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Abstract In this paper, we attempt to generalize the ability to achieve quality infer-

ences of survey data for a larger population through data augmentation and

unification. Data augmentation techniques have proven effective in enhancing

models’ performance by expanding the dataset’s size. We employ ML data

augmentation, unification, and clustering techniques. First, we augment the

limited survey data size using data augmentation technique(s). Second, we

carry out data unification, followed by clustering for inferencing. We took two

benchmark survey datasets to demonstrate the effectiveness of augmentation

and unification. The first dataset contains information on aspiring student

entrepreneurs’ characteristics, while the second dataset comprises survey data

related to breast cancer. We compare the inferences drawn from the original

survey data with those derived from the transformed data using the proposed

scheme. The results of this study indicate that the machine learning approach,

data augmentation with the unification of data followed by clustering, can be

beneficial for generalizing the inferences drawn from the survey data.
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1. Introduction

Surveys are the most popular form of data collection in organizational and behavioral

research [5]. The areas of policy-making, higher education, health care, psychology,

and market research are some of the ones that commonly use surveys [15]. Cor-

rectly processing survey data has become a major problem due to the vast range of

applications. Minor survey data analysis may occasionally produce bizarre results.

Therefore, the right analytical tools are necessary to derive relevant insights from

survey data. However, the nature of the data and the application’s goal significantly

impact how reliable analysis tools are [39]. It attempts to comprehend a phenomenon

by compiling feedback from a sizable population [6].

The standard methods for analysis in survey research are statistical modeling

tools for finding survey error(s); this necessitates prior knowledge of the association

between the outcomes and covariates [47]. Unfortunately, in complex real-world cir-

cumstances where these interactions may not be accessible, it is not always possible to

satisfy the condition of understanding the relationship mapping between the outcomes

and variables. More adaptable modeling strategies are necessary for these situations

that do not call for relational mappings to be predefined. Complex circumstances can

be better understood by building relational mappings based on the inherent properties

of the data [25]. For example, grouping data points according to their natural prox-

imity can help us better comprehend a phenomenon, like the behavior of a sampled

population. Flexible modeling techniques must be used, and numerous data-related

issues must be resolved to extract relevant and trustworthy insights from survey data.

Unique qualities of survey data include variability, hierarchical linkages, and the im-

portance of category names [44]. Depending on the degree of heterogeneity, the data

may contain a variety of metrics, including binary, continuous, categorical, or their

mixtures.

Most survey techniques involve using a single mode of data collection. In today’s

complex world, single-mode survey techniques may not be sufficient. For example,

universities survey students to learn about their perspectives, interests, and behav-

ior to better understand the factors that contribute most to their entrepreneurial

aptitude; the survey data could be multi-modal.

To address this, researchers employ multiple surveys allowing diverse inferencing

and catering to complex themes. These surveys offer a range of methods, including

mathematical analysis and qualitative inference, to gather comprehensive data and

insights that align with the research objectives and complexities of the survey topic [7].

Unification is a process of combining various data elements to create an arrangement

that is logical and consistent enough to allow for the drawing of reliable inferences.

Since it makes it feasible to combine and bring diverse pieces of knowledge into one

coherent whole, unification is crucial for effective inferencing. It must include patterns

or connections into a single structure. Furthermore, unification calls for considering

relevant factors affecting the discovered patterns or correlations [43]. The success of

unification is crucial for accurate inference.
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In addition, sampling is always limited by size, yet it is expected that such limited

sampling should lead to the views of the whole population [34]. Participants might

differ in their perspectives. Ensuring the sample size is enough to include all relevant

viewpoints while performing qualitative research. A limited sample size can have a

better chance of finding a wide range of impressions and increasing the credibility of

their inferences; there could be fewer conflicts. However, analyzing such a range of

data presents formidable difficulties [35].

Additionally, survey data generated by web-based survey software frequently con-

tains small ordinal measurements. According to the research, treating values on small

ordinal scales as value-based is improper [48]. On the other hand, methodologies that

make use of vectors with ordinal values typically outperform pattern-based analysis

techniques [41, 42]. Such techniques, widely used by most survey inferencing tools

and techniques, lead to arbitrary inferencing. Apart from the facts above about the

reliable analysis of survey data, the flexible modeling techniques, and the use of vector

techniques, the survey faces the challenge of gathering information from the intended

audience. It is one of the main problems with online surveys. Online surveys fre-

quently require greater response rates, which could result in sufficient sample size and

skewed findings [2].

In this work, we use machine learning (ML) techniques, namely, data augmenta-

tion, to augment the survey size. ML is mostly data-driven [31]. To put it another

way, it offers adaptable modeling methods that exclusively rely on the intrinsic prop-

erties of the data to make the connections between the data and the results. ML

usage may open survey research to generalized predictive modeling, limited to de-

termining population features from a sample of data [9, 24]. Data augmentation is

a generalization technique that enriches and enhances the population size for proper

inference. We expect that the inferencing of the limited survey should be that of the

population [22].

In this work, we focus only on ordinal data. But, like in many surveys, there is

also associated numerical type data. So, as a result, we apply the unification process,

which appropriately converts numerical values to ordinal values. After this, we put

the dataset into a machine-learning model, especially for clustering. By doing this,

we got better clusters for finding the effecting features from each cluster. It means the

formed clusters are effective. In the result section, we show the efficiency measures of

the clustering and can find suitable and effective features.

Therefore, we address the following research questions (RQs) in this work:

RQ1: Does the limited survey sampling be extended through ML augmentation re-

flecting a more significant population’s general opinion?

RQ2: Does the augmented data with unification and clustering yield proper infer-

ences?

Regarding the RQs mentioned above, the research in this work examines the

proper inferencing obtained through augmentation and unification. For this pur-

pose, we took two case studies, one for finding the competency factors in university
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entrepreneurs and the second for breast cancer prediction features. The research

contributions of this work are summarized as

• We employ data augmentation techniques on limited survey to yield the infer-

encing of larger population,

• We identify the generalized driving features to determine the significant factors

for prediction, and

• The proposed ML methods yield significant inferences for ordinal-type survey

data for proper decision-making.

