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FOR OPTIMIZING
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Abstract Bonobo optimizer (BO) is a novel metaheuristic algorithm motivated by
the social behaviour of the bonobos. This paper presents a quantum be-
haved bonobo optimization algorithm (QBOA) employing an innovative meta-
heuristic based on the reproductive strategies and social behavior of bonobos.
Whereby, the quantum mechanics are embedded into the bonobo optimizer
to direct the search agents through the search space. Accordingly, under this
quantum-behaved movement, the proposed QBOA’s exploitation capability is
promoted. The performance of the proposed QBOA is exhibited on CEC2005
and CEC2019 benchmarks. Moreover, the QBOA algorithm was adapted to
optimize the dynamic photovoltaic models parameters. QBOA exhibits the
efficiency and adequacy to solve various optimization problems based on exper-
imental and comparison findings, as well as its ability to implement competitive
and promising results optimizing dynamic photovoltaic models.
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1. Introduction

Meta-heuristics algorithms have been effectively employed to solve a variety of
real-world optimization problems, due to their reliable, robust and computation-
ally efficient in avoiding local minima [11]. Various well-known meta-heuristics al-
gorithms that have been proposed in the literature are Particle swarms [10], Coy-
ote Optimization Algorithm (COA) [24], Dragonfly Algorithm (DA) [21], Particle
Swarm Optimization (PSO) [10], Gravitational Search Algorithm (GSA) [27], Moth-
Flame Optimization (MFO) [20], Genetic algorithm (GA) [17]. The bonobo opti-
mizer (BO) is a novel meta-heuristic algorithm that is modeled on bonobo social
behaviour [6]. The BO’s search capabilities was made more resilient and efficient by
using a fission-fusion approach for selection, four well-developed methods for produc-
ing offspring, and the application of two distinctive phases.

Despite the fact that population based approaches can grant promising solu-
tions for optimization problems, as the dimension of the search space grows, they
experience a series of challenges. A major key challenges is that, population based
approaches frequently become stuck in local optimum when dealing with multi-modal
complicated problems [3]. Correspondingly,to achieve high performance on compli-
cated optimization problems, the exploration and exploitation stages should be well
balanced [12].

The photovoltaic (PV) solar model presents one of the most exciting themes that
has led to an increase in researchers’ interest [13, 28]. However, one of the key chal-
lenges for researchers is to insure that the PV model captures the maximum amount
of available power [4]. Different PV solar models have been presented including the
static and dynamic PV models. Nevertheless, in the static PV model the repre-
sentation of the load connection, switching and variation is not taken into account.
Therefore, dynamic PV model has been proposed to overcome the drawbacks of the
static PV models by representing the load connection in the PV model [8, 16]. The
accuracy of dynamic PV models is essentially impacted by the precision of their pa-
rameters values which are obtained under various operating conditions. Accordingly,
an accurate identification of the PV parameters is vital to gain the maximum power
of the dynamic PV model.

Several conventional methods are applied for the PV parameters identifica-
tion [14,29]. Meanwhile, for dynamic PV models, only the non-linear least square ap-
proaches and least square have been utilized for parameters identification [1,8]. Nev-
ertheless, conventional methods based on classical numerical/analytical tools might
be unable to accurately fit with the PV model, in consequence of the multi-modal
and non-linear nature of the problem, which leads to negatively impact the maximum
available power optimal capturing.

Motivated from the above discussion, a quantum behaved bonobo optimization
algorithm (QBOA) is proposed. Whereby, quantum mechanics are adopted in this
paper to integrate a quantum behavior in the bonobo optimization algorithm. For
which, the proposed quantum-behaved bonobo optimization exploitation mechanism
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absorbs the character of Quantum-behaved method. Aiming to evaluate the robust-
ness and coherence of the QBOA, the proposed QBOA performance is evaluated on
CEC2019 and CEC2005 benchmark. Furthermore, the QBOA algorithm was adapted
to optimize the dynamic photovoltaic models parameters.

The major contributions of this paper are as follows:

1. A quantum behaved bonobo optimization algorithm is proposed (QBOA), which
is combining the advantages of the BOA and quantum mechanics to direct the
search agents through the search space.

2. Several tests are conducted over unimodal and multimodal benchmark functions
that are adopted for assessing the effectiveness of the proposed QBOA algorithm.

3. The proposed QBOA algorithm is used for optimizing integral and fractional
dynamic photovoltaic models. The experimental results ensure that the QBOA
algorithm is efficient enough in the identification of the dynamic PV model pa-
rameters.

