COMPUTER SCIENCE e 25(4) 2024 https://doi.org/10.7494 /csci.2024.25.4.5423

Abstract

Keywords

Citation

Copyright

MARCUS HILBRICH
NINON DE MECQUENEM

MICROSERVICES,
A DEFINITION ANALYZED BY SSMACH

Managing software artifacts is one of the most essential aspects of computer
science. It enables to develop, operate, and maintain software in an engineer-
like manner. Therefore, numerous concrete strategies, methods, best practices,
and concepts are available. A combination of such methods must be adequate,
efficient, applicable, and effective for a concrete project. Eelsewise, the develop-
ers, managers, and testers should understand it to avoid chaos. Therefore, we
exemplify the EMACH method that provides software guidance. The method
can point out missing management aspects (e.g., the V-model is not usable
for software operation), identify problems of knowledge transfer (e.g., how is
responsible for requirements), provide an understandable management descrip-
tion (e.g., the developers describe what they do), and some more. The method
provides a unified, knowledge-based description strategy applicable to all soft-
ware management strategies. It provides a method to create a minimal but
complete description. In this paper, we apply SMACH to the microservice
concept to explain both and to test the applicability and the advantages of
SMACH.

KMACH, microservices, software artefact management, process model,
architectural style

Computer Science 25(4) 2024: 1-32

© 2024 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

https://doi.org/10.7494/csci.2024.25.4.5423
https://creativecommons.org/licenses/by/4.0/

2 Marcus Hilbrich, Ninon De Mecquenem

1. Introduction

Managing software artifacts is one of the most essential aspects of computer science.
The question is how to develop, operate, and maintain software [16,66, 75, 76,80, 81].
Scientists and industry give different (partial) answers to this question: software
process models [1,26,47,69,70,73,74], programming paradigms [4,8], change manage-
ment [3,9,11, 14, 24,32, 35,41, 53, 86|, best practices [10,19,42-44, 54, 85|, and many
more [7,15,18,25,28,48,79,84]. So, to tackle one challenge, we have various solution
strategies, methods, description languages, and suggestions present. We neither have
a uniform solution strategy nor a description language. For managing concrete soft-
ware, e.g., in a project [67, p. 1] [70, p. 3,5,14], software developers, managers, testers,
and reviewers are deciding and understanding/learning a management strategy. Thus,
the open question in concrete is:

How to review if a software artifact management strategy is suitable
ahead of the beginning of the management?

In principle, a management strategy has to cover at least all relevant aspects of
software management. So, the V-Model is insufficient if a project requires maintaining
and operating software. A software management strategy should not cover addition-
als, to be minimal. So, a change management process is insufficient if the decision
to create software is already done. Knowledge transfer is an additional challenge. If
a Kanban-based project decides on an explicit requirement engineering, the results of
the requirement engineering are included in the development process. Therefore, the
requirement engineer can deliver a programmer understandable description or partic-
ipate in the development process. Requirements are not present in a Scrum process.
Such a process requires user stories. They also describe the same functional properties
of software artifacts.

The examples describe the overall challenges. The different management strate-
gies cover varied aspects, but a project requires managing exactly the project’s as-
pects. ~ All involved persons have to understand their role in the overall process.
Creating and transferring (by persons, documents, and software artifacts) has to be
explicit to enable management. The different software management strategies use
different terms and languages, which makes them hard to understand and combine.

Our solution is a uniform, complete, minimal, and easy-to-apply software guid-
ance. It applies to all management strategies and their combinations. $MACH han-
dled the challenge that an a priori a unification of the languages used in computer
science is not possible [46,91] [72, p. 319]. Nevertheless, it is possible to describe
the knowledge. Examples are the description of ontology’s of engineering |75, 76|, the
work by Popper [63,64], or other general categorizations [76].

The £MACH method [36,40] provides a unification of the aspects based on a uni-
fication of management strategies, an extraction of relevant management aspects, and
a systematization of these aspects. As a result, the KMACH method enables a soft-
ware developer to check and specify a concrete management strategy with minimal
effort. The management strategy becomes easily understandable to programmers,

Microservices, a definition analyzed by SMACH 3

project managers, engineers, testers, etc. The $MACH method enforces a description
of all relevant aspects of software management and identifies missing ones enforce
completeness. It enables review strategies, fosters improvements, is a starting point
for academic discussions, and is the basis for systematic comparisons of management
strategies. Therefore, it can describe all kinds of management strategies in a uniform
knowledge-based language and avoids chaotic processes.

In this paper, we exemplify the SMACH method to explain it, provide its advan-
tages, and test its applicability. Therefore, we have to decide on a management strat-
egy. Scrum, V-model, or Kanban are describing such management strategies. They
are easily describable by the sMACH method, so we decide on a more challenging task.

We decided on microservices. It is a concept, not a management strategy. Mi-
croservices are an answer to various scalability challenges. They enable large and com-
plex systems by scaling the number of services and development teams. Microservices
allow self-management and agile processes such as Scrum. Therefore, the developers
apply the microservices concept to all parts of the overall system. It requires all de-
velopers, managers, software engineers, etc., to understand the microservice concept
and to follow it, so the SMACH-based description in this paper is helpful.

This paper focuses on using the $MACH method and not creating the SMACH
concept. Therefore, we explain the usage of EMACH on a toy example and analyze
microservices. We decided on microservices because they are well-established and
widely used in large-scale industrial applications [56,57,78]. Such systems have proven
to be scalable to support several million users. Academics described them at various
conferences [17,30,31,34,52,55,77] and discussed them heavily. Thus, microservices
are an answer to actual scalability challenges and an object of academic research.

The scalability of microservices is not limited to the user load. Also, the
development is scalable. Microservice systems consist of individual microser-
vices [12,21,59,90,93]. Every service is developed and managed by one team (but
a team can have multiple services). The idea of microservices is to keep a team small,
as described by Levis and Fowler [50]. Most importantly, the teams and the microser-
vices stay small, even if the overall system can scale. It scales by adding additional
microservices and teams.

The small teams provide a set of advantages like less management overhead. The
team members are more productive in a flat hierarchy, and agile software management
processes are easy to learn. The microservices and teams are independent of each
other. Thus, the overall management overhead is reduced. Nevertheless, too many
requests based on service communication or other aspects can hinder the productivity
of a small team [54]. It is the reason for demanding service and team isolation. It is
an essential factor of microservices. Based on the isolation, we call our microservice
definition a strong one, as opposed to code size, the number of team members, or the
used technology as the basis [2,5, 58, 82,89].

In a microservice system, even if the teams are small and self-managed [23,
45,70], a minimum set of rules has to be set. The teams should not break the

4 Marcus Hilbrich, Ninon De Mecquenem

microservice system, e.g., by building interfaces to other microservices. In addition,
all management aspects need a description. Software management includes creating,
improving, deploying, and operating software artifacts [74]. Also essential are the
documentation and communication of the teams. All members need to understand
and agree to the process to avoid conflicts.

SMACH [36,40] documents and defines a software management process. It aims
to check the management strategy to support all relevant management aspects and
avoid unnecessary management. $MACH is minimalistic, based on scientific ground-
work and an ontology of key management aspects. It provides engineer-like systemat-
ics. In this paper, we give a KMACH protocol to accomplish all significant aspects of
software management in a microservice team. It describes how to create such a proto-
col. So you can adapt it to your concrete process. As a result, based on the s MACH
protocol, we can demonstrate how the independence of microservices is a solution to
many management aspects.

We organize the paper as follows: An introduction to SMACH in Sec. 2, to give
the fundamentals of the scientific method. In Sec. 3, the microservice system is defined
and explained. Sec. 4 describes a use case. Then (Sec. 5), we explain how to fill the
SMACH protocol (perform the SMACH method). With the $MACH protocol, we
can provide observations on the microservice-based process to manage, and we will
analyze microservices (Sec. 6). We close with a conclusion (Sec. 7).

2. A short explanation of BMACH

The RMACH! method is an approach to define and plan a software-management
process, e.g., a software development project. Therefore, SMACH defines the man-
agement process, gives additional context (meta-information), and describes how to
cover essential aspects of software management (As groundwork, see, e.g., [4,6,9,13,
20, 22, 27,29, 48, 51, 60, 62, 73,74, 87]). The key aspects are based on an ontology of
software engineering and software management strategies and are described based on
the vocabulary of knowledge management.

The $MACH protocol consists of three parts: the definition of management pro-
cesses, meta-information, and descriptions of the key aspects. A team should fill in
a protocol for each separate management process. The meta-information defines the
team, the filler of the protocol, and additional parts. The definition of Our Team
and Cooperating Teams are essential for understanding the protocol. Our team is
the group of persons who directly manage the software. In our example, the team
manages one microservice of the overall microservice system. Cooperating teams are
other teams that are intensively involved. An example would be a dedicated testing
team. In our case study, there is no such team.

1Systematic Software Management Approaches Characterization Helper; £ is the German Eszett.
You can read and pronounce it as “ss”.

Microservices, a definition analyzed by SMACH 5

By defining the management process (Fig. 4 and 1), we provide the guidelines to
plan the management. It can be short and link to additional documents. For instance,
we can reference the Scrum Guide [70] in the case of Scrum-like management. The
definition should be easy to understand by the target audience. Usually, this audience
is the team. In this case, the readers of the paper. The definition should be in
numbered bullet points. So it can efficiently describe the key aspects.