The paper is organized as follows: Section 2 describes the motivation behind

developing ML-driven methods. Section 3 briefly reviews the literature highlighting

the data augmentation techniques and unification’s role in clustering survey data. In

Section 4, we describe, in detail, the concept of our proposed methodology. The exper-

imental setup with dataset description of survey data and the detailed corresponding

results are presented in Section 5.1. Finally, we conclude the paper in Section 6.

Table 1 lists the key abbreviations that comprise this paper.

Table 1
Abbreviations

Abbreviation Description

ADASYN ADAptive SYNthetic

CNFL Categorical to Numerical Feature Learning

DAUG Data AUGmentation

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DNA Deoxyribo Nucleic Acid

EM Expectation Maximization

GA Genetic Algorithm

GAN Generative Adversarial Network

PCA Principal Component Analysis

ROC Receiver Operating Characteristics

SMOTE Synthetic Minority Over Sampling

SOM Self Organising Map

UFDM Unification For Data Modelling

2. Motivation

The survey of a limited population should reflect the opinion of a large population.

The survey aims to gather perceptions and viewpoints that may be applied to a more

significant population. A properly chosen sample population that reflects the large

population in terms of the pertinent features must be used to do this. The techniques

may be used to draw valid conclusions about the attitudes and actions of a larger

population. We are using ML techniques. It should be generalized. Therefore, we

use the augmentation technique, which is a generalization technique. Even then,
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if we get fewer responses, it may give loosely prominent results. So we have to

expand our number of responses through augmentation. We depict an example of this

process. Here, we assume only three features (A1, A2, and A3) and responses from

two categories (A and B). We suppose that a survey is conducted on a questionnaire,

and based on this, there are three features to observe (A1, A2, and A3). The features

will be selected from three for decision-making on the two categories of responses (A

and B).

Figure 1. A Sample Example of Selected Features from a Survey Dataset

Figure 1 illustrates that in a small population size, before augmentation, the

most governing feature for inferences through clustering is only A3. Considering the

responses belong to two categories, A and B, they group into two clusters. A3 is

most likely selected for inferencing from each cluster with maximum grading. On

the other hand, after augmentation, the responses increased in number and were also

grouped into two clusters. But this time, we got another feature A1 from cluster

2. There may be a possibility of getting all three features; this will be discussed in

detail in the results section for limiting the selected features. Thus, we can get more

generalized and precise inferences. Therefore, the inferences of ML techniques will be

better suitable for this work.

3. Related work

3.1. Data augmentation in survey data

The fundamental objective of data augmentation is to create a productive and re-

peatable sampling method by adding concealed or unseen factors to the model. This

technique gained prominence primarily in deterministic algorithms that aim to max-

imize likelihood functions or posterior densities with the expectation-maximization

(EM) algorithm [17]. Constructing a data augmentation algorithm is somewhat of

an art because data augmentation algorithms must be carefully developed for each
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model type [16]. Schliep and Hoeting introduced parameter-expanded data augmen-

tation techniques to model ordinal data with the probit model. Specifically, the study

focused on implementing these algorithms for the probit linear mixed model in the

context of spatially correlated ordinal response data. The researchers then demon-

strated the applicability of the model by utilizing it to assess the biotic integrity of

wetlands in Colorado [43].

Machine learning algorithms are typically evaluated based on their predictive

accuracy. However, this approach may be unsuitable for imbalanced datasets where

classes are not evenly represented or when the cost of different errors varies signifi-

cantly. For instance, fraud detection often involves a class imbalance of 100 to 1, while

other applications may have an imbalance of up to 1,00,000 to 1. Over-sampling

techniques have been proposed to address this issue to balance the data. One ap-

proach involves creating synthetic examples of the minority class rather than simply

over-sampling with replacement. This technique has been successful in handwritten

character recognition, where operations like rotation and skew were used to perturb

the training data and create additional examples. By generating synthetic exam-

ples, we can improve the training of machine learning algorithms on imbalanced data

and ensure that the minority class is not overlooked. This approach can be precious

in applications like fraud detection, where correctly identifying the minority class is

critical. SMOTE (Synthetic Minority Over-sampling Technique) [12] demonstrates

that a more effective classifier performance (in ROC space) can be achieved through

a combination of our over-sampling method for the minority (abnormal) class and

under-sampling for the majority (normal) class, compared to solely under-sampling

the majority class.

The Adaptive Synthetic (ADASYN) [23] sampling approach has been developed

to address these issues. The main idea behind ADASYN is to use a weighted distribu-

tion for different minority class examples based on their level of difficulty in learning.

This means that more synthetic data is generated for minority class examples that are

harder to learn than those that are easier to learn. As a result, ADASYN improves

learning by reducing the bias introduced by class imbalance and adaptively shifting

the classification decision boundary towards the difficult examples. Simulation anal-

yses on several machine learning data sets have demonstrated the effectiveness of

this approach across five evaluation metrics. The ADASYN sampling approach has

emerged as a promising solution to this challenge. By generating synthetic data for

minority class examples based on their level of difficulty in learning, ADASYN helps

reduce bias and adaptively shift the classification decision boundary towards difficult

examples. This approach effectively improves learning outcomes across various ma-

chine learning data sets, making it a valuable tool for tackling imbalanced data sets

in modern data mining applications.

Temraz and Keane proposed a data augmentation method that generates syn-

thetic, counterfactual instances in the minority class. Unlike other oversampling tech-

niques that interpolate values between instances, this method adaptively combines
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existing instances from the dataset using actual feature values. To generate synthetic

instances, the paper deploys a case-based counterfactual method. Counterfactual

methods are developed to generate posthoc examples to explain the predictions of

black-box ML models and provide algorithmic recourse for end-users trying to mit-

igate automated decisions [46]. Hulse et al. analyzed eleven learning algorithms on

thirty-five real-world datasets to guide machine learning practitioners and suggest

future research directions on building classifiers from imbalanced data. This study is

unique as no other related work has analyzed class imbalance on such a wide scope [49].