The remainder of the paper is organized as follows: In Sec. 2, the Bonobo
Optimization algorithm brief description is given. In Sec. 3, the proposed QBOA is
detailed. In Sec. 5, the efficiency of the proposed QBOA algorithm on CEC2019 and
CEC2005 benchmarks, as well as comparative analysis of the QBOA versus several
optimization algorithms are presented. The dynamic photovoltaic models are provided
in Sec. 4. The simulation results and analysis of the QBOA of dynamic PV models
are discussed in Sec. 5.4. Lastly, in Sec 6, The paper’s key findings are discussed.

2. Bonobo optimization algorithm

Das and Pratihar presented the Bonobo Optimizer (BO) as a new metaheuristic algo-
rithm [6]. The BO algorithm simulates the reproductive approaches social behavior
of bonobos. BO mimics the fission-fusion process, which focuses on segmenting the
community into multiple subgroups of varying compositions and sizes, then rejoin-
ing them with the rest of the community. Restricting, promiscuous, consortship and
extra-group mating are the four types of bonobo strategies. The BO algorithm’s
working principle is depicted in detail as follows:

Non-user initial parameters are set: the positive and negative phase count
ppc = 0, npc = 0, the change in phase cp = 0, the extra-group mating probabil-
ity pxgm = pxgm−intial, the sizing factor of the temporary sub-group tsgsfactor =

tsgsfactor−initial, the directional probability pd = 0.5 and the phase probability
pp = 0.5.

Inspired by the fission-fusion social group technique [7], the pth bonobo is chosen
for pairing with the ith bonobo. For which, the temporary subgroup maximum size
tsgsmax is calculated using the following equation:

tsgsmax = max(2, tsgsfactor ×N) (1)
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Where N is the size of the population. According to equation 1,the temporary
subgroup size is between 2 and tsgsmax; and is constructed by randomly selecting
non-repeats bonobos from the N − 1 population, eliminating the ith bonobo. The
optimal solution from the subgroup is picked as the pth bonobo if its fitness is higher
than the ith bonobo; contrarily, a randomly bonobo from the subgroup is selected as
the pth bonobo. The chosen pth bonobo then begins mating in order to generate the
offspring.

In the bonobo society, four different types of mating have been observed: extra-
group mating, promiscuous, consortship and restrictive mating. The mating method
differs according to whether the phase is positive or negative. The possibility of
restricted and promiscuous matings is high during a positive phase. On the other
hand, in a negative phase, extra-group and consortship matings are perceived as high.
A mating method is utilized using the phase probability parameter pp. Whereby,
a random number r ∈ [1, 0] is generated, and determined to be either equal or less
than pp. A new_bonobo is created using the following equation:

new_bonobok = bonoboik + r1 × scab× (αbonobo
k − bonoboik)+

(1− r1)× flag × scsb× (bonoboik − bonobopk)

(2)

where r1 is a random number in [0,1] and k is the optimization problem decision
variable number. While, scsb and scab are the pth bonobo and the alpha bonobo
sharing coefficients, respectively. The parameters scab and scsb are predetermined
constants that affect the balance between explorative and exploitative tendencies.
The flag parameter can have two possible values: 1 or -1 for promiscuous mating or
restrictive mating, respectively.

Sharing coefficients for the alpha-bonobo and pth-bonobo are represented using
scab and scsb, respectively.

On the contrary, extra-group mating is employed to create an offspring when r

is bigger than pp, as shown below:

β1 = e(r4+r24−2/r4) (3)

β2 = e(2r4−r24−2/r4) (4)

new_bonobok = bonoboik + β1 × (UBk − bonoboik) (5)

new_bonobok = bonoboik − β2 × (bonoboik − LBk) (6)

new_bonobok = bonoboik − β1 × (bonoboik − LBk) (7)

new_bonobok = bonoboik + β2 × (UBk − bonoboik) (8)

where, LBk and UBk are the lower and upperboundary, respectively; while, r4 ̸= 0

is a random number.
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If a random number r2 is greater than pxgm, the consortship mating method is
utilized to generate an offspring, as follows:

new_bonobok =



bonoboik + flag × e−r5 ×
(
bonoboik − bonobopk

)
,

if (r6 ≤ pd|| flag = 1 )

bonobopk, otherwise

(9)

When the new bonobo’s fitness is discovered to be better than the parent’s, or
when a random number r ∈ [0, 1] is equal to or less than pxgm, the new bonobo is
accepted. Furthermore, if the new_bonobo fitness is shown to be superior to the
alpha fitness, the new_bonobo is designated as the alpha-bonobo.