BMACH defines three groups: our team, cooperating teams, and externals. Qur
team is the group that manages the software, so they have to deliver and operate
a microservice (of the microservice system). Also, our team defines and learns the
management process in the $MACH protocol. Cooperating teams are other teams
that our team can or must cooperate with. Our team can not define how cooperating
teams work (they do their own management). Our team can change the agreements
with them during the management process. Such teams are, e.g., teams in the same
organization. Because our team is working with such teams, $MACH calls this In-
ternal. The last group is called External. Our team can not directly influence such
parties, e.g., contract partners. Our team has a defined contract and has to follow it.
Another example is a provider of a library or end-users who use the microservice.

The SMACH protocol organizes the description of the key aspects of software
management in a table. Fig. 3 provides an example. The columns define the different
aspects of knowledge and information management. It includes who is doing (column
Roles), what needs to be known to perform the process (column Process Knowledge),
and how is the product or aim of the process (column Product Knowledge). This
part of SMACH follows the idea that a product or artifact is created and managed by
actors/persons/roles in a process. [74]. In addition, ®MACH points out if a piece of
knowledge is not present at the beginning (column Demanded Knowledge). Clarifying
which knowledge is required is essential as the process needs to find a solution to
acquire it during the management. The last column is called Process Information,
which defines which information has to be provided by the management process, e.g.,
working hours for billing, the results of meetings, and delivery protocols.

The rows define the product aspects and the party that influences the aspects.
Previously, we gave the type of parties. Our team has external parties (marked by
the term Outside), and our team has cooperating teams (marked by the term Inside).
Our team is present by the table and needs to conduct the management process based
on the key aspects, given in the table.

The rows in the table represent the Product Properties. The artifacts our team
has to develop/manage. Interfaces are the definition of (technical) interfaces of our
artifacts to communicate with other systems. Dependencies describe everything our
team demands to get from others. Responsibilities give what our team needs to
provide to others (e.g., based on contracts or regulations). Each of the four aspects is
present as internal and external. So, KMACH defines interfaces to cooperating teams
that can be discussed and adapted based on the project needs and fixed interfaces to
external parties. These aspects cannot be influenced directly by our team.

6 Marcus Hilbrich, Ninon De Mecquenem

The last row is External Artifacts. It describes that an artifact is taken from
another party and included in our project. It is copied (e.g., use an open-source
library). As a result of copying, it is irrelevant whether it is from a cooperating team
or external. Nevertheless, an external artifact needs management. Our team needs to
know how the artifact works, how we will use it, and other consequences (e.g., based
on licensees) the team has to consider.

In addition, SMACH defines relations of different aspects, abstracted as cells in
the table. One aspect can require another, so knowledge transfer or transformation is
required. A provides relation expresses that an aspect does not need active manage-
ment. The aspect is handled /provided as a consequence of managing another one. For
example, forbidding the usage of external artifacts provides a solution to all related
management aspects by avoiding any need for management.

To exemplify the SMACH method we provide a toy example in the appendix.
The toy example provides additional explanations for all its parts. Thereby, it is
possible to look up what to fill in the protocol and have a very simple example of
a filled protocol. For this paper, we split the protocol into parts to support printing.
The original protocol consists of an A4 page for the definition of the management
plus meta-information and A3 pages for the description of the key aspects. We give
the management definition in Fig 4, and the meta-information in Fig 5. The table
with the key aspects has an initial explanation. We present it in Fig. 6. The original
protocol provides one table with all key aspects. In this paper, we split it into three
parts, presented in Fig. 7, 8, and 9. For the toy example, we use blue text to visualize
everything we (or the team) filled in. The hints are presented in gray text. You can
download the $MACH protocol at https://doi.org/10.5281 /zenodo.10992007 to print
it in large or zoom in to read all the details.

The toy example is the following. A company has a magical box to create soft-
ware. So, your challenge is to find out how to get the box. One team of the company
is our team. This team wants to use the software itself. Thus, communication, de-
pendencies, management goals, etc., are extremely reduced compared to a realistic
project. The magical box can be interpreted as a simplification of outsourcing. So,
payment circumstances, problems with the outsourcing partner, etc., are removed
from the example.

The toy examples use the different relations of key aspects. The fields in the
column process information (Fig. 8 and 9) are all very similar. Based on the manage-
ment definition, no information is recorded. In each case, the part 6 of the definition
is referenced. Therefore, the similarity is visualized by the same background color.

The toy example provides different examples of require relations. One example is
from the field inside dependencies / product knowledge to inside product properties /
roles. The dependency describes the need to get the magical box. This box provides
the product properties, and someone (a role in the team) needs to get the box from
another team of the company. As a result, the dependency requires a role to support
resolving the dependency.

https://doi.org/10.5281/zenodo.10992007

Microservices, a definition analyzed by SMACH 7

An example of provide relations is, e.g., present in the row inside dependencies.
The inside dependency is defined by getting the magical box. That is what you need
to know to handle the dependency. So, it is in the column product knowledge. This
field is resolved by a demand relation described above. In addition, the magical box
does not need extended management. Because it is so easy, it does not need an
additional/extra role to manage it or a process. Thus, product knowledge provides
a solution for field roles and field process knowledge. In this case, it provides a solution
because it can be denied to have a role or a process to manage the inside dependencies.

Later on, we describe the filling in of an §MACH protocol in detail. So, we stay
with the toy example as a self-explaining, very simplified example.

3. Strict definition of microservices

The paper aims to analyze microservices with the SMACH method. Therefore, we
defined and described microservices in general, and based on the $MACH method.
We are not describing a concrete microservice project, and we do not deny that those
real-world systems need to find compromises between the strict isolation our definition
demands and practical circumstances. Thus, we do not describe a concrete, but
rather a preparation of a management process. It checks if the microservices concept
describes all management aspects defined by $MACH. For a real-world management
process, we would need a more concrete context and an adaption to give missing
descriptions in the microservice concept.

Before using $MACH, we start with the general description: The term microser-
vice is not well-defined: The term is used for SOAs [93] build of small services [61,83],
for a realization of an organizational structure [50], as a DevOps concept [50,90], or
as architectural style [12,21,50,59,93]. Our definition focuses on the strict isolation of
individual services because isolation can be helpful for management processes [13,71].

In the following, we provide a clear definition of microservices. We used def-
initions stated before (see also [37-39]), a combination of common definitions and
strategies, e.g., [12,21,50,59,93]. We present our definition as a pattern:

Name Microservices (also called Slice Service Style)

Problems to solve Solves the need for scalability concerning the system load
and the number of persons/teams developing the system.

Definition The slice service style is an architectural style where the essential
aspects of the system are encapsulated in services (slices, microservices, or ver-
tical services). These services deliver functionality to end-users and have no (or
minimal) dependencies on other slices of the system. It includes code-sharing,
usage of interfaces, sharing of manpower, and management of, e.g., creation,
deployment, and operation.

Consequences Because of the separation of slices to allow scalability, the soft-
ware process model needs to be adapted or tailored. The definition of slices

8 Marcus Hilbrich, Ninon De Mecquenem

influences the overall system and has to be done globally (e.g., up to the design
phase of the waterfall model), while the creation and operation of the slices
are independent. Thus, the (global) software process model has to support
independent software development (e.g., by realizing each slice as a DevOps
project) and a design or architectural phase at the beginning.

Drawbacks Because the independence of slices includes teams and persons,
the structure of the organization developing the system needs to be aligned.
In addition, independence reduces the knowledge transfer of the persons of
different slices and hinders common reuse techniques. Especially cross-cutting
concerns cannot be managed.

4. Use case

In the following, we present concrete use cases from the development team’s perspec-
tive. We give examples of how the $MACH protocol can be helpful in concrete and
how it is used by the team. Therefore, we use the microservice example as a basis,
but we will also point out differences to a concrete $MACH protocol.

4.1. The external artifact question

When our development fills in the SMACH protocol, they get to the row about ex-
ternal artifacts. Microservices, as a concept, do not provide a clear and commonly
accepted solution strategy. As a result, our team is pointed to this challenge and
needs to make a clear and informed decision. Typical answers are the following:

e To reduce the dependencies on external code, we forbid the usage of external
liberties. In the M ACH protocol, we fill in that no knowledge regarding external
artifacts exists and no management process is required. We make it clear to the
team members by adding “It is forbidden to use external artifacts.” as an item
to the management definition.

e To forbid external libraries creates new challenges. Encryption, single sign-on,
and logging are forced to be re-implemented. This is a high, additional effort
and very error-prone. Using established, well-tested, and continually supported
libraries is a solution strategy. In such cases, it demands to know the libraries
and check that the licenses are exportable. Integrating the liberties requires
checking for security issues and update own microservice on demand. Therefore,
it requires adding a process and role to the SMACH protocol.

The $MACH concept forces the team to decide how to handle external artifacts.
The team decides on a strategy and avoids unwanted problems like unmanaged secu-
rity issues based on outdated libraries.

Microservices, a definition analyzed by SMACH 9

4.2. Why not use another microservice?

Let us assume we have a running microservice, and our team operates and maintains
it. In this situation, our team gets a new member who proposes to use the other
microservices to reduce the code base and increase the functionality.

The team can refer to part 1 of the definition (Fig. 1). Thus, the new member
can understand the current situation.