The data augmentation field is vast, and it is especially used in the field of images.

Image data augmentation involves creating new images from existing ones by making

small adjustments, such as changing brightness, rotating the image, or shifting the

subject horizontally or vertically. This technique effectively increases a dataset’s size

and improves a machine-learning model’s robustness. When a model performs dif-

ferently on training data versus testing data, it’s called generalizability. Overfitting

occurs when a model has poor generalizability due to being overly trained on the

training data. Simple transformations like horizontal flipping, color space augmenta-

tions, and random cropping were the earliest demonstrations of the effectiveness of

Data augmentation. These transformations address invariances that pose challenges

to image recognition tasks. The efficiency of geometric and photometric (color space)

conversions was examined in comparative research by Taylor and Nitschke [45]. We

looked at geometric changes, including flipping, 0◦ to 360◦ rotations and cropping, as

well as color space transformations like edge improvement, PCA, and color jittering

(random color manipulation). Eight thousand four hundred twenty-one photos with

a size of 256×256 from the Caltech101 dataset were used in the 4-fold cross-validation

test of the augmentations.

Generative modeling, nicknamed Generative Adversarial Network (GAN), is

a fascinating data augmentation method. Generative modeling is constructing ar-

tificial instances from a dataset while maintaining the original set’s features. The

highly intriguing and enormously well-liked generative modeling framework known as

GANs results from the above-mentioned adversarial training ideas. GANs are a means

to “unlock” more information from a dataset, according to Bowles et al. [8].

3.2. Unification in survey data

After augmentation, another perspective is the unification. The challenges of uni-

fication rather than its benefits, particularly concerning long-term economic growth

and the practical aspects of societal and political integration. The extent to which

the vocabulary and understanding of unification are unknown is still uncertain [38].

There are various types of categorical data, such as text data, DNA sequences, and

Census Bureau data, that humans easily understand. Still, many classification sys-

tems, like support vector machines (SVM), require numerical data representations.

Most learning techniques transform categorical data into binary values to handle this,

which can result in high dimensionality and sparsity.
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CNFL uses eigen-decomposition to convert the proximity matrix into a reduced

space that can be used for classification or clustering. It first employs simple matching

to measure the closeness between instances [21]. Mamabolo and Myres provided

two significant contributions. Firstly, it outlines a precise and reproducible 8-step

process for questionnaire development utilizing qualitative research, which enhances

the methodology for mixed-method designs. Secondly, the study creates a research

tool for measuring the extent of entrepreneurial skills. Ultimately, the findings offer

implications for research methodology, entrepreneurship scholarships, and practical

applications [33,50]. In data analysis, it is expected to ask meaningless questions.

Understanding data scaling can sometimes help us identify nonsense, but we

must use proper logic. Giordan and Diana developed a new clustering technique

that addresses two common cluster analysis issues: group size selection and scale in-

variance. The method employs a multinomial model, a cluster tree, and a pruning

approach to group objects. Two types of pruning are examined using simulations [20].

When dealing with real-world problems, data may include numeric and categorical

variables. While many regression algorithms work well with numeric variables, cate-

gorical variables require additional considerations. However, decision tree algorithms

can estimate targets based on specified rules and handle categorical and numeric vari-

ables. Kim and Hong proposed a new hybrid model combining a decision tree with

another regression algorithm to analyze mixed data. The algorithm was evaluated on

twelve datasets and achieved better or comparable accuracy to other methods without

significantly increasing computational complexity [26–28].

The decision tree algorithm can handle categorical and numerical variables by

evaluating the target based on predefined rules. This feature is used to create a new

hybrid model that combines a decision tree with a different regression technique to

analyze mixed data. The GA algorithm optimizes the new cost function and pro-

duces accurate clustering results. We can evaluate whether a GA-based clustering

algorithm suits high-dimensional data collections with mixed features [37]. A novel

distance metric is proposed to preserve the order link between ordinal values while

measuring the intra-attribute distances of nominal and ordinal characteristics in a uni-

fied manner. An entropy-based distance metric for ordinal attributes is devised to

estimate the distance between categories of an ordinal attribute, which utilizes the

underlying order information. The next step is to generalize this distance measure

and suggest a single one that applies to ordinal and nominal attribute categorical

data [51].

3.3. Other techniques in survey data

Inference from sample surveys has traditionally focused on functions such as aver-

ages and totals of the findings made for the population’s participants. However, in

scientific applications, the superpopulation parameters linked to a stochastic mecha-

nism assumed to produce the population’s observations are frequently of more interest

than the finite-population parameters. Even with a modest sampling proportion of
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the final units, cluster sampling, and conventional design-based variance calculations

can significantly underestimate super-population variability [22]. In many empirical

applications, there is a chance that mistakes may be associated with clusters. Thus,

it is crucial to strive for accurate statistical inference. We must make sure that our

inference takes this into account. Usually, using conventional cluster-robust variance

estimators is simple, but things may get complicated occasionally. The two main

challenges are dealing with a small number of clusters and figuring out how to define

the clusters [11]. Therefore cluster inferencing becomes a more crucial part of sur-

vey data analysis. Mixed datasets are frequently subjected to clustering to identify

patterns and collect related objects for additional examination. However, it might be

not easy to directly apply mathematical operations, such as summing or averaging,

to the feature values of these datasets, making clustering mixed data tricky [3].

4. The proposed methodology

Multiple data sources may have different attributes when survey results are gathered.

They could be nominal, numeric, or ordinal. Data of all kinds affect survey research.

Our conclusions will be more reliable and useful if we incorporate all available facts.

One more aspect is there while collecting the data. The number of responses may be

small compared to getting a better result with more respondents. In this section, we

proposed a model to conquer these deficiencies. The proposed design workflow of this

model is given in Figure 2. In the following Subsections, we describe each process of

this workflow.

Figure 2. Workflow of the Proposed Methodology.

4.1. Preprocessing

Survey data is essential for preparing the dataset for in-depth analysis and modeling.