The BO’s controlling parameters are modified as follows when the newly ob-
tained alpha bonobo in the current iteration is detected to be an improved solution.

npc = 0, cp = min(0.5, ppc× rcpp), ppc = ppc+ 1,

pxgm = pxgm−initial, pd = pp, pp = cp+ 0.5,

tsgsfactor = min(tsgsfactor−max, (tsgsfactor−initial + ppc× rcpp2)).

Where rcpp is the change rate of the phase probability. On the other hand, The
following updates have been made to the controlling parameters:

npc = 1 + npc, ppc = 0, cp = −min(0.5, rcpp× npc),

pp = cp+ 0.5,pxgm = min(0.5, (pxgm−initial − rcpp2 × npc)),

tsgsfactor = min(0, (tsgsfactor−initial − npc× rcpp2)),pd = pp,.

3. Proposed quantum-behaved
bonobo optimization algorithm (QBOA)

In Bonobo optimizer, the bonobos are characterized by their location and position
vector, which constitute the bonobo particle’s trajectory. In accordance with Newto-
nian mechanism particles moves along a predetermined trajectory. However, due to
the principle of uncertainty, it is not possible to estimate both distance and position
simultaneously in reality.

Accordingly, quantum mechanics are adopted in this study to integrate quan-
tum behaviour in the bonobo optimization algorithm. For which, the proposed
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quantum-behaved bonobo optimization exploitation mechanism absorbs the character
of Quantum-behaved method. The mechanism setting places the bonobo in quantum
mechanics space, utilizes the wave function to describe the bonobo’s position and reg-
ulated the bonobo’s state change process according to the Schrodinger equation [18].

In quantum mechanics, the fundamental time dependent Schrodinger equation is
defined by:

iℏ
∂Ψ

∂t
= −Ĥ(X)Ψ (10)

The wave function Ψ described the quantum state of the bonobo and only depends
on its position. Ĥ(X) is a time independent Hamiltonian operator given by:

Ĥ(X) = − ℏ2

2m
∇2 + V (X) (11)

Where ℏ is the Planck’s constant,V (X) is the potential energy distribution and
m is the bonobo mass. In a three dimensional space, the probability density of the
bonobo in a position to appear is given by:

|Ψ|2dxdydz = Qdxdydz (12)

Where, Q is the probability density function that meets the normalization con-
dition:

∫ +∞

−∞
|Ψ|2dxdydz =

∫ +∞

−∞
Qdxdydz = 1 (13)

Moreover, the positions of local attractor for each bonobo can be defined as:

bk = scab× r × αbonobo
k + scsb× (1− r)× bonobopk (14)

The statistical justification for the wave function is shown by Equations 12 and 13
where the integration is carried out over the full space. Each bonobo in the proposed
algorithm has assumed a spin-less movement with a specific potential energy in D-
dimensional Hilbert space. The bonobo is pulled using this field in accordance with
a position specified by Equation 14.

For D-dimensional Hilbert space, where each bonobo position is bounded by delta
potential well; a new_bonobo is created using the following equation:

new_bonobok = bk + flag × αbonobo
k · |bonoboik −Wk| × ln

(
1

r

)
(15)

Where r is a random number in [0,1] and W is the average positions of the bonobo
at iteration t. The pseudo code of the QBOA algorithm is presented in Algorithm 1.
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Algorithm 1 Pseudocode of the QBOA
Input:
Total population number Npop

Optimization iterations number Max_Iter
Output:
Optimal alpha Bonobo
1: Initialize the bonobo parameters
2: Initialize the bonobo population positions randomly.
3: Calculate the objective values for each search agent and dictate the α bonobo
4: while t ≤ Max_Iter do
5: Calculate tsgsmax using equation 1
6: for i=1:Npop do
7: Determine the temporary subgroup size
8: #Apply the fission-fusion Technique
9: Select Flag value

10: if r <= pp then
11: #Update the position of the bonobo using the quantum mechanism
12: Calculate the positions of local attractor for each bonobo using equation 14
13: Create new_bonobo using equation 15
14: Apply the boundary limiting conditions
15: else
16: for k=1:d do
17: if r2 < pxgm then
18: if αbonobo

k >= bonobok then
19: if r3 <= pp then
20: Create new_bonobok using equation 5
21: else
22: Create new_bonobok using equation 6
23: end if
24: else
25: if r4 <= pp then
26: Create new_bonobok using equation 7
27: else
28: Create new_bonobok using equation 8
29: end if
30: end if
31: else
32: Create new_bonobok using equation 9
33: end if
34: Apply the boundary limiting conditions
35: end for
36: Evaluate the new_bonobok fitness value
37: if fitness(new_bonobok) < fitness(αbonobo) then
38: αbonobo = new_bonobok
39: end if
40: end if
41: end for
42: Update the controlling parameters
43: t=t+1
44: end while
45: return αbonobo
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4. Dynamic photovoltaic models

