG-2 Audio/Video Decoding. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 19, pp. 499–503, 2011.

[15] Lee C., Yang S.: Design of an H.264 decoder with variable pipeline and smart
bus arbiter. In: International SoC Design Conference (ISOCC), 2010.

[16] Loeffler C., Ligtenberg A., Moschytz G.: Practical Fast 1-DCT Algorithms with 11
Multiplications. In: Proc. of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 988–991, 1989.

[17] MainConcept: TotalCode Studio webpage, 2013. http://www.mainconcept.com/
products/apps-plug-ins/transcoding/reference.html.

[18] Pieters B., De Cock J., Hollemeersch C., Wielandt J., Lambert P., Van de Walle
R.: Ultra High Definition video decoding with Motion JPEG XR using the GPU.
In: 18th IEEE International Conference on Image Processing (ICIP), 2011.

[19] Rodriguez R., Martinez J. L., Fernandez-Escribano G., Claver J. M., Sanchez J. L.:
Accelerating H.264 inter prediction in a GPU by using CUDA. In: International
Conference on Consumer Electronics (ICCE), 2010.

[20] Shan J., Chen C., and Yang E.: High performance 2-D IDCT for Image/Video
Decoding based on FPGA. In: International Conference on Audio, Language and
Image Processing (ICALIP), 2012.

[21] Shou-Gen X., Ming-Jiang W., Shi-Kai Z.: A new hardware architecture for H.264
intra prediction frame processing. In: IEEE 5th International Conference on
Internet Multimedia Systems Architecture and Application (IMSAA), 2011.

[22] SMPTE: SMPTE 314M: Data Structure for DV-based Audio, Data and Com-
pressed Video 25 and 50 Mb/s, 1999.

[23] SMPTE: SMPTE 370M: Data Structure for DV-Based Audio, Data and Com-
pressed Video at 100 Mb/s 1080/60i, 1080/50i, 720/60p, 720/50p, 2006.

[24] SourceForge: Libdv webpage, 2006.
http://sourceforge.net/projects/libdv/.

2 lutego 2014 str. 15/16

FPGA-based DVCPRO HD decoder implementation using Impulse C 545



[25] Staworko M., Modrzyk D.: A high-performance VLSI architecture of 2D DWT
processor for JPEG2000 encoder. In: Proceedings of the 18th International Con-
ference Mixed Design of Integrated Circuits and Systems (MIXDES), 2011.

Affiliations

Sławomir Cichoń
AGH University of Science and Technology, Krakow, Poland, slawcich@agh.edu.pl

Marek Gorgoń
AGH University of Science and Technology, Krakow, Poland, mago@agh.edu.pl

Received: 4.09.2013
Revised: 30.09.2013
Accepted: 01.10.2013

2 lutego 2014 str. 16/16

546 Sławomir Cichoń, Marek Gorgoń