The reliability and validity of research findings may be increased by resolving difficul-

ties and conflicts for improved data quality, standardization, and representativeness

resulting in insightful findings that support well-informed decision-making.

Preprocessing survey data is a vital and complex phase that aims to ensure

the gathered data is precise, consistent, and prepared for insightful analysis. Data
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cleansing is when possible mistakes and missing values are found and dealt with

properly. If attribute values are lacking during the process, the median value based on

domain knowledge will fill any gaps. In this article, we focus on two different categories

of data, numerical and ordinal, among many others. So the first preprocessing step

in this scenario is taking the ordinal and numerical data from the surveyed dataset.

After preprocessing and cleaning, we get the dataset for further use. We named it

the original dataset.

4.2. Augmentation

We have mentioned SMOTE and ADASYN in the related work section. These two

are well-known techniques for data augmentation. These techniques use the nearest

neighbor for class imbalance problems with at least two classes. In this article, we

do not deal having class imbalance problems. So in this part, another augmentation,

a machine learning approach, is used to add more statistical techniques to the already-

existing data to expand the diversity of the data. This enhances the generalization

and effectiveness of the model. Through augmentation, we attempt to achieve the

quality of survey data for a larger population. The Data AUGmentation (DAUG)

Algorithm (Algorithm 1) is the pseudo-code for augmentation.

Algorithm 1 DAUG (S,m,n,P)

Input: Dataset S, Number of rows m, Number of Columns for using deviation l

Output: Augmented Dataset P

1: dataset S[ ] : Select the numerical and ordinal attributes

2: n : size of S

3: m : Number of rows randomly selected from n for augmentation

4: if m > n then

5: Reduce the size of m

6: end if

7: m1[ ] : make a sample copy of m rows

8: m2[ ] : make a sample of m rows with random ordinal data distribution

9: m : Concatenate m,m1&m2

10: l : Number of columns for considering deviation

11: for i to l do

12: Column medium[i] : choose the medium from each column

13: deviation[i] : the deviation for the selected medium from the respected column in each

column

14: calculate average deviation[i]

15: end for

16: k : Number of rows to add based on average deviation and median

17: m = n× k

18: add m rows to dataset P

19: Normalize P

20: return P
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By applying the DAUG (Algorithm 1), the survey dataset is expended. The

original dataset is passed to the model. In the first step, the attributes with numerical

and ordinal values are selected and treated as the original dataset. Select the number

of rows randomly from the original dataset suitably. Then make two copies of the

selected raw data, one for replication and another for different data that have changed

ordinal values. Then combine these copies for the augmentation process based on the

row-wise mean and standard deviation.

4.3. Unification For Data Modeling (UFDM)

After augmentation, we consider two types of data values, numerical and ordinal.

We make an effort to incorporate survey data that is numerical and ordinal. We

use a Gaussian distribution to represent the data. Therefore, we first transform the

numerical data into ordinal data that follows the distribution. This process is called

a unification for data modeling. The UFDM for unification is given in Algorithm 2.

Algorithm 2 UFDM (S, an)

Input: Dataset S, Numerical attribute an

Output: Unified Dataset D

1: Select an from S

2: min an : Minimum of the numerical attribute

3: max an : Maximum of the numerical attribute

4: avg an : Average of the numerical attribute

5: temp count[ ] : for number of occurrence of each number

6: for i to each number in range min an to max an do

7: temp count[ i]

8: end for

9: for i to each row in an do

10: num := row.num

11: temp count[ i] := temp count[ i] + 1

12: end for

13: if temp count[ ] is left skewed then

14: Assignment of ordinal values with making bin following the increasing bin-size from

left to right

15: else if temp count[ ] is right skewed then

16: Assignment of ordinal values with making bin following the decreasing bin size from

left to right

17: else

18: Assignment of ordinal values with making bin following the equal bin size from left to

right

19: end if

20: Replace numerical values with ordinal values and update the dataset with named D

21: return D
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Applying the algorithm UFDM (Algorithm 2), the numerical values are converted

to ordinal values through the unification process in the model. The generated dataset

from the augmentation process is the input for the unification process. Find the

statistics of this dataset, like the minimum, maximum, and average of each numerical

attribute. We want to convert numerical data to ordinal data. Then find and count the

number of occurrences of each element in ascending order of minimum to maximum

values. Adjust the bin size of the ordinal valued bins (based on the Likert scale)

accordingly for the skewness nature of the dataset.

4.4. Clustering and inferencing

After augmentation and unification for data modeling, we compare the efficiency of

groups through clustering. Clustering entails grouping instances into clusters based on

similarity to discover underlying patterns or structures within the dataset. K-means

algorithm seeks to optimize the cluster allocations by minimizing the sum of squared

distances between data points and their associated centroids. So we use K-means

clustering for the whole process. We apply K-means at three levels at the original

dataset, after augmentation, and after unification. The clusters made during the

process should have improved quality for inferencing so that generalized features can

be stated. The governing generalized feature selection is the main focus of inferencing.

4.5. Complexity analysis

The workflow of the proposed technique encapsulates three techniques, namely, Aug-

mentation, Unification, and Clustering. In this subsection, we estimate the computa-

tional complexity of the proposed methodology. Let n be the number of rows in the

original dataset S.

1. Augmentation (DAUG): The steps of the augmentation algorithm (DAUG)

are listed in Algorithm 1. The standard deviation in the associated columns

is taken into consideration for selecting rows for augmentation Algorithm lines

6-14 are used to calculate each attribute’s computation. The time complexity

for selecting m rows for augmentation from the dataset S is O(m). The number

of columns for considering deviation is l. These columns with selected rows

are augmented, therefore, the complexity for this process is O(m ∗ l). The last

step is appending the number of k rows, the complexity is O(k). Therefore, the

complexity of DAUG Algorithm (Algorithm 1) is O(m+m ∗ l + k) ≈ O(n2).