The RMACH is not written in stone. If the situation changes, the protocol can
be updated. In this example, it is discussed to remove part 1 of the definition. As
a result, all key aspects referring to this part (Fig. 3) are part of the discussion. In
concrete, cooperation with other teams has to be established and managed. It is,
e.g., needed to have a plan if another service changes the interface or is temporarily
unavailable.

Whether it is more effort or risk to manage the relation to other
teams/microservices or to not use their services is a decision of our team. $MACH
demands to describe the plan to foster an informed decision.

4.3. The functionality of the microservice

One of the open questions in our example is the functionality of a singular microser-
vice. In $MACH, this is mainly a question of product knowledge. To program and
maintain the microservice, our team needs the related product properties (see Fig 3).
In short, the interfaces the microservice provides to the end-user define the product
knowledge (the code base of the microservice). The code needs to implement the real-
ization of the interfaces. The responsibilities (the definition of what our microservice
has to provide to the end-user) define the interfaces. A chain of demands relations in
the SMACH protocol (see Fig 3) represents the knowledge transfer. The open ques-
tion in the protocol is who (which role) provides the responsibilities of our service as
a system’s concern of the overall microservice system.

In our example, we can not answer the system’s concerns at all. The concerns
require a concrete system and project. Without knowing the aims, purpose, or busi-
ness model of the microservice system, we can not answer. A real microservice system
example has such information available, at least for the overall microservice system.

The $MACH protocol we provide in this paper is for the development team of one
microservice. Thus, from the viewpoint of this team and the corresponding $MACH,
the knowledge of the partial system’s concerns (outside responsibilities) needs to be
provided somehow. If we create a $MACH protocol for another microservice and an-
other team, we encounter the same problem. As a result, we demand additional teams
that define the business capabilities of the overall microservice system. In addition,
such teams separate the overall system’s concerns into individual microservices [33].
To describe such a team in $MACH is another story. It requires having an overall
business strategy [13] and dividing [92] the overall business concerns into individual
services.

10 Marcus Hilbrich, Ninon De Mecquenem

5. Filling of the EMACH protocol

We use the microservice definition to describe the filling of the KM ACH protocol. The
first step is the discussion of the context information. Then, the definition and the
aspects of management are discussed in parallel. The results are Fig. 1, 2, and 3.

5.1. BMACH context

To fill the SMACH protocol starts with writing down the context information. This
part of the $MACH protocol defines other parts. So, it is a good starting point.
Mostly, the context is very clear and easy to fill. We know the name and the date
a priori. It is the first version, so we label it as 1.0.

The SMACH protocol is filled for a team that manages a microservice, not for
the organization that manages the overall microservice system. We call the team
Microservice Team A, A to indicate that other teams of this kind exist. The team
needs more details than a name, so we added an explanation in Fig. 2. This also
describes the artifacts. In the pattern definition (Sec. 3), the part “This includes
code-sharing, usage of interfaces, sharing of manpower, and management of, e.g.,
creation, deployment, and operation.” describes the separation and the artifacts.
The part “by realizing each slice as a DevOps project” describes the different teams.

The cooperating teams are mostly independent. Thus, we could define them
as external. Also, the teams belong to the same organization. The organization
manages the overall microservice project. It argues against a complete disjoin. We
use the system border of the microservice system as the external border. The mapping
of individual microservices to teams is sufficient to describe it: all teams work on the
same microservice system as cooperating teams, even if they are independent. As
a result, the context information of the SMACH protocol is present in the sMACH
protocol in Fig. 2.

5.2. BMACH Definition and software management aspects

SMACH is a method to define and discuss a software management process. The
SMACH protocol defines the process required by a software development team. The
team is responsible for a microservice. We start with the work packages. Afterward,
we describe the management process of our team.

5.2.1. Work package responsibilities

Work packages of sMACH describe if our team is responsible for the development,
maintenance, and improvement. The pattern-like definition of microservices (Sec. 3)
mentions development, maintenance, and improvement. Development is called “cre-
ation”. The “deployment” is a part of the development and/or maintenance (depending
on static deployment or the system changes its deployment). The “operation” is at
least part of maintenance and can include improvement. The mention of DevOps
confirms that all work packages are included in the management process. Thus, the

Microservices, a definition analyzed by SMACH 11

team is responsible for all work packages, and we check them in the $MACH protocol
(Fig 1).

5.2.2. Definition of the management process

We have a microservice definition (Sec. 3), but it is not a sMACH protocol. We need
a description where different parts of the definition are easy to reference. Also, each
part should describe one aspect and no mixtures.

To get the definition for SMACH, the definition from Sec. 3 is decomposed and

recomposed. We can split the first sentence of the pattern-like description into parts
that are candidates for the SMACH definition:

e The naming microservice and the classification as architectural style.
e The representation of system concerns as encapsulated services.

e The services deliver functionality to the end-users.

e Services have no (or minimal) dependencies on each other.

The second sentence describes what is included in the services and is independent
of other services:

e Services have a code base.

e Services have interfaces.

e Services have a team (“manpower”).

e Services persist over development, maintenance, and improvement (“creation,
deployment, and operation”).

The naming and classification as architectural style do not give the descriptions
as needed by the $MACH protocol. In addition, we can reorder the items in the
description of the system and the microservices:

I The microservice system consists of microservices.
IT Microservices have no (or minimal) dependencies on each other.
III Microservices represent encapsulated system concerns.
IV Microservices are persisting over development, maintenance, and improvement.
V Microservices deliver functionality to the end-users.
VI Microservices have interfaces.
VII Microservices have a code base.
VIII Microservices have a team.

For the S MACH protocol, it is only allowed to add needed parts to the man-
agement definitions. Thus, it is a reasonable strategy to develop the definition of
the management process by answering the questions about the management aspects
in the table of the S MACH protocol. This table provides two separate parts. They
are the work the team is not responsible for and the part the team needs to manage
directly. In the following, we give both parts.

12 Marcus Hilbrich, Ninon De Mecquenem

5.2.3. Not responsible for

The team is responsible for product development, maintenance, and improvement.
Thus, we have to cross the fields in the table. So, we finished the rows of product
development, product maintenance, and product improvement. We do not have to
prepare for other teams to overtake the work. It is typical for DevOps-like strategies.

5.2.4. Responsible for

In the following, we have to provide the descriptions of the software management
aspects and fill the table. By filling the table, we have to refer to the parts of the
software management concept. As the current starting point, this part of the S MACH
protocol is empty.

We start with interfaces. (There are two rows for interfaces in the table.) We
already mentioned interfaces in item VI. The interfaces are inside interfaces in case
cooperating teams use the interfaces. It would be a kind of dependence that IT mostly
denies. Thus, the interfaces are mostly used by externals. Externals are the end-
users according to V. Item III describes the purpose of the microservice. Because
the pattern-like definition does not mention other communication, it needs to be
offered by the interfaces. So, inside interfaces can be mostly denied. The product
properties of the outside interfaces are a subset of the system concerns. For the
BMACH definition, we combined items I and II from above to part 1 of the s MACH
definition. In addition, we combine items III, V, and VI from above as part 2 of the
SMACH definition (Fig 1).

We state that internal interfaces are not present. In short, we deny them. To
deny internal interfaces means we can deny the need for product knowledge. The team
does not need to know anything about nonexisting interfaces. We denied the other
cells in the row, too. There is no need to explore additional knowledge (demanded
knowledge), no management process is needed (process knowledge), no one needs to
do something (roles), and the team cannot record information about the nonexisting
process (process information). In other words, based on the fact that no interfaces
exist (product knowledge), no role is needed. In £MACH, this is a provided relation.
Based on the cell product knowledge, other cells in the row are filled /inferred. Provide
relations are marked by an arrow and according to the coloring of the right side of
the cell, as provided by the filled SMACH protocol in Fig. 3.

To deny product knowledge based on the independence of services can be directly
transferred to the rows inside product properties, inside dependencies, and inside
responsibilities. The arrow for the provided relations and the coloring of the right
part of the cells are the same. We applied the same argumentation to the cell product
knowledge in different rows. $MACH demands to use the same color, in this case
(it is not a relation, so the left part of the cell is colored). Based on the same
argumentation, we used the same color (Fig. 3). So, we finished the rows inside
interfaces, inside product properties, inside dependencies, and inside responsibilities.

Microservices, a definition analyzed by SMACH 13

Part 2 (Fig. 1) of the SMACH definition does not only define the product knowl-
edge of outside interfaces. The interface and the concerns define the outside product
properties. Part 2 defines the product knowledge of the outside responsibilities by a
subset of the system concerns, too. Thus, all three fields get the same color in the
SMACH protocol (left side of the cell). In addition, we visualize that the three fields
depend on each other. The concern of the system presented by the responsibility is
best. The interface is just the technical and organizational presentation of the respon-
sibility. So, it is dependent on fulfilling the responsibility. The product property is
the realization of the interface. So, the fields of product knowledge in the rows outside
product properties, outside interfaces, and outside responsibilities are defined.

The definition of an architectural style (Sec. 3) does not describe how and by
whom the artifacts should be managed. The consequences part of the pattern-like
definition is helpful. It gives the tailoring of the software process model. We start with
the part that describes that DevOps projects are present for each microservice. It
helps to describe additional fields. The DevOps team has to provide all needed roles,
and it is small enough to manage itself. It gives the roles and the process knowledge
for the rows outside product properties and outside interfaces. Because we gave all
descriptions based on the DevOps team, we use the same color for all fields (left part
of the cells). We present the result in Fig. 3. Now, we add the DevOps team to the
KMACH description as part 3.