4.1. Integral dynamic photovoltaic model

The considered integral dynamic PV model [8] is a second-order model that account
the junction capacitance and conductance, along with the inductive effects, as shown
in Figure 1a. The PV model and its associated load are valid in the area of the current-
voltage curve which lies between the near constant voltage region and the open circuit
voltage [9,15]. The circuit in Figure 1a has a linear behavior; accordingly, it is possible
to reduce the PV static part to a series resistance Rs and a constant voltage source
V oc, yielding the circuit in Figure 1b. While, the dynamic part of the integral PV
model is represented by conductance Rc, capacitor C for junction capacitance, and
inductance L for cabling and connection inductance.

Figure 1. Integral-dynamic PV model

4.2. Fractional dynamic photovoltaic model

The inductor and capacitor in the fractional dynamic PV model are alternated with
fractional equivalents of orders β and α, respectively, as illustrated in Figure 2.

Figure 2. Fractional-dynamic PV model
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Whereby, the fractional capacitor’s effect is visible in low value of the resistor Rc;
due to, the real frequency dependence on fractional capacitance impedance [26].

5. Simulation results and analysis

With the goal of examining the performance and capabilities of the proposed
Quantum-Behaved Bonobo Optimization Algorithm QBOA, Matlab R2018b was ad-
justed for simulation purposes. All evaluation experiments were conducted on: In-
tel(R), Core i7 4910MQ CPU@2.90GHz and 16GB RAM.

5.1. Performance estimation with CEC 2005

With the aim to evaluate the proposed QBOA algorithm performance, multiple
optimization test problems solved over various runs to obtain a reliable conclu-
sion. QBOA is estimated on 23 test functions extracted from the CEC 2005 [19].
Accordingly, the test functions are separated into two categories based on their
characteristics:(F1−F7) unimodal and (F8−F23) multimodal functions . Whereby,
the test objective functions are denoted as: “differentiable, non-differentiable, discon-
tinuous, continuous, scalable, non-scalable,non-separable and separable”. Since they
include no local optima and a single global optimum, unimodal functions are used
to estimate the exploitative potential of the meta-heuristic algorithm. Multimodal
functions, on the other hand, have several local optimal and one global optimum.
As a result, they can be used to assess the meta-heuristic algorithm’s capability for
exploration and escape from local optima.

The BOA and proposed QBOA internal parameters are adapted as: total pop-
ulation number N = 50, stopping criterion of 30000 ∗ d, where d is the optimization
problems dimension, pxgm−initial = 1/d, rcpp=0.0036, tsgsfactor−max = 0.02, and
the sharing coefficients scab=1.3 and scsb=1.4. To conduct an unbiased comparison,
the statistical results for each test function are calculated across 30 independent runs
with completely random initial conditions. Through which, four distinct evaluation
factors are taken into account: the minimum (best) solution, the average (mean)
solution, the maximum (worst) solution and the standard deviation (St-dev). The
worst, best and mean metrics examine the accuracy of the solution, while the St.dev
estimates the obtained solution’s robustness.

The experimental finding of the BOA and proposed QBOA; on the unimodal and
multimodal test optimization functions are recorded in Table 1. From Table 1, it is
clear that the proposed quantum-behaved BO surpass the BO algorithm in term of
mean, best and worst results, except for test function F12. Both QBOA and BOA
could continuously attain the global optimal for F5 and F6. Furthermore, compared
to the BOA, the QBOA was able to locate the global optima with less standard
deviation for all test functions, which demonstrate the QBOA’s robustness in locating
the global optimal.
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Table