2. Unification (UFDM): The next stage is the unification work: the UFDM Al-

gorithm 2. In UFDM, lines 2-12 are for the unification, and lines 13-20 are

for the assignment. Let an be the number of numerical attributes. The range

of numerical values is in r. The complexity for finding the minimum, maxi-

mum, and average of each attribute is O(an ∗ n). The complexity for fitting

the ordinal values according to the range of numerical values is O(r ∗ n). The

last step to replacing the numerical values with corresponding ordinal values
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is O(n ∗ 1) complexity.Therefore, the complexity of UFDM Algorithm (Algo-

rithm 2) is O(an + r ∗ n+ n) ≈ O(n2).

3. Clustering: Let the number of desired clusters be (t), the number of rows to be

clustered be (n), and the number of iterations until convergence be given by (i).

The number of the attributes (an) determines the complexity of the K-means

method. The Clustering is of O(t ∗ n ∗ i ∗ an) ≈ O(n3) [1, 30,36,52].

K-means is susceptible to the presence of outliers and is known to perform poorly in

the presence of outliers. However, there are several other clustering algorithms, e.g.,

DBSCAN, hierarchical clustering [18], etc. that handle outliers at the cost of higher

complexity [30]. However, this is the future direction of this work.

5. Experimental results and analysis

In this section, we experiment with two datasets and use them to illustrate the pro-

posed methodology and select the generalized features. The performance of clustering

algorithms can be assessed using a wide range of metrics, which are utilized depending

on a particular task and objectives of the clustering method. In this work, we have

considered three performance metric measures: the Silhouette scores [40], Calinski

Harabasz Index [10], and Silhouette Analysis plot [40].

Silhouette Scores. The silhouette score calculates how well each data point fits into

its allocated cluster. This is calculated as the ratio of the mean distance between

a data point and all the remaining data points in a comparable cluster to the aver-

age distance between a data point and all similar data points in the closest cluster.

A higher silhouette score means that the data points have been successfully divided

into different clusters that are uniform inside and well-separated by the clustering

method.

Calinski Harabasz Index. On the contrary, a higher score on the Calinski-Harabasz

index denotes superior clustering efficiency. It evaluates the ratio of around-cluster

variation to within-cluster variance, which implies how well the Calinski-Harabasz

index consider both the gap between clusters and the compactness of each cluster.

Silhouette Analysis Plot. Each data point’s silhouette scores are displayed on the

silhouette analysis plot, showing the way each one fits into the cluster to which it

was assigned. The range of a silhouette score is from −1 to 1: A clustering allocation

with an average of +1 is considered successful, whereas one with a value of 0 is

considered unclear. A good clustering solution has most data points near +1, denoting

clearly defined clusters, whereas a not-good clustering solution has values close to 0 or

negative values, signifying overlaps or incorrect assignments. By finding the clusters

with the greatest average silhouette score representing the most distinct and well-

separated, the plot aids in determining the ideal number of clusters. It sheds light on

how the quality of clustering and cluster numbers are traded off.
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Experimental Setup. We have used the proposed model and the clustering technique

in the Anaconda edition of Python 3.7 on Windows 10 PC with an Intel Core i5

CPU (2.0GHz) and 4GB of RAM and 64-bit operating system, x64-based processor.

In addition to sklearn, metplotlib, the pandas are also used for reading data and

visualizing it graphically. We enhanced a Python module of our model to allow for

simple code implication. The experiment was conducted within Jupyter Notebooks,

using its open-source libraries to speed up and simplify the development process.

Datasets. For our experiment, we have taken two benchmark datasets that are freely

available. These datasets are collected from the surveys. These datasets can be down-

loaded from Kaggle, a website with modeling and analysis competitions where data

miners compete to create the most effective models using data posted by businesses,

researchers, and other users. The following datasets are taken:

• Dataset I: Entrepreneurial Competency Survey, and

• Dataset II: Breast Cancer Survey

5.1. Dataset I: Entrepreneurial Competency Survey

We have collected a dataset [29] to accomplish insightful information about the con-

nection between university students’ entrepreneurial habits. This survey aimed to

gather data for the students’ entrepreneurial propensities levels. Two hundred nine-

teen responses from survey respondents who were university students make up the

dataset we used for this study. Different abbreviations are used for the dataset. These

are briefly listed in Table 2.

5.1.1. Dataset description

Table 2
Abbreviation used for Education Sector and Features

Education Sector Abbr.

Art, Music or Design AMD

Economic Sciences, Business

Studies, Commerce and Law
ESBSCL

Engineering Sciences EC

Humanities and Social Sciences HSS

Language and Cultural Studies LCS

Mathematics or Natural Sciences MNS

Medicine, Health Sciences MHS

Others OT

Teaching Degree (e.g., B.Ed) TD

Features Abbr.

Age A1

Perseverance A2

DesireToTakeInitiative A3

Competitiveness A4

SelfReliance A5

StrongNeedToAchieve A6

SelfConfidence A7

GoodPhysicalHealth A8

This dataset, which has two hundred nineteen instances, comprises nine fea-

tures in the form of attributes, i.e., Age (A1), Perseverance (A2), DesireToTakeIni-

tiative (A3), Competitiveness (A4), SelfReliance (A4), StrongNeedToAchieve (A6),
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SelfConfidence (A7), GoodPhysicalHealth (A8), and EducationSector. Age is the nu-

merical data. Perseverance, DesireToTakeInitiative, Competitiveness, SelfReliance,

StrongNeedToAchieve, SelfConfidence, and GoodPhysicalHealth are in ordinal data.

EducationSector is categorical data.

5.1.2. Statistical analysis

All these features and their overall and attribute-wise mean and standard deviations

received from the survey are given in Table 3.