The DevOps team knows how to develop and maintain the product. Thus, the
DevOps team members have product knowledge (row outside product properties).
In other words, the DevOps team builds and maintains the software based on their
knowledge/experience (and based on the definition of the interfaces). Microservices
do not give an additional knowledge object. Therefore, we extended the product
knowledge cell in this row and the demand relation (Fig. 3).

Demanded knowledge (row outside product properties) does not exist. The
DevOps team manages the artifacts. The outside interfaces present a definition of
the product. It adds two provides relations, so everything is present.

The “consequence” section of the pattern-like definition (Sec. 3) gives the root
of the concerns managed by the team. The product knowledge in the rows outside
responsibilities demands it. The separation of system concerns is not described (prob-
ably given by another team). Thus, it is demanded knowledge for our team. How
to obtain this knowledge is unclear. We cannot name the needed process, roles, and
process information. We use question marks and red coloring. Also, the SMACH
definition is extended by part 4. The outside interfaces are (mainly) defined by the
outside responsibilities. In the case of a concrete end-user, we would need additional
aspects, concretization, and adaptions. The DevOps team handles these interfaces.
These are two provides relations.

The column process information is not directly covered by the pattern-like def-
inition (Sec. 3), but the concerns of the system can demand such information (e.g.,
accounting of used resources to benchmark efficiency). Thus, our team transfers the

14 Marcus Hilbrich, Ninon De Mecquenem

(description of) product knowledge to process information for the rows of outside
responsibilities, outside interfaces, and outside process properties.

The pattern-like definition does not give or define the row outside dependencies
(e.g., to use an external service or external artifacts). Both can be demanded or
forbidden by the system’s concerns. So, a demand relation exists. Otherwise, we
can expect that the DevOps team manages artifacts and dependencies (similar to
outside product properties and outside interfaces we give them in the already defined
color). The product information depends on the system concerns (e.g., for the outside
interfaces, the system concerns define also the process information directly, but we
do not describe it this way). Our team does not demand additional knowledge. We
expect the DevOps team to have the needed skills and knowledge. So, we finished the
table of KM ACH descriptions (Fig. 3).

5.3. Filled BMACH protocol

We separated the parts of the RMACH protocol. Fig. 1 presents the definition, Fig. 2
the meta-data, and Fig. 3 explains the management aspects.

The SMACH protocol has only two open, not complete answered cells (Fig. 3).
The cells describe the separation of concerns of the overall system to isolated mi-
croservices. It is a challenge of microservices [49,65, 68, 88].

The microservice definition describes many cells, especially product knowledge.
The system concerns are a basis, with many relations in the $MACH protocol. The
independence of services enables answering inside related rows.

The architectural style does not fully describe roles and processes. The usage of
DevOps answers such questions.

Based on the strict description of microservices (the pattern-like definition,
Sec. 3), we can fill a RMACH protocol (Sec. 5.3). Thus, the given definition cov-
ers nearly all relevant aspects of software management. The red-colored cells in the
SMACH protocol point out the open challenge of microservices to define independent
concerns of the overall system.

The microservice definition (Sec. 3) holds information not present in the SMACH
protocol. Thus, parts of the definition do not describe software management aspects.

The name of the pattern-like definition is (somehow) represented in the context
part of the SMACH protocol (Fig. 2). The “problem to solve” part is not needed to
fill the SMACH protocol. This part can help to decide whether to use microservices
or not. It is not in the scope of the SMACH method. $MACH helps to understand if
all aspects of managing software artifacts are covered. It is no direct helper to decide
to use a specific management method, but it can check different strategies. So, the
aims of the pattern-like definition and $MACH are different.

The “definition” sections of the pattern start with the description in an archi-
tectural style. The SMACH protocol does not cover it. So, it describes a pattern
property, like the description itself. The rest of the definition sections cover parts 1
and 2 of the SMACH definition (Fig. 1).

Microservices, a definition analyzed by SMACH 15

The “consequences” part of the pattern-like definition gives two pieces of infor-
mation. First, detail of the service separation (part 1 of the SMACH definition).
Second, the separation of concerns and services has to be realized somehow (part 4
in SMACH). Third, individual services are realized by DevOps (part 3 in MACH).

The drawback section of the pattern-like definition is not represented by $MACH.
It describes problems outside our team, and RMACH does not represent them. It is
an additional different aim of the pattern-like definition and $MACH.

Work Package Responsibilities:
M Finelizing Product Development
M Finelizing Product Maintains

M Finelizing Product Improvement

Definition of the Management Concept:

1. The microservice system consists of microservices, microservices have no (or min-
imal) dependences to each other.

2. Microservices represent encapsulated system concerns that are delivered via inter-
faces to endusers.

3. A microservice is managed by a DevOps team that provides all needed knowledge
and manages itself.

4. The separation of system concerns to microservices has to be realized, how to do

so is not covered bv the microservice concent.

Figure 1. Definition of microservices in the EMACH protocol. The definition gives the num-
bers of the bullet points/parts. (See Fig. 3 and https://doi.org/10.5281 /zenodo.10992169
for more details.)

Context (User/Team/Context Information):
Name of the Marcus Hilbrich

Filler:

Represented Microservice Team A: one of the teams managing mi-
Team (Internal croservices of the overall microservice system

Border):

Cooperating All teams working on the same microservice system.

Teams (Exter-
nal Border):
Managed Arti- A subset of the microservices of the overall microservice

facts: system.
Date: 2020/06/11
Version of Doc- 1.0

ument:

Comment:

This BMACH protocol is based on a microservice definition, to test the SMACH
method and the microservice definition.

Figure 2. Context or meta-data of the definition of microservices in the SMACH protocol.
(See Fig. 3 and https://doi.org/10.5281/zenodo.10992169 for more details.)

https://doi.org/10.5281/zenodo.10992169
https://doi.org/10.5281/zenodo.10992169

Marcus Hilbrich, Ninon De Mecquenem

16

“MOX SIYY U PaIoa0d |

-

55005 WolSAS oy}

Aq pojsenbar aq ue)

*199][09 0} uoIyRWL
ou os ‘efeurw 0}

*309[[00 03 UoRW
-10jut ou 08 ‘GFBUBM O
S8PO[MO jonpoid on

“J[es soSe

O

e —spraord o7

; -uwew weo) sdOao(oy, | ¢ sey wea) sdOao(] 9YJ,

papIsToBps
[Mouy [euonippe oN

<

]

p—otmo v o
Spafmouy jonpoad on

BPoIMOS] tisa on

STpammot, gonpoud oy

‘spuewop
uado ou os ‘sdpaa(4q

“wrea) sdQa
-o(] o3 Aq SUOUOD WaY
-sfs Aq uwea18 oq uw)

“paSeueur aq 0y

Ppabu jou op pue paziu
W IR SEOIAIISOID
Jo seuspuadac]

“paSeurur aq 0y
991 J0U Op pue pozIut
UMl 918 SAOIAIISOID
(W jo sspuspuada(]

SIOUIIY [RUI0)XG

so1)

-nqisuodsay apsino

qisuodsay opisup

SP0RJIIU] APISINQ

S9ORJIIU] SPISUL

*MOI SIU} Ul PAISAOD

UISOUO5 WojsAs oty
£q poysonbox oq uep

“JIosy soSe
-ueur weoy sdpad(Ay I,

Opopees

o |

¢ sey wesy sdpao oYL

“wreay sAOA
(@ o3 &q 10 surduod
09545 Aq w1 oq urD

sopuopuada(opISING

+4001[09 0} uOIyRIL
ou os ‘ofeuew 03

‘popoau §saD
-o1d ou os ‘oSeurw o
Smous| jonpord oN

“popoau

*s)st
-xo ofpormows| popuewr

Simony onpoxd oN

“300[[00 03 UOIEW
-20jut ou os ‘ofeuTm 03
9 Srpoid ON

“JIosy soSe
-uewt weoy sdpaa oy,

“uony
-tuyop oovyuI oY) ‘Op
0) Moy o8po[mow 3]
sey weoy sdQasq oYL

‘poposu §s0D
-oxd ou os ‘ofeurw o
S[mouy jonpord oN

o3pO[MO] ﬁ%oa oN

Syst
o ofpomous| popuvur

———
SSpopmom] gonpoad oy

Il

“poSeuei oq 03
00U Jou Op pue pozi
W eIw S00IAISOI

sw jo sopuspuadag

-poSeuTw oq 03
Poou j0u Op pue postur
oI S001ATOSOIO
souspuado

—urm
- jo

soruopuada] opisuy

sor}10

~doig 4onpoig opIsIng

sory
-1odo1] 1o1pO1] opISU]

:10] o]qIsuodsay] ST wrea], o[} s300dsy 10] uorjeur[dxy

JUOWIoACIAT] JONpOIg]

SUIRJUIRIN JONPOL]

Juawdo[PAd(] JONPO]

110] oE_m&%m@ JON ST Edﬁ m.mﬁ s100dsy Homo_\ﬁmqﬂaxm

ORI S50501d |

Tpomon] S5001d |

SO0y |

FpommomT popueag |

SBpoIMOUY] PPNPOIg

Figure 3. Description of microservices based on the R®M ACH protocol. RMACH describes a set of key
aspects. Each cell of the table represents an aspect. The right part of each cell holds the references to

the definition in the 8MACH protocol (Fig. 1

#MACH defines coloring. Based on the management

).