1
Statisticalresults

of
B

O
A

and
Q

B
O

A
algorithm

on
C

E
C

2005

Function
B

O
A

Q
B

O
A

B
est

M
ean

W
orst

St.dev
B

est
M

ean
W

orst
St.dev

F
1

9.5176E
-57

4.51667E
-46

1.35358E
-44

2.4712E
-45

1.3325E
-141

2.0989E
-118

5.3473E
-117

9.7943E
-118

F
2

9.18109E
-29

3.80198E
-26

2.25682E
-25

6.34863E
-26

5.29453E
-72

3.15854E
-60

9.45349E
-59

1.72583E
-59

F
3

3.01466E
-56

5.08291E
-50

6.43562E
-49

1.33984E
-49

9.6229E
-136

1.8777E
-109

5.633E
-108

1.0284E
-108

F
4

4.27144E
-28

3.31868E
-25

2.49976E
-24

6.22758E
-25

9.13827E
-72

6.93219E
-57

2.05336E
-55

3.74755E
-56

F
5

0
0

0
0

0
0

0
0

F
6

0
0

0
0

0
0

0
0

F
7

1.17E
-04

1.49E
-03

4.23E
-03

1.09E
-03

2.84E
-06

7.58E
-04

2.34E
-03

5.87E
-04

F
8

-418.9828873
-411.0869983

-300.5445527
30.0487686

-4189.982887
-4182.982887

-4111.982869
3.31728E

-06

F
9

0
0.033165302

0.994959057
0.18165384

0
0

0
0

F
10

8.88178E
-16

8.88178E
-16

8.88178E
-16

0
8.88178E

-16
8.88178E

-16
8.88178E

-16
0

F
11

0
0.001644112

0.009864672
0.003739194

0
0

0
0

F
12

4.71163E
-31

4.71163E
-31

4.71163E
-31

8.90784E
-47

7.81257E
-26

3.69146E
-08

1.10744E
-06

2.0219E
-07

F
13

4.69E
-27

3.0545E
-06

6.62661E
-05

1.28046E
-05

1.34978E
-32

1.34978E
-32

1.34978E
-32

5.5674E
-48

F
14

0.998003838
1.776170636

12.67050581
2.961408668

0.998003838
0.998003838

0.998003838
1.00999E

-16

F
15

3.08E
-04

4.58E
-03

2.04E
-02

7.51E
-03

3.09E
-04

3.30E
-03

2.04E
-02

6.81E
-03

F
16

-1.031628453
-1.031628453

-1.031628453
5.21556E

-16
-1.03

-1.03
-1.03

0

F
17

0.397887358
0.397887358

0.397887358
0

0.397887358
0.39788736

0.397887
0

F
18

3
3.9

30
4.929503018

3
3

3
1.30E

-15

F
19

-3.862779787
-3.837012599

-3.089764134
0.141132703

-3.86
-3.86

-3.86
7.05E

-15

F
20

-3.042457738
-3.017878829

-2.981002427
0.030617435

-3.042423011
-3.025796432

-2.975483131
0.026197581

F
21

-10.15319876
-9.984784532

-5.100772055
0.922442691

-10.15319876
-10.1531982

-10.15318981
2.12097E

-16

F
22

-10.40282204
-10.05122207

-5.128822495
1.338056572

-10.40282204
-10.40232042

-10.39505238
0.001910066

F
23

-10.5362903
-9.998653738

-5.128480623
1.640498374

-10.5362903
-10.53629027

-10.53628927
1.87452E

-17
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The proposed QBOA was analyzed versus six well known met-heuristic algo-
rithms: Coyote Optimization Algorithm (COA) [24], Dragonfly Algorithm (DA) [21],
Particle Swarm Optimization (PSO) [10], Gravitational Search Algorithm (GSA)
[27], Moth-Flame Optimization (MFO) [20], Genetic algorithm (GA) [17], as shown
in Table 2. The initial controlling parameters of the optimization algorithms are
listed in Table 3.

Table 2
Comparison results attained for QBOA and different optimization algorithms

Function QBOA COA PSO DA GSA GA MFO

F1 Mean 2.0989E-118 25.32456 1.36E-04 5.30E-01 2.53E-16 8.00E-04 1.65E-31
St.dev 9.7943E-118 9.284834 2.02 e-7 1.318 9.67E-17 8.70E-04 4.91E-31

F2 Mean 3.15854E-60 0.7051718 0.042144 2.392 0.055655 3.00E-03 2.69E-19
St.dev 1.72583E-59 0.1208514 0.045421 3.912 0.194074 1.80E-03 6.22E-19

F3 Mean 1.8777E-109 2252.63547 70.12562 215.45 896.5347 13.213 2.05E-11
St.dev 1.0284E-108 825.3839 22.11924 935.17 318.9559 8.042 4.21E-11

F4 Mean 6.93219E-57 24.4519057 1.086481 1.153 7.35487 0.209 5.79E-06
St.dev 3.74755E-56 3.6646211 0.317039 2.702 1.741452 5.80E-02 3.17E-05

F5 Mean 0 2592.44628 96.71832 6784.5 67.54309 66.9 133.11
St.dev 0 1925.75963 60.11559 21974.5 62.22534 22.6 555.57

F6 Mean 0 27.835087 0.000102 2.2023 2.50E-16 7.50E-04 4.78E-32
St.dev 0 12.9163617 8.28E-05 5.528 1.74E-16 7.20E-04 1.27E-31

F7 Mean 7.58E-04 6.72E-02 1.23E-01 6.90E-03 0.089441 8.10E-04 1.20E-03
St.dev 5.87E-04 2.40E-02 4.50E-02 7.60E-03 0.04339 5.50E-04 7.20E-04