Table 3
Overall and Attribute-wise mean and standard deviations of Original Survey Data

Education Sector
Attributes

A1 A2 A3 A4 A5 A6 A7 A8

AMD
Mean 20.33 3.19 3.38 3.43 3.57 3.76 3.67 3.38

StdDev 1.21 1.01 1.40 1.22 1.14 1.23 1.17 1.25

ESBSCL
Mean 19.56 3.38 3.72 3.47 3.75 4.09 3.56 3.63

StdDev 1.64 0.96 1.04 1.09 0.94 1.04 1.09 1.32

ES
Mean 19.74 3.38 3.72 3.72 3.81 4.02 3.62 3.61

StdDev 1.23 1.01 1.02 1.02 0.98 0.90 1.10 0.99

HSS
Mean 19.60 3.40 3.60 3.00 4.00 3.80 3.60 3.60

StdDev 0.80 0.80 1.02 1.41 1.10 0.98 1.02 1.02

LCS
Mean 19.00 3.00 5.00 3.00 3.00 5.00 5.00 2.00

StdDev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MNS
Mean 18.75 3.00 3.25 3.25 2.25 3.00 3.25 3.75

StdDev 1.17 0.89 1.50 0.98 1.20 1.21 0.81 1.21

MHS
Mean 19.60 3.40 3.20 3.40 3.90 3.60 3.50 3.70

StdDev 1.20 1.20 1.66 1.56 1.22 1.36 1.28 1.27

OT
Mean 20.00 3.25 3.35 3.45 3.45 3.35 3.30 3.30

StdDev 0.95 0.83 1.28 1.02 1.07 0.96 1.05 0.95

TD
Mean 19.00 4.00 3.67 3.67 3.67 4.00 3.33 3.67

StdDev 0.82 0.82 1.25 1.25 1.25 0.82 1.70 1.25

Overall
Mean 19.75 3.35 3.62 3.59 3.72 3.91 3.58 3.56

StdDev 1.29 0.99 1.15 1.11 1.05 1.02 1.12 1.10

Survey data is augmented with the help of the proposed data augmentation

techniques (Algorithm 1) to increase the size of the dataset. Table 4 shows the

augmented dataset’s overall and attribute-wise mean and standard deviations, with

1676 instances.
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Table 4
Overall and Attribute-wise mean and standard deviations of Augmented Survey Data

EducationSector
Attributes

A1 A2 A3 A4 A5 A6 A7 A8

AMD
Mean 20.48 3.23 2.70 3.11 3.43 3.89 3.95 3.48

StdDev 1.31 1.04 1.39 1.25 1.07 1.05 1.21 1.31

ESBSCL
Mean 19.53 3.27 3.01 3.05 3.56 4.07 3.93 3.55

StdDev 1.55 0.90 1.37 1.10 0.87 0.91 1.14 1.29

ES
Mean 19.70 3.41 2.89 3.36 3.65 4.06 3.98 3.65

StdDev 1.18 0.98 1.30 1.15 0.94 0.76 1.08 0.96

HSS
Mean 19.73 3.45 2.95 2.64 3.64 3.73 3.82 3.64

StdDev 0.86 0.78 1.30 1.23 1.07 0.86 1.11 0.98

LCS
Mean 19.00 3.00 3.50 2.67 3.00 4.67 5.00 2.00

StdDev 0.00 0.00 1.19 0.47 0.00 0.47 0.00 0.00

MNS
Mean 18.50 3.00 3.25 3.00 2.40 3.20 3.60 3.80

StdDev 1.28 1.00 1.24 1.10 1.20 0.98 0.80 0.98

MHS
Mean 19.50 3.44 3.11 3.06 3.78 3.56 3.67 3.72

StdDev 1.38 1.12 1.33 1.47 1.08 1.17 1.20 1.15

OT
Mean 20.08 3.37 2.99 3.08 3.42 3.61 3.87 3.42

StdDev 1.01 0.78 1.31 1.06 0.91 0.81 1.10 0.94

TD
Mean 18.71 4.00 2.71 3.14 3.43 4.00 3.71 3.57

StdDev 0.70 0.93 1.46 1.36 1.18 0.76 1.75 1.40

Overall
Mean 19.74 3.37 2.92 3.22 3.56 3.96 3.94 3.59

StdDev 1.28 0.96 1.32 1.18 0.99 0.88 1.12 1.07

Error Bar Line Graphs. Error bar line graphs are used to visualize and analyze data

and provide essential insights into a dataset’s consistency and variability. The distri-

bution of the data around the mean value is revealed by these graphical representa-

tions, which aid in determining the relevance of the gathered data. The size of the

error bar line graphs, which are frequently represented by standard deviation, effec-

tively conveys how far a given data point deviates from the mean. A small standard

deviation bar denotes minimal variability and a higher degree of confidence in the

correctness of the data. It also indicates that the data points are closely grouped

around the mean. On the other hand, a bigger standard deviation bar highlights

greater variability and maybe more uncertainty by showing a wider range of data

points away from the mean.
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The comparison for the original and augmented data error bar line graphs is

shown in Figure 3. This shows the attribute-wise comparison. The blue lines are

for the original dataset, and the red lines are for the augmented dataset. In most

attributes, the overlapping area shows that the augmented dataset does not deviate

from the original data. This process can access the augmented dataset as a large

population. And the inferences from the augmentation process we get are the more

generalized inferences to make decisions.

Figure 3. Error Bar Line Graphs for Entrepreneurial Competency Survey
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5.1.3. Clustering results

We explore our experiment in three parts. In the first part, we considered the original

dataset. First, we preprocessed the dataset and separated numerical and ordinal type

attributes from the dataset. Then we apply the K-means algorithm for two to nine

clusters on the original dataset collected from the survey.

As we have only two hundred nineteen instances in the dataset. So in the sec-

ond part, we apply the data augmentation techniques to have a proper number of

instances. In this manner, we will have sufficient instances and expect to get better

inferences through clustering. In the third part, we convert the numerical data to the

ordinal data according to Gaussian distribution. After unification, we again apply

the K-means algorithm to find the clustering behavior.

In Figures 4, 5, and 6, we have a Silhouette Analysis plot on original, augmented,

and unified datasets, respectively. The measurements are shown on two to nine clus-

ters using the K-means algorithm. The resulting plot displays the mean silhouette

score for every single clustering solution and the silhouette scores for each cluster

data point. High silhouette scores for every point of data and an elevated average

silhouette score are desirable as they demonstrate that the data points are correctly

segregated and clustered.