process, we use light green in the right part of a cell for aspects that do not need active management.
Active management means that an aspect is realized without a need for action. The darker green

indicates that an aspect is also performed without needing active management but is provided by

We use violet for aspects used or required by additional ones. Such an aspect indicates
relation. The aspect on the peak is

a special interest. Arrows with a pea

another.

k-end describe a provides

provided by the other. A round end arrow gives a demand relation. The other aspect needs the one at

the rounded end. The left part of the call can be colored, too. If the left part of multiple cells uses the

same color, the cell’s descriptions are equal or very similar. The described aspects in this figure are
all based on the other parts of the M ACH protocol, provided in Fig. 1 and 2. Download the $MACH

protocol as PDF to zoom in and explore the protocol (https://doi.org/10.5281/zenodo.10992169).

https://doi.org/10.5281/zenodo.10992169

Microservices, a definition analyzed by SMACH 17

6. Results: learning from the BMACH Protocol

We investigate the SMACH protocol (Sec. 5.3):

1) We start to look for aspects that do not need active management. In the S MACH
protocol, such aspects are marked by a green color on the right part of the cell
(Fig. 3). For the strict definition of microservices, the rows for inside aspects
do not need active management. The reason is also present. Based on the
independence from other services of the same system, no technical (product-
based) cooperation with teams of the same microservice system is present. As a
result, the other fields in the rows do not need active management because there
is nothing to manage. There is no need to manage internal relations, a significant
advantage. Fewer communication partners reduce the complexity and the needed
team management skills. The team can concentrate on itself and is probably
more productive. $MACH represents the idea of the strict microservice
definition to foster scalability by separating microservices.

2) Based on the provides and demands relations, the SMACH protocol describes
knowledge propagation. We already mentioned the propagation for the aspects
without active management. The knowledge propagation for active manage-
ment is interesting for a software engineer. How is the knowledge transferred
and converted, and which knowledge is it? In Fig. 3, the starting point is the
concerns. Individual microservices handle the system’s business concerns (row
outside responsibilities). The microservice team’s responsibilities are the basis
for the outside interfaces and the outside dependencies. Thus, the product prop-
erties are indirectly based on the concerns. In other words, the business concerns
of the microservice need to be defined first. Afterward, the microservice team
cares about creating and operating the microservice. The team cares for the
microservice. The $MACH protocol points out that the team needs
a defined business concern as a starting point and then manages the
service creation and operation based on the concerns. Another influ-
ence on the team is not present. (See Sec. 4 for other management decisions
and strategies.)

3) Only one kind of description for roles is present in the RMACH protocol (Fig. 3).
The roles are not exactly defined. In other examples of $MACH protocols, we
have seen concrete roles like software developers, architects, and designers. In
Fig. 3, there is a DevOps team. The roles this team needs are not fully defined.
Based on the understanding of DevOps, the roles are reasonable to perform the
given tasks. The SMACH protocol does not point out that the DevOps
team needs to adapt to the microservice’s business concern. For a con-
crete project, we need to define and instantiate the abstract definition
of roles.

4) The process knowledge is given by self-management of the DevOps team. Similar
to the roles, this is not concrete. Nevertheless, DevOps is the idea of small
teams and self-management. A concrete team should give more details on how

18 Marcus Hilbrich, Ninon De Mecquenem

to perform self-management. $MACH points out the DevOps team’s self-
managed process. Thus, inadequate influences on the team have to be
omitted. It is also a consequence of the independence of microservices.

5) The definition of the management concept in SMACH (Fig. 1) holds four easy-
to-read bullet points. It is very minimal, easy to remember, fast to understand,
and interpretation is present and referrable at any time (Fig. 3). Based on our
observation, it is very helpful to have an explicit management process. It makes
the process easier, reduces conflicts, and enables improvements. Also, a change in
the process gets obvious, and changes can be explicitly discussed. The SMACH
protocol is compact, and it is easy to understand the definition of the
management process. So, the planned process is written down and can
be referred to later on. (See Sec. 4 for changing the management strategy
and updating the protocol.)

6) The effort to create a SMACH protocol is not very high and no special knowledge
or skills are needed. To describe microservices, you need to understand microser-
vices. So, you can create a protocol in about two hours on a whiteboard with the
DevOps team. Afterward, the process is clear to all team members. We have also
discussed two weeks about a single sMACH protocol. We discussed the manage-
ment process, and we learned a lot. Based on filling the $MACH protocol, we
identified the gaps in the process, found borderline cases, and nailed down the
differences between our idea of the process and the practical doing. At least based
on our observation, the BMACH method supported us. A RMACH protocol
is created in some hours and can help to improve the management
process.

7) SMACH is a communication helper. The terms in the protocol support under-
standability. The description of the process by one person is easier to understand
for the team. It was even possible to identify misunderstandings between persons.
If two persons answered a management aspect in the §MACH protocol differently,
the process was not yet clear. The definition of terms and the systematics
of the SMACH protocol support the communication of the involved
persons and avoid misunderstandings in the management process.

8) Our definition of microservices is strong for explaining the essentials of the con-
cept. To allow minimal dependencies is a concession to practical implementations
of microservice systems. Nevertheless, isolation is not easy to realize. Especially
for transforming legacy systems to microservices, the definition gives a goal, not
the transformation or an intermediate step. Thus, a practical realization of a
microservice system probably sacrifices strict isolation and decides to manage
the consequences instead of dealing with the realization of strict isolation. We
use a microservice definition to point out the advantages of strict iso-
lation. A real-world system uses potbelly less strict definitions with
reduced isolation. Especially, the transformation of a monolith into a

Microservices, a definition analyzed by SMACH 19

microservice system will not hold our definition. In such a case, the
$MACH protocol will look different.

7. Conclusion

Based on performing the $MACH method, we can state two kinds of findings.

First, the RMACH method is helpful for the analysis of software management
processes and supports the management. The method is systematic and defines terms
to describe the process. So, it supports analyses, such as the understanding of the
process by the development team and learning the process by all team members. Also,
the method is easy and fast to perform and thus efficient.

Second, the isolation of individual microservices supports the development team.
The team can avoid many aspects of management. In addition, the team can per-
form all the knowledge representation and transformation to develop an individual
microservice. There are no supplementary relations or dependencies to the team. So,
the number of teams can be scaled without overhead to individual teams.

We close this paper by introducing you to fill a KM ACH protocol for your software
management process and take value from the method. To learn more about your
management proceeding and how your colleagues understand it.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) — Project-ID 414984028 — SFB 1404 FONDA

20 Marcus Hilbrich, Ninon De Mecquenem

Appendix

BMACH Protocol to Evaluate the Management of Software Artifacts

This is the BMACH protocol. This protocol aims to improve the software artifact management. The target audience is persons in software
development, software operation, software mentions, corresponding team leaders, managers of software artifacts, and those interested in
improving the management of software artifacts on a small or big scale.

The method is to give the definition of software artifact management in this protocol and to give descriptions of different aspects of
software management. To support all management aspects, you provide all descriptions (fill in all fields of the table below) based on your
management definition. By giving the descriptions and extending the management definition until you have every description, you improve
your management definition to respect all the different aspects of management given in this protocol. Your definition of the management
process is not allowed to have parts not used by a description, So you avoid unnecessary parts of the definition.

You fill in this protocol before starting the software management process, ideally. So, you have the definition of the process present in time.
During the management process, you can refer to it all the time. This protocol is an explicit description of your management concept. If
something changes, you can create a new version of this protocol. From time to time, you check this protocol retrospective and identify
which descriptions and parts of the definition are helpful and which aspects need improvement for the next version of this protocol or another
protocol. So, you can improve your management skills.

The structure of the SMACH protocol is as follows: A separate box asks for the context information. The protocol starts with the work
package responsibilities to check your principal tasks. Following is the definition of your management concept and the table with the
descriptions (for the different management aspects) you have to give. BMACH recommends starting with the context, selecting the work
packages, and then developing the definition while providing the descriptions stepwise.

Work Package Responsibilities:

Check this item if your team is responsible for product development. It means your team directly influences the creation of software artifacts,
e.g., by programming modeling or supervising. Additionally, your team finishes the development.

Finalizing Product Development

Check this item if your team is responsible for product maintenance. It means your team directly influences (non-functional) changes to
the software artifacts while the artifacts are in operation, e.g., you are in a DevOps team or have to provide a bug fix. Additionally, the
maintenance is not moved to another team later on.

O Finalizing Product Maintenance

Check this item if your team is responsible for product improvement. It means your team directly influences (functional) changes to software
artifacts, e.g., you add additional features or develop an extended version. Additionally, no other team is improving the software artifacts
later on.

O Finalizing Product Improvement

Definition of the Management Concept:

Here, you provide the definition of the software artifact management concept. You have to use each part of the definition in the description
part below. Also, you have to base all descriptions (see below) on parts of this definition. The definition has to mark individual parts and
give a reference for each part. You can use, e.g., an enumeration.

As a result, the definition is complete because you base all descriptions on the next page on the definition, and it is minimal because it does
not have unused and unnecessary parts.

The software is created by a magical box.

The magical box works fully automatic.

The software is used exactly once, by the team itself.

Our team has to ask other teams to get the magical box and we have to return it.

The persons in our team can do tasks that not demand special knowledge or skills.