F8 Mean -4182.982887 -12299.311 -4841.29 -3213.66 -2821.07 -3692.39 -3329.13
St.dev 3.31728E-06 105.679038 1152.814 431.748 493.0375 182.42 288.317

F9 Mean 0 20.11984 46.70423 11.561 25.96841 3.80E-04 12.8372
St.dev 0 2.22484365 11.62938 10.177 7.470068 3.20E-04 7.352

F10 Mean 8.88E-16 4.0391476 2.76E-01 3.14E-05 6.21E-02 8.88E-16 8.88E-16
St.dev 0 0.95061505 5.09E-01 1.70E-04 2.36E-01 1.00E-31 1.00E-31

F11 Mean 0 1.1976333 9.22E-03 0.3846 27.70154 8.88E-16 1.78E-01
St.dev 0 7.64E-02 7.72E-03 0.3826 5.040343 1.00E-31 8.43E-02

F12 Mean 3.69146E-08 2.0935602 6.92E-03 0.5296 1.799617 5.73E-05 3.11E-02
St.dev 2.0219E-07 0.809141215 2.63E-02 0.6912 0.95114 1.40E-04 9.49E-02

F13 Mean 1.34978E-32 11.91776 6.68E-03 0.5292 8.899084 6.21E-05 1.10E-03
St.dev 5.5674E-48 3.7510395 8.91E-03 0.7173 7.126241 1.10E-04 3.33E-03

F14 Mean 0.998 0.998 3.627168 1.1 3.4 0.998 1.03
St.dev 1.00999E-16 4.12E-17 2.560828 0.303306 2.578637 8.83E-14 0.181483682

F15 Mean 3.30E-03 3.07E-04 5.77E-04 1.34E-03 1.80E-03 8.40E-04 8.37E-04
St.dev 6.81E-03 7.70E-09 2.22E-04 5.11E-04 4.90E-04 2.90E-04 2.54E-04

F16 Mean -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03
St.dev 0 6.58E-16 6.25E-16 2.55E-11 0 5.02E-10 0

F17 Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
St.dev 0 0 0 7.60E-13 0 4.73E-07 1.13E-16

F18 Mean 3 3 3 3 3 3 3
St.dev 1.30E-15 1.36E-15 1.33E-15 1.38E-06 4.17E-15 1.21E-08 1.95E-15

F19 Mean -3.86 -3.86277 -3.8628 -3.86 -3.8628 -3.86 -3.86
St.dev 7.05E-15 3.12E-15 2.58E-15 1.59E-03 2.29E-15 2.20E-03 2.71E-15
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Table 2 cont.

F20 Mean -3.025796432 -3.04245773 -3.26634 -3.25 -3.31778 -3.32 -3.22
St.dev 2.62E-02 2.21E-13 6.05E-02 6.72E-02 2.31E-02 2.17E-02 4.51E-02

F21 Mean -10.1531982 -10.153199 -9.31 -9.81 -9.95512 -10.2 -7.56
St.dev 2.12097E-16 7.23E-15 1.925505 1.280913 3.737079 4.84E-04 3.323037

F22 Mean -10.40232042 -10.40232042 -9.52 -10.4 -9.68447 -9.93 -9.35
St.dev 1.91E-03 0.962917757 2.00228 0.192434 2.014088 1.822252 2.423664

F23 Mean -10.536 -10.536 -10.536 -10.536 -10.536 -9.61 -10.3
St.dev 1.87452E-17 1.22342651 1.635722 1.060781 2.60E-15 2.405191 1.39948

Table 3
Parameter settings of the Optimization algorithms

Optimization Algorithm Parameter Setting

Quantum-Behaved Bonobo
Optimization Algorithm (QBOA)

rcpp=0.0036, tsgsfactor−max = 0.02,
scab=1.25, scsb=1.3

Particle Swarm Optimization (PSO) c1=c2=2, wmax = 0.9, wmin = 0.2

Coyote Optimization Algorithm (COA) packs numberNp = 10, coyotes number Nc = 10

Gravitational Search Algorithm (GSA) G0 = 100, alpha = 20

Genetic algorithm (GA) Roulette wheel selection, crossover=0.7, mutation=0.3

Dragonfly Algorithm (DA) β = 0.5

Moth-Flame Optimization (MFO) b=1,a decreased linearly from -1 to -2

As reported in Table 2, the proposed QBOA algorithm surpassed the comparison
algorithms for all optimization test functions except for F8, where COA presents bet-
ter mean and QBOA presents the second best; and for F15 where COA presents better
standard deviation and mean measure. Compared to the GA and MFO algorithm,
QBOA finds the second best results for function F20. Moreover,For functions F5, F6,
F9, and F11, the theoretical global optimum could be consistently located through
QBOA. While, for test function F10 QBOA was able to attain the theoretical global
optimal similar to GA and MFO algorithms, however with the best St-dev.