Figure 4. Silhouette Analysis Plots for Original Dataset Clustering
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Figure 5. Silhouette Analysis Plots for Augmented Dataset Clustering

Figure 6. Silhouette Analysis Plots for Unified Dataset Clustering
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5.1.4. Result analysis

In Figure 7, the average Silhouette scores and Calinski-Harabasz indices are shown

for the three datasets: one is the original, the second dataset is the one after the

augmentation dataset, and the third one is the dataset after unification on three to

nine clusters; these scores suggest that higher scores at the same number of the cluster

have more data points that were successfully divided into different clusters which are

similar inside and distinct from one another.

Figure 7. Performance Metrics

For example, in Figure 7, at cluster nine, we have Silhouette scores of 0.1397 for

the original dataset, 0.1651 for the Augmented dataset, and 0.1746 for the Unified

dataset. This means efficiency is improved in clustering after augmentation and uni-

fication. The Calinski-Harabasz index considers both the distance between clusters

and the compactness of each cluster. The index is higher at each cluster after, one

by one, augmentation and unification. Figures 4, 5, and 6 are the complete measure-

ment of Silhouette scores for each data point in each cluster, as well as the average

silhouette score for the entire clustering of original, augmented, and unified dataset.

These outcomes show that the clustering procedure has successfully assigned

each response to the cluster most closely resembling its features. It produces well-

defined clusters with internally comparable replies and clear distinctions between

other groups. So, the inferences from these datasets are shown in Table 5. We collected

more generalized inferences by ML technique, augmentation.

Table 5
Selected Features for Entrepreneurial Competency

Dataset
Inferences

(Competency Factors)

Original Dataset StongNeedtoAchieve, Desireto TakeInitiative

Augmented Dataset StongNeedtoAchieve, DesireTo TakeInitiative, Self Confidence

Unified Dataset StongNeedtoAchieve, DesireTo TakeInitiative, Self Confidence
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5.1.5. Runtime analysis

As shown in Figure 8, the state-of-the-art, SOM takes a longer time to train, par-

ticularly for big and high-dimensional datasets. It depends on the variables like the

amount of data, the network, and the quantity of training iterations [4]. The size and

density of the dataset affect how long DBSCAN takes to run. It may be less effective

on large datasets, but it works well on datasets with different cluster densities [32].

That is why, we got higher runtime in our dataset available in Figure 8. Our method-

ology with K-means: among the three, the K-means is frequently the quickest. The

convergence speed, which is determined by the start centroids and data distribution,

might, however, affect the actual time.

We assess the runtime of the Entrepreneurial Competency dataset in the following

Figure 8 for these three techniques at various cluster counts. We used the running

time in seconds for SOM and our methodology while we used a logarithmic scale of

time for DBSCAN techniques. It can be seen that the proposed technique performs

better than the SOTA methods.

Figure 8. Runtime Comparision for Entrepreneurial Competency Survey

5.2. Dataset II: breast cancer survey

Next, we have taken a benchmark breast cancer survey dataset for this case study.

In this dataset, there are six hundred ninety-nine responses. The dataset values are

ordinal. We considered nine features for our study. The dataset, made up of clinical

cases Dr. Wolberg documented, is distinguished by the data’s arrival time. The

dataset attempts to make it easier to forecast the occurrence of breast cancer. An

individual code number that serves as an identification for each sample represents it.

The features of each sample are then described using a set of Nine attributes. These

characteristics include numerical measurements with a range of one to ten.
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5.2.1. Dataset description

The survey aimed to gather data on Breast Cancer prediction. The dataset we used

for this study comprises six hundred ninety-nine responses from survey respondents.

Different abbreviations are used for the dataset. These are briefly described in Ta-

ble 6. It is compassing attributes such as Clump Thickness (B1), Uniformity of Cell

Size (B2), Uniformity of Cell Shape (B3), Marginal Adhesion (B4), Single Epithelial

Cell Size (B5), Bare Nuclei (B6), Bland Chromatin (B7), Normal Nucleoli (B8), and

Mitoses (B9). In combination, these characteristics capture crucial cell behavior and

morphology features that point to probable malignancy. The construction and assess-

ment of breast cancer prediction models are therefore made possible by the extensive

set of features with associated diagnostic labels provided by this dataset.

Table 6
Abbreviation used for Breast Cancer Survey

Features Abbr.

Clump Thickness B1

Uniformity of Cell Size B2

Uniformity of Cell Shape B3

Marginal Adhesion B4

Single Epithelial Cell Size B5

Bare Nuclei B6

Bland Chromatin B7

Normal Nucleoli B8

Mitoses B9

5.2.2. Statistical analysis

The mean values and standard deviations of these features in original and after ML

techniques, augmented data are given in Table 7.

Table 7
Features and their corresponding mean values and standard deviation

Dataset
Attributes

B1 B2 B3 B4 B5 B6 B7 B8 B9

Original data
Mean 4.42 3.13 3.21 2.81 3.22 3.54 3.44 2.87 1.59

StdDev 2.81 3.05 2.97 2.85 2.21 3.64 2.44 3.05 1.71

Augmented data
Mean 4.02 2.98 3.16 2.95 3.40 3.80 3.84 3.39 2.42

StdDev 2.35 2.88 2.76 2.73 2.13 3.51 2.55 3.26 2.85

Error Line Bar Graphs. Earlier, we mentioned the error line bar graphs in Subsec-

tion 5.1.2. Here we give some information on the Breast Cancer survey dataset.

Figure 9 compares the original and augmented data error Line Bar Graphs. The
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comparison of attributes is also demonstrated here. The red lines represent the aug-

mented dataset, and the blue lines represent the original dataset. The overlapping

region for most attributes demonstrates that the enhanced dataset does not diverge

from the original data. This technique allows access to the enormous population of

the expanded dataset. The inferences we draw from the augmentation process are

those that are more broadly applicable to a significantly large population.