We do not want to learn from the project and we get a fixed price, so we deny documentation tasks.

Al

(=2

Figure 4. Definition of software development toy example in the SMACH protocol. The
definition gives the numbers of the bullet points/parts. (See Fig. 6 and https://doi.org/
10.5281/zenodo.10992007 for more details.)

https://doi.org/10.5281/zenodo.10992007
https://doi.org/10.5281/zenodo.10992007

Microservices, a definition analyzed by SMACH 21

Context (User/Team/Context Information)

Give the name of the person or persons that fill in this SMACH protocol. Add company name, department, or whatever is needed to
identify the person later.

Name of the Filler: Marcus Hilbrich

Give the team managing the software artifacts. It can be a single person managing some product artifacts, a five-person development
team developing a single product component, or a whole organization managing multiple products. The definition of the team is
essential because it gives the context for the descriptions in the later part and other questions. So, it highly influences the answers
You describe the team understandably, e.g., name all members or a generally known team name. In addition, the represented team

defines the internals, and the cooperating teams define the external border

Represented Team Team 002

(Internal Border):

Give the teams you have to or can cooperate with. It can be teams of your organization you can emerge resourc
organizations that work on the same overall product, and teams you have to deliver or get something from (e.g., the billing team or
ing team). The of teams defines what you can influence indirectly. The difference between cooperating
teams and externals is that you cannot cooperate with externals (you have no direct influence on them). It is the outside border.

Cooperating Teams All teams of the Magical Box Organisation
(External Border):

sive the

s with, teams of other

a requirements engine

, or another understandable des

artifac It can be a set of conc

s to manag. te artifacts, a product, a project
description of the artifacts is essential because it describes what to manage, where there are pos:
not managed by your team or cooperating t

Managed Artifacts: The boring game No. 3

Give the calendar date or timespan for filling this document. So, the coordination with other documents is possible

Date: 04/29/2020

The version of the filled SMACH protocol. The version number identifies minor or major changes and distinguishes documents.
Version of Document: 0.1.0 Initial Version

Here, you can put everything that has no other place in the document. It can be general remarks, changes to the last version, open
questions, problems with the document itself, or whatever you can think of.

Comment:

This document is the description of Questionaries. All elements of the questionary are given in black
explanations to the elements are given in grey (next to the described element, and a very basic example of
filling the BMACH protocol is given in blue.)

Background colors in the following table are examples and not general, see the description of the table for
future information.

ription. The
bly interfaces to artifacts that are

ms, e

Figure 5. Context or meta-data of software development toy example in the SMACH protocol.
(See Fig. 6 and https://doi.org/10.5281/zenodo.10992007 for more details.)

https://doi.org/10.5281/zenodo.10992007

22 Marcus Hilbrich, Ninon De Mecquenem

In the following table, you have to give the des
of the manageme
answer for your t
In case a
table a unique text background color (different from white).

Right, in the field of an explanation, you have to give the set of parts of the definition of the management concept (an understandable
reference) that you use for the corresponding description.

If nothing needs to be managed, based on the definition, mark the right part of the field (the references to the definition of the management
concept) with a (light) green background color. An example is when you define the field as not relevant.

If the field is provided by another one and thus nothing needs to be mz 1, mark the right part of the field (the references to the definition
of the management concept) with a dark green background color. An example is when a role provides knowledge, so the knowledge probably
does not need individual management.

If the field is demanded by another one, mark the right part of the field (the references to the definition of the management concept) with
a violet background color. (When the background is already green or light green, add a violate spot instead.) An example is when a role is
needed to generate knowledge in a form defined by another field.

tions. You have to describe the management of different aspects based on the definition
riptions always concern the user/team/context information (see above). So, you always

you have given.
2t are very similar and based on the same part of the definition, give all corresponding fields of the

Figure 6. The text is part of the hints to the SMACH protocol. It describes the filling in of
the key aspects. The key aspects are separated into Fig. 7, 8, and 9. $MACH describes a set
of key aspects. Each cell of the table (Fig. 7, 8, and 9) represents an aspect. The right part
of each cell holds the references to the definition in the SMACH protocol (Fig. 4). RMACH
defines coloring. Based on the management process, we use light green in the right part of
a cell for aspects that do not need active management. Active management means that an
aspect is realized without a need for action. The darker green indicates that an aspect is also
performed without needing active management but is provided by another. We use violet
for aspects, used or required by additional ones. Such an aspect indicates a special interest.
Arrows with a peak-end describe a provides-relation. The aspect on the peak is provided by
the other. A round end arrow gives a demand relation. The other aspect needs the one at
the rounded end. The left part of the call can be colored, too. If the left part of multiple
cells uses the same color, the cell’s descriptions are equal or very similar. The described
aspects in this figure are all based on the other parts of the RMACH protocol, provided in
Fig. 4 and 5. Download the $MACH protocol as PDF to zoom in and explore the protocol
(https://doi.org/10.5281/zenodo.10992007).

https://doi.org/10.5281/zenodo.10992007

23

, a definition analyzed by SMACH

croservices

M

“popoou
SI SurejUIRW OU ‘g UO pasegq

Jaeqruais 10 ‘A3rioys
-ne uw £q pepesu uoIIRIUSIL
-noop sseooxd ® s1 ‘uOIFEOTF
-13190 103 pairmbax [ooojoxd
1593 ® SI ‘JSI[[0IJUOD SSOOO®
ue oaey ‘suosiod poxoAur

‘poposu
SI SUTBJUIBW OU ‘g UO poseg

;090
‘ssoooxd oy3 ‘s3ovjIpae poje
-ipowtagur ‘sdogs o[Surs oy3
oI% jeUm ‘pojesId sjoujijie
oy3 eae moy jeSparmous
pue uworyewiojur opraoxd o3
so1e0ID UIRS) INOA SORIIIIR

‘papesu
SI SUIBRJUTRW OU ‘g UO pasegq

“popoeou st juow
-oacxdurt ou ‘g uwo posed

‘suorysenb 10130
10 eSpoimouy [euonIppe
21mmbai sjuewnoop popraoad
o3 jo Surpuejsiopun oyj
so0(] ,popesu s[003 pasn
Jnoqe eSpe[mous S| ;umousy
5q 03 sey jeys sseooxd oGO
-ods ® jo jred sjoejI3Ie SIEM
-330s o3 oay ;poamboi 08ps

‘popoau st juow
-onoxdwr ou ‘g uo poseg

;090 ‘oremijos oyy ojerodo
03 moy ‘eremyyos oyy Kord
-op 03 MmOy ‘[[F[nj 03 syuSwr
-oxmbax [euISLIO oy3 ore
Jeym ‘UOI}RIUSWINOOP pUIF
03 oroym ‘posn oq 03 oAwy
so[1dWIOd YOIYM ‘0IN3003IYD

-(on0qe

Jo 1s1[® opraoad ‘simoy Sur (Jo pupy) oyj ore eym ‘s30'j19a® Sursn 10 ‘Suruies -[mouy urewop S| ‘ures) -1e oxemijos oyl s1 JBUA ||soeup) juowesordwrr jom
{10M 231IM 0F POpPodU 41 ST ‘mox SIy3 ur oSpoimous ‘Suryoesg £q “F'o ‘mox siyg Juowosoxduwr oy 10§ jJues ‘weoy Juowesoxdwr oy 105 ||-poid siesoo Ayrpiqisuodsos
‘mo1 s1qy Aq poreSSiry so pue uorjewsojur opraoxd ur 08po[MOUY PU' UOIJRUIIOS —zodurr s1 geys oSparmouy opraoxd o3 sey weoj inok |[eSexoed szom ok i mox
-A130% SuLnp 309[[00 03 UOTY 03 sosn weoy inok sssooxd -ur opraoad 03 wesy InoA ut juosord 304 j0u 10 poures] o8po[mouy pue uomewojur |[smyy ur sprey ey ssorpn
—euLIOFUT 9ATS ‘POssOId J0u JT oy3 oAI8 ‘possord jou jI | g so[o1 oyj oArS ‘possord jouj] | g oq 03 oA18 ‘pessord jou jp oyj a8 ‘pessors jou 3y ||guswesoadury jonpoig
“popoou
SI surejUIRW OU ‘g UO poseg

-popoou ‘suorgsonb 10730 ‘poposu

-poposu SI surejurew ou ‘g uo paseg 10 eSpeimouy [euonIppe s1 surejuIRW ou ‘g uo paseg

SI surejuIRw ou ‘g wo pased ;030 s1mbai sjuewnoop popraoad ;090 ‘oremgos

sae[ruais 10 ‘A3raoys ‘ssoooxd oy3 ‘s3ovjigae poje 53 jo SBurpuessiopun oy o3 ojerodo 03 moy ‘orem

-ne ue £q pepesu UOIIRIUSUL -ipowtagur ‘sdojs o[Surs oy3 Se0(] ,popesu S[003 pasn -330s o3 Lo[dep 03 moy ‘[[1f

-noop sseooxd ® SI ‘UOIIEOY aI® jeyMm ‘pojeoId S}0RJIIIE Jnoqe o8pormouy s ;umous -[ny 03 syueweambai oYy oI

13200 10§ poambox [ooojord o) o1t MmOy jeSparmouy “poposu 2q 03 seY jey) ssevord O Jeym ‘UOIIRIUSWNOOP pULY