5.2. Performance estimation with CEC 2019

Extra examinations of the proposed quantum behaved BO on the CEC2019 bench-
marks are undertaken in this sub-section. CEC2019 [25] signifies a test envi-
ronment, including ten different functions with various characteristics. CEC01,
CEC02, and CEC03 are the first three functions, with dimensions of: [−8192, 8192],
[−16384, 16384] and [−4, 4], respectively. While, the test functions CEC04 to CEC10
are shifted and rotated in the range [−100, 100]. The evaluation findings are reported
in Table 4. From Table 4, the proposed QBOA algorithm provides the best results in
term of best, worst, mean and standard deviation for all test functions.
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In addition, the QBOA is examined against four well known algorithms in the
literature: Particle Swarm Optimization (PSO) [10], Dragonfly Algorithm (DA) [21],
Whale optimization algorithm (WOA) [23] and Salp swarm algorithm (SSA) [22],
Table 5. From Table 5, the proposed QBOA Obtains better results for CEC02,
CEC05, CEC06, CEC08 and CEC09. Furthermore, QBOA provides the better mean
for CEC10, and produces the second-best outcomes for test function CEC07 in com-
parison to the PSO algorithm.

Table 5
Comparison results attained for QBOA and different optimization algorithms on CEC2019

Function QBOA PSO DA WOA SSA

CEC01 Mean 3.82E+10 1.471E + 12 5.43E+10 4.11E+10 6.05E+09
St.dev 3.53E+10 1.324E + 12 6.69E+10 5.42E+10 4.75E+09

CEC02 Mean 17.34394919 15183.91348 78.0368 17.3495 18.3434
St.dev 0.000158971 3729.553229 87.7888 0.0045 0.0005

CEC03 Mean 12.7024 12.7024 13.7026 13.7024 13.7025
St.dev 1.13E-07 9.03E-15 0.0007 0 0.0003

CEC04 Mean 188.1486484 16.80077558 344.3561 394.6754 41.6936
St.dev 24.1737793 8.199 414.0982 248.5627 22.2191

CEC05 Mean 1.105880945 1.138264 2.5572 2.7342 2.2084
St.dev 0.021160053 0.08938 0.3245 0.2917 0.1064

CEC06 Mean 9.275948809 9.30531 9.8955 10.7085 6.0798
St.dev 1.024430079 1.69 1.6404 1.0325 1.4873

CEC07 Mean 410.001414 160.686 578.9531 490.6843 410.3964
St.dev 186.1911856 104.203 329.3983 194.8318 290.5562

CEC08 Mean 5.099504448 5.2241 6.8734 6.909 6.3723
St.dev 0.401191137 0.7867 0.5015 0.4269 0.5862

CEC09 Mean 2.163408587 2.373279 6.0467 5.9371 3.6704
St.dev 0.008198 0.01843 2.871 1.6566 0.2362

CEC10 Mean 20.13350873 20.2806 21.2604 21.2761 21.04
St.dev 0.115771177 0.12853 0.1715 0.1111 0.078

5.3. Convergence analysis

The proposed QBOA and BOA’s convergence behaviour are explored. The cost func-
tion for F1–F4, F7, F9, F10, F13, F15, and F21 test problems, as well as their
associated convergence curves, are shown in Figures 3–6. As shown in Figure 3, the
QBOA algorithm exhibits abrupt changes in the early stages of iterations, which de-
creased gradually throughout the course of iterations. This behaviour demonstrates
that, the proposed QBOA algorithm gains from a well balance of exploitation and
exploration, accordingly enables the QBOA to avoid being locked into local optimals.
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(a) F1

(b) F2

Figure 3. Best fitness convergence curves
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(a) F3

(b) F4

Figure 4. Best fitness convergence curves (cont.)
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(a) F9

(b) F10

Figure 5. Best fitness convergence curves (cont.)
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(a) F13

(b) F15

(c) F21

Figure 6. Best fitness convergence curves (cont.)
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5.4. Dynamic PV models’ parameters estimation

This subsection is concerned with the application of the proposed QBOA for param-
eter optimization of the integral and fractional dynamic PV models. The dynamic
data sets were collected from PV module at an irradiance level of 655 W/m2 and a
temperature of 25oC, with connected load RL = 23.1Ω [8]. Whereby, for the integral
dynamic PV model, three unknown parameters Rc, L and C should be estimated,
while in the fractional dynamic PV model five parameters Rc, Lβ , Cα, β and α should
be estimated.