Figure 9. Error Line Bar Graphs for Breast Cancer Survey

5.2.3. Clustering results

We break up our investigation into two sections. We use the original dataset in the

first section. The dataset was initially preprocessed and then characteristics of the

ordinal type were extracted. The original dataset gathered from the survey is then

subjected to the K-means method for two to nine clusters. Since the dataset has 699

occurrences only, we use the proposed data augmentation techniques (Algorithm 1)

in the second section to have the right number of instances. In this way, we will

have enough examples and may use clustering more effectively to draw more accurate

conclusions. To learn more about the behavior of the clustering, we employ the

K-means technique.

Figure 10. Performance Metrics
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Figure 11. Silhouette Analysis Plots for Clustering of the Original Dataset

Figure 12. Silhouette Analysis Plots for Clustering of the Augmented Dataset
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The K-means technique displays the measurements on two to nine clusters. The

resultant figures show the silhouette scores for each cluster data point and the mean

silhouette score for each clustering solution. Every data point should have a high

silhouette score, and the average silhouette score should be high since these metrics

show that the data points are appropriately grouped and clustered.

5.2.4. Result analysis

The results demonstrate that each response was effectively allocated to the cluster

that best matched its characteristics. This resulted in well-defined clusters with in-

ternally similar responses and noticeable differences between groups. Therefore, the

conclusions drawn from these datasets are displayed in Table 8. We utilized the ML

approach of augmentation to acquire more generalized inferences.

Table 8
Selected Features for the Breast Cancer Survey Data

Dataset
Inferences

(Selected Features)

Original Dataset Bare Nuclei, Clump Thickness

Augmented Dataset Bare Nuclei, Clump Thickness, Uniformity cell size, mitoses

5.2.5. Runtime analysis

We have mentioned the runtime analysis for the SOM and DBSCAN in Subsec-

tion 5.2.5. In the following Figure 13, we measure the runtime of the Breast Cancer

Survey dataset for these three approaches at different cluster counts. For the SOM

and the proposed methods, we take runtime in seconds; for DBSCAN techniques, we

use the logarithmic scale for time. We may conclude that our strategy outperforms

the SOTA techniques.

Figure 13. Runtime Comparision for Breast Cancer Survey
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5.3. Discussion

The results obtained with the proposed method suggest that the quality and depend-

ability of inferential findings for a large population from a small population can be

improved using augmentation and unification procedures. By extending the existing

data with methods such as mean and standard deviation, augmentation improves the

dataset’s representativeness. Augmentation lowers the chance of bias and improves

the generalizability of the inferences made from the analysis. On the other side,

unification refers to combining numerical and ordinal datasets. Unification enables

the fusion of many viewpoints and data modalities. Insightful findings, more reliable

forecasts, and more precise modeling can result from this.

Scalability. We have proposed three algorithms in this paper. If we consider fewer

attributes, the time complexity of the augmentation and unification algorithms is

nearer to linear; however, while applying K-means, it may be quadratic complex-

ity and needs to be addressed for scalability. On the other hand, DBSCAN is of

quadratic complexity which may also need to be addressed [14]. Since DBSCAN, de-

spite quadratic complexity is made scalable; the proposed algorithms lie in between

linear to quadratic and could be made better scalable. This is an area of future work.

In Subsection 4.5, we have discussed computational complexity, which is polyno-

mial between linear and quadratic for both, the augmentation and unification algo-

rithms, and it is very obvious that as the scaling happens the time increases. So, it

is crucial to manage the resource demands.

Presence of outliers. We have presented two algorithms, DAUG for data augmen-

tation and UFDM for unification. In both algorithms, the presence of outliers may

occur at two stages, one, at the raw data stage, and second, in the outputs of the

involved processing techniques.

Raw ordinal data, which is bounded by a few labels, leaves no scope for outliers.

However, numerical attributes are prone to outliers, though this could be handled

using normalization techniques, such as Z-score. If we have ordinal values we may

use the median centering instead of mean [19].

However, in the second stage, the K-means algorithm is prone to outliers. It is

well known that K-means performs inappropriately when there are outliers present

and is sensitive to their existence. A robust multi-view K-means method with outlier

detection to remove the class outliers and attribute outliers can be applied [13]. To

inherit the effectiveness of the classical K-means algorithm, with a low time complex-

ity these methods are applied. This is the direction that this work will take going

forward.

However, it is crucial to remember that the effectiveness of these strategies de-

pends on choosing the techniques for the appropriateness of the augmentation and

unification methods used.
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6. Conclusion

In this work, we proposed our approach into two steps and applied the K-means

clustering algorithm at each step. We first apply the augmentation technique to gen-

erate enough instances to incorporate the richness of data. We measure the deviation

of augmented data from original data with descriptive statistical measures. The re-

sults are compared for every attribute so that we can employ our method suitable

for considering the whole population. The overlapping region for most attributes

demonstrates that the enhanced dataset does not diverge much from the original

data. This technique allows access to the huge population of the expanded dataset.

The inferences we draw from the augmentation process should also apply to larger

survey sizes, however, this is the future direction of the work. Next, we performed

the clustering and measured its effectiveness in every aspect. We have used many

efficiency metrics for clustering. We included performance metrics like Silhouette’s

scores, Calinski Harabasz Index, and Silhouette Analysis Plots. The resultant outputs

enhanced average and high silhouette scores for each data point show that the data

points are appropriately grouped and clustered. Similar to the low Calinski-Harabasz

index, the high Calinski-Harabasz index gives well-defined clusters with internally

similar responses and apparent distinctions between other groups. It also indicates

the distance between clusters and the compactness of each cluster. After augmenta-

tion, some numerical attributes may be present in the dataset. So in our next step,

we unified the dataset and converted it into the ordinal dataset. This process also

helps in generalizing the results of the inferences. After each step, we apply the K-

means clustering algorithm and compare the clustering efficiency metrics at different

numbers of clusters. Our proposed method shows that efficiency is improved in all

such cases. At last, we come to the generalized inferences part. The outcome of both

datasets is the selection of the most effective attributes for deciding whether to find

the entrepreneurial competency or factors governing breast cancer. Such improved

results give better inferences for decision-making. In the future, we would like to use

high-dimensional attribute space.
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