4509 & ST ‘98I [013UOD §5000T pue uworjeuwriojur apraoxd o3 S1 sUrejUIRMI OU ‘g UO poseg -ods e jo jaed sjorjIiIe oIBM 03 oroym ‘posn oq 03 oAey

ue oaey ‘suosiod posoaur so1e0I0 WD) INOA SIOVIIIIR “s30vj19aR Sul -3j0s o9 a1y ;poambor 08po s1o[1dwIod YOIgM ‘0In30091Td
jo 3s1[@ opraoad ‘simoy Sut (Jo pumy) oyj st eym -sn 10 ‘Suruaee ‘Suryoray Aq -[mouy urewop S| -uress -1e oxemijos oUl SI JRUAM ‘(an0qe ooup) souruL}
S10M 931Im 03 POpesu 31 ST -mox siy3 ur eSpomous ©8-5 ‘mox sty ur eFpapmous| souvuejurewT oYy 10 UL ‘weey eouvusjurewr oyy 10y ||-uwrew jonpoid sieaoo K3r[iq
“mox s1qy Aq poreSBrI3 so13r pue uoryewaojur opraoxd pue uorgeutiour opraoxd og —todwr s jeyy eSpormous opraoxd 03 sey wees inok ||-rsuodser eSesoed sprom anok
-A130% BunMp pajos([od UOLY 03 sosn weey Inok sseooxd weey Mok ur so[o1 popesu juosord 304 jou 10 poures| SBpo[mouy pue WoryewIIoful || weym mox SIqy Wl SpOy ov3
~BULIOFUT OATS ‘POSSOI0 JOU JT oY) oAI8 ‘possord jou jI | g ou3 oar8 ‘possoid jou JI | g oq 03 oAI8 ‘pessord jou jy oyj a8 ‘pessors jou 3 ||ssoip eoueusjurepy jonpoig

Jae[ruass 1o ‘Ajuroyine ue Aq
POpesu UO[}BIUGWUNOOP S50
-oxd e S ‘UOI}EDYI3I0D 10§
poambor 3503 jo [0v0301d
® ST ‘3SI] [OIJUOD §S000® U
oavy ‘suosiod poxoAur jo
3s11 e opraoad ‘simoy Sur
S10M 93LIM 03 POpesu 31 ST
“mo1 s1qy Aq poreBBiI3 so13r
-A130% BULINp 399[[0 03 UOTY
~RULIOJUT OATS ‘POSSOID 40U J]

JEIT)
‘sseooxd oy ‘syoejIiIR poje
-tpouwrrequr ‘sdes o[Surs oyy
oI® YR\ POIROID S}ORJIIIE
oy} ore MmO JoSpormouy
pue uorjeuwriojur opraoid
01 99BOI> NOA sjoejipae (jo

pPuB{) 9yl SI JeYA Mol
sy ur eSpeimouy puw
uorjemrojur epraoxd 03
sosn weo) J1nok sseooxd

oY) oAIS ‘possord jou T

‘sjoejrdae Sur
sn 10 ‘Suruaes| ‘Suryoesy £q
S0 ‘mox siyy ur eSpo[mous
pue uorgewiour epraoid o
weey Inok ur sefos pexmb
-51 oY) A1 ‘POSSOIO JOU T

Jav[uars pue ‘popesu
sjuownoop pepraoxd Sur
~puejsiopun 10§ oFpoimous
S ‘pepurwep S[00} popasu
Inoqe oFparMouy s ‘umousy
2q o3 sey ey ssevoxd
ods e jo gaed sjoejijae
oremyjos ouy oxe ‘poimbor
oBparmowy| urewop s ‘ures
juowdoreasp oy3 10§ juey
—todwr s geyy eSpomous
juesord 304 jou 10 poures|
©q 03 oA18 ‘passord jou JT

47030 ‘IopIsuod
03 seSueyo sopraoxd oym
‘oqisuodser st oym ‘eSpe

-[MOU [BUOIIIPPE Sey oYM
f3oB4UOD 03 wWoym ‘sjusuu
-oammboa oyj oxe yeym ‘prng
0} £10®JIjIR 2IBMIJOS oYU}
10§ Spuevwep oU3 Ore JRUM
“(s)wresy quowndoroasp oYy
03 opracad 03 sey wesy Mok
©8pa[mouy pUE UOIFRUIIOFUL
o) oA18 ‘pessoid jou J[

“(sa0qe yooyp) juswdo
-1oasp jonpod s10A00 A31[1q
-1suodsar o8esped y1om Mok
WoyM MOI SIY} UL SPOY oY
sso1) juewrdoleadd 3oNpPolJ

210§ Bo_aao%mm JON ST WIea],

sy0adsy 103 goS@ﬁEme

TWOIRWIOJU] S50001]

SEpe[MOUS] 550001

EEIGE

o1

SSpo[moty popuvec

SEpoIMOUy] 3N poid

Figure 7. Description of software development toy example based on the $MACH protocol.

Presented is a set of key aspects. (See Fig. 6 and https

//doi.org/10.5281 /zenodo.10992007

for more details.)

https://doi.org/10.5281/zenodo.10992007

Marcus Hilbrich, Ninon De Mecquenem

24

Serouspusdep
[RUOI3IPPE 9ONPOIJUL JOU OpP “A3{s1a A[[eiouss
uortuyep oy3 jo sjaed 1oyjo || eae spuvwep [euieixg - (10p

‘popeau sI JBYY Wed) oY) JO oy ‘popoou oie sorouopuoed || -10q [euioixo oyj 03 pose|

jaed 304 j0u oBpomous s3s1| -op opisano ou ‘g Aq porydwy || -o1) sonaed (sweoy Suryero

jou seop uordiosep oyL -sorgaed || -dooo £q jou) euasyxe A£q

;090 ‘(Buryouey [euisixe oYy o3 eousnpyur || pepuewsp ssrouspusdep oYy

“worjtu £q) tweey inok o3 o8pe 10 uoneiadooo ou st e1oyj ||iepisuoo o3 savy nok ‘mox

-iop oYy Aq pepuewap 30N -popesu sseooxd b= _[mouy urewop oyj ioysuriy sueow [eureyxy ‘syoafoxd |[sryy up reqrus pue ‘Suroo
-sorgaed ou os ‘eSeurw 03 SurgjoN Spoou 03 poxmbex 31 st ‘s[003 jo [euiosxo jo symsexr 10 suoly || o3 ‘suosied o03/jo ‘syoeipae

[euiogxe £q po[lq SI yonux ;(wresy moxk jo gaed jou b= oSesn oyjy wes) inok yowoy -drrosep wjlioS[e oq ues 41 || oYy o03/jo seuspusdep jo

MOY 10 o8poiMOus IOAI[OP 51 (WOUOS) 10uMo 1o0poLd SN | 9 ©1 popeou 31 S| ‘wee) anok ‘31 spuewop weoy ok pue ||spury [oq uwo 3y -eSe

sorjaed [BUIOIXO USUM UOTY Tio)x0 Te [euaosxe |g ur quesead (A[ejoidwiod) jou sorpred [RUIDIXO 0) POjR[OI —uew o3 sey (sweoy Fuge

—ewaojUI BYj §309[[0D WSy Thew weo) ANOA To ;mvo:so:x uwaes] [st anq saom_oju 31 J1 sjoejiae anok a0y || -10dooo oyl ym 10y3e8o3)

ok ‘ojdwexe 104 -mox 70 BuroBuo oyj sy -Eseooxd oL £ 07 popoo o5 pormowy ou3 gE posn oSpormouy oy3 jo uory ||wess ok seuspusdap oy

SIq3 Ul uonjRWIOjUI SS90 JuoweTeueur_oua STotopuodop olpuey jeus |z u —equesardor oyj pue oSpe ||jo juoweSeuvw oyy oAlD

-01d jo serouspusdep oArD) Sotouopuodap oAID TESI0T 003 oAD LT | -[mouy (Jo pupy) ou3 w>_U g -[mouy (jo puny) oyj oA setouspuada opPISINO

“popoou sI jeyj wWeo) oyl Jo xoq
jaed 304 j0u oBpomous s3s1] oy3 308 03 swes) 1Y oYY
-poposu jou seop uordiosep oYL uwo pusdep em ‘eSpormous -(a9paoq [eu
st sseooxd juoweSeurur ;090 ‘(oquowt e oy3 sploy xoq [eotSew oy, ||-1ejur ous o3 pejerer) swwey
ou os ‘mox siqy ur ueArs Surppe 10 Surgorey Aq) wess ‘030 ‘sjoejigae anok 105 ||Burjersdooo o3 serouspuad
“uorytu st pessooord 03 pepesu oA 03 eSpo[mous| urewWop syuewaainboel 108 03 puvwap || -op 10pIsuos nok ‘moi siqy
-ijop U3 £q pepurwWep JON st jeys eSpeimousy oN 51} 10jSUBI} OF POPUBTSP 31 oy ‘serreiqi ey syoejire ||up caepuis pue ‘S8uroo
‘sureog Furjess (wreay ‘popoou st st ‘s[003 jo oFesn oy f== jo juowdoorop oarperodood ||oj serpuopuodop ‘suosiod

-dood £q pol[iq SI weo) anok ok jo jred jou ST IOUMO 9101 0 08 ‘Mmox SIUY ur UGAIS 3 pouueid 3t oq ueo 3] -spuewop wesy |[o3/jo serouspusdep ‘sjoejry

yonw moy 10 oSparmousy 10 tejsewl wWnIog s -weey anoAk ur f== ino& pue sweoj Surjesodooo ||-1e oyy 03/jo serouspusdep