Thirty independent runs of the PV optimization problems were performed. The
BOA and proposed QBOA internal parameter values for optimizing the dynamic PV
models were kept the same as follows: N = 50, pxgm−initial = 1/d, rcpp = 0.0036,
tsgsfactor−max = 0.02, scab = 1.3 and scsb = 1.4. The upper and lower boundaries
of the fractional and integral dynamic PV models are given in Table 6.

Table 6
Dynamic PV model parameters boundaries

Model Parameters Lower bound (LB) Upper bound (UB)
Integral PV Rc 0 20

C 2.0E-08 600 E-7
L 5.0 E-6 100 E-6

Fractional PV Rc 0 20
Cα 2.0E-08 600 E-7
Lβ 5.0 E-6 100 E-6
α 0.8 1.1
β 0.8 1.1

The three optimized parameters (Rc, L, C,) for the integral PV model, the five
optimized parameters (Rc, Cα, α, Lβ , β) for the fractional PV model and their corre-
sponding objective function (RMSE) are reported in Table 7 and Table 8 . Moreover,
the proposed QBOA’s RMSE findings are compared to BOA algorithm and various
well-known and recently developed optimizers, including Gradient-Based Optimizer
(GBO) [2], artificial ecosystem based optimization (AEO) [30]and jellyfish search op-
timizer (JS) [5]. The tabulated results revealed that, the proposed QBOA produced
the best RMSE values.

For more comprehensive validation of the proposed QBOA, the load current
curve estimated by QBOA is generated and contrasted with that of the measured
data for the integral and fractional PV model in Figure 7 and Figure 8, respectively.
Additionally, the absolute error curves between the measured and estimated load
current curves are given in Figure 9 and Figure 10. The visual comparisons validate
the efficiency of the proposed QBOA in the identification of the dynamic PV model
parameters.
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Table 7
Identified parameters of integral dynamic PV model

Algorithm Rc C L RMSE

GBO 5.624748753 8.16E-06 7.47 E-6 0.008493067
AEO 5.624748647 8.16E-06 7.47 E-6 0.0084931
JS 5.624749 8.15726 E-6 7.47323 E-6 0.008493067

BOA 7.314974895 3.81307E-07 7.3251E-06 0.0084805
proposed QBOA 7.314974219 3.81307E-07 7.3251E-06 0.0084505

Table 8
Identified parameters of fractional dynamic PV model

Algorithm Rc Cα Lβ α β RMSE

GBO 5.00598 5.04 E-6 1.35 E-5 1.026120535 0.957165925 0.0082360
AEO 4.55020 1.46 E-5 1.73 E-5 0.917230623 0.940654537 0.0081960
JS 4.69892 4.08 E-5 1.44 E-5 0.833404373 0.953192785 0.007995872

BOA 3.91281E-05 1.80215E-06 7.20724E-05 0.947239708 0.846072368 0.006168565

proposed
QBOA

1.00E-05 1.83738E-06 6.60382E-05 0.94299238 0.852227908 0.006155832

Figure 7. Integral dynamic PV model load current fitting
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Figure 8. Integral dynamic PV model absolute error

Figure 9. Fractional dynamic PV model load current fitting



Ea
rly

bir
d

22 Heba F. Eid, Erik Cuevas

Figure 10. Fractional dynamic PV model absolute error

6. Conclusion

The finite supply of non-renewable resources combined with the world population’s
rapid increase is driving up demand for energy. Due to this circumstance, there is
a risk of environmental pollution and climate change. Therefore, researchers’ attention
towards renewable energy sources, especially solar energy, have taken the spotlight.
Several photovoltaic models have been proposed, where designing a high performance
photovoltaic system requires addressing the problem of simulating a solar module
and identifying its parameter. This paper employs a quantum behaved meta-heuristic
named QBOA for addressing various optimization problems and dynamic photovoltaic
models parameter identification. QBOA simulates the reproductive strategies and so-
cial behavior of bonobos. Quantum mechanics incorporated into the QBOA algorithm
to direct the search agents through the search space. Correspondingly, the exploita-
tion potential of the proposed QBOA algorithm is promoted by this integration. To
determine the robustness and coherence of the QBOA, its performance has been ex-
amined using the CEC2019 and CEC2005 benchmarks. Additionally, the proposed
QBOA is presented to optimize dynamic photovoltaic model’s parameter. From the
experimental and simulations results, it can be designated that the quantum behaved
QBOA sustains the competitiveness on solving different optimization problems and
optimizing dynamic photovoltaic models.
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