I9AI[EP SWES) I9YjO USUM weoy toyjoue - TOu ST yorgam Y31M SOIRYS 10 SIOAIOp weoy ||jo spury [[e oq ueo 3] -ofe

uoyRWIOFUT $300[[00 wIEa) 30q Sjaom 03 wwoy mok 10y | anok geyy syoepnw mok sop || -uvw o sey wwey mof sor

ok 31 ‘ejdwexe 104 ‘mox wZO moa sy pepeou_e8psimouy oy3 Jo, popesu efpomous oyjy jo ||-uspusdep oy jo juswefe

SIY} UI uUojRULIOJUT SSOO ¥, <orouopuadan o uogejusssido o3 pue oF; $ uorjejueserder oy puw o8pe || -uew o3 oAIS 03 SARY MO

-o1d jo seruepuadep oArn T53 I10A Ul So[01 U3 SAID “mous (jo puny) oui A |z -[mous (Jo puny) ouj oarn sorouopuada(opIsuy

“popeau 30U s1 eBpa[mou
|euoryippe ‘31 peSeuew -1opioq
jou seop wes; oyy ‘e8pe ||[euiejxe ayj 03 pejered st 3]
“uorytu -[mous oYy seploy xoq oy, ||-(swees Suryeiadooo £q jou)
-yop oy3 £q pepurwep JON -o8po[mouy || serjaed [euisyxe £q pepuew
;o810 Surysy ‘popoou st sseooxd popoousSt o8pomous| [euoT} urewop pue ‘quowsrdurr oy || -op serjzadosd jonposd oyy

-owos 10 ‘sseooxd posn oy o[qeooijou ou ‘g uo poseq “(z) xoq oyj osn of, wyjosre oyy jo suonpdiaos || ioprsuoo nok ‘mox siyy up

23eI1 03 oAy NOK Op ‘pajep ‘op 03 juem ‘o101 ;7010 ‘suopnjos -op ‘sysi] juoweambax oxe ‘$30'JIIR OYY 10§ SpuLWDIMD

—ueW JUOWESBURU UOISIOA no& 1oasjeym 10 ‘Buroinos oywads ¢ purwep jou 9Op Goidxe ‘swesy 10Uzo YaIm sordwexg 030 ‘eBeuew ||-oa jo spupy e oq ueo 3

s1 ‘uoryewojur Buriq oard -no ‘ydeduoo juemweSeuR x0q [eorSew oyj jaeys o sjEoTUNWWIOD ‘S[00} oSN 03 no& jonpoad eyy Surpies -o8vurw 0y sey (swes) Suiye

03 ‘symser 3s83 308[[00 O3 © ‘opow sseooid siemijos e s8poimous oy3 peou weey o1 o8pamous| (Jo pury) oy3 ||-10dooo oyy yym 1073es03)

peopuewep 31 S] -moux (jo gaud ®) oq uwo 3] -sor3 Surwaogiad 10 inok seo ‘juswieSeuwwr ‘osn 03 syoejiaIe Jo puny ||wreey oAk syoejiire oyj jo

S} ut sseooad jusweSeurur -1odoad jonpoad ayy sazi[eal Surpraoxd £q joevjIIR 9zZI[val 04 (oavy 394 @Y} °9qIIDSep Nox ‘sorgIe seryredord a3 jo juowele

ou3 Surwioyiod o[rym 309[Jeyy sseooid oyj wiogied oy | g -doad jonpoad jou ssop-gnq) sposu weo) e -dosd jonpoid [euisjxe ouy ||-uew ouj oArS 03 oA®Y NOX

-[0D 03 UOIIBULIOJUL OY) DAL | g poposu o8po[mous oyj oAl |g wesj anok ui salo, Z 1nok oSpoimouy 2:\\«3 Z jnoqe oSpoimous| oyj oAl ||serjaedoid jonpoig opising

“popeou

J0U §I swee) ILY30 0 UOIY
“uorgtu -(op 03 yeym smous uosiod -e19dooo © ‘eSpormouy oy “(10p
-jop o3 £q pepuwwep FON 5y3) popesu st oSpeimous seploy X0q oYy g U0 peseq ||-1oq [euiesur oyy o) paje[
;o810 Suryjouwos oyyoods ou 08 ‘41 jaels pue ‘popoou st 08po -ofparmous |[-01) sweoy Surpesadooo Lq

10 ‘sseooxd posn oY) ojel xoq [eorSew oYy 1038 03 oaey -[mous [euoljippe ou ‘(g) 31 uremwop pue “quowrordurt spurRwWop pue wWes) INok o9

03 ARy Nok op ‘pejepueur om p pue g ‘I uo peseg osn 10 (p) x0q oy3 308 OL nok swyjuofre. jo suory || peserex Ap3oemp serjaedoad

jueweSeurw UOISIOA ST -op 03 juEM NOA 10AD Syoads ® puew ssuorgnjos aaord ~duosep ‘sysy jueweambex || jonposd eyjy teprsuoo nok

‘Bur[[iq 10§ UOIBWIOFUT BAIT “jeym 10 ‘Burpanosino ‘3deo Tu ssop xoq oy3 jnoqe xo 10 ‘swes) 19YI0 UM ore sojdwrexy -0je ‘eSeuew || mox smy3 up Sejrare oty

03 9a®Y NoA Op ‘sjnsel 3593 —uoo jueweSrurW ® ‘[apow wes3 19y30 oyl s O sjeorUNWIWIOD ‘S[003 esn 03 03 pesu mnok jonpoad oy ||ioj syuswsambeu jo spuiy [re

300[[00 03 popuvwWSp 31 ST sseooxd eaemyjos e (jo ﬁ@.a -sssey Sururioy S0 ‘o8pormousy peou nok Jnoqe eSpoimous (jo puny) ||eq uweo 37 -eSeuewr o3 sey

‘mox sry3 ur sseooxd jusx e T -1od 10 oSpermouy Surpra oa ‘JueweSeURM 30Ty oy ‘syoejrpie pesn jo pury ||weej inok s3owvjIyIe OYUI JO

-ofeuew oy Surwioyied | H .135 oy ozi[Eer O sso001d -o1d £q 8 ‘sergredoad jon -1e ozieex o3 (eaey 3ok oY) oquosep nox ‘soijie || serjredord oyj jo juowede

o[rym pojos[oo oq 03 sey |z ouy wwojiad o3 weey anok | g |-poid o[puey 03 weoy inok | jou soOp nqg) Speou wresy -doad jonpoad [eusojur oyy |[-uvw oyl oa1d 03 oARy NOX

JeU) uoTWIOFUL O3 OAID [T jo oSpoimous poposu oard |9 | ur poou nok sojoa oyj oarn |‘g anok oSpoimousy oyy oatn. | g noqe efpaimous oy oarn sor3a0doag JONpoIg opIsuy

110]

Eo:mﬁoamem ST We9T, oY) $300dsy I10] uorjeue[dxiy

UWOIRWI0JU] S50001g

SFpoImOU 550001d

sa[oy

5Fpolmous] popuvwod

SEpolMOUS] JoNpoid

Figure 8. Description of software development toy example based on the $MACH protocol.

//doi.org/10.5281 /zenodo.10992007

Presented is a set of key aspects. (See Fig. 6 and https

for more details.)

https://doi.org/10.5281/zenodo.10992007

25

, a definition analyzed by SMACH

croservices

M

‘uoru
-yop oYy Aq popurmop 30N
2030 ‘uorjRUIIOJUI SIYY 300[
-[0D 0} MOY ‘O0IAIOS [RUIO}
-xo ue posn nok oavy usyM
‘POIBAT[OP S§40RJIIIR OY) OIv
woym ‘sjovjigae oyj Bursn
103 polllq nok exy syoey
-1jae [eusxe noqe 300]
-[05 03 UOIIRWIOFUI BYF OAID)

“popoou sp sseooad

“Suryikiose soSe
—uvw xoq [eorSTW ouy ‘wory
-fugep up pouonuew 30N
4019 ‘31 981 03 MOY 10 SPOD
10UJ19Ie UR YONS JRYM MOUN
fyred [ewregxe uwe A[uo

ore s3ovjIIe_ [eu1o)xd
“s10u519

“re [ewio)xo o[puB(O3 SS90

-oad_juewoSeuRML oyl OAID

POPOTU ST OToT O TORT so0p__ 308

Surjeasojur Apred [RuILIXO
ue sy wesy ok Aq umous

BurqIkiono seBw
—uew xoq [eorSTwr ouy ‘uory
Sugep wr pououew JoN

“sjoryIIIR
yons Jnoqe mous oy spoou
wWeoy ok jeUm PAID ;010
‘fqred [euioyxe ue Aq poio
-At[op juouOdwIod © ST ‘001A
108 [eUI9YXD U poou ‘Arviq
- [euiexe ue Sursn nok

-1 [eu193xo 93 o[puey Jel
STINOA UL S004 oY3 2ATD)

ML

Inoqe oSpoimous oy OAID

o1y ‘puewop s3oejIIE INOK
530uj1ae_[eUI0IXD OUY DAL

(sorouspuad
-op 10 sorpaadoad jonpoad Kq
pojuesordor sjorJIIIR [RUIO)
-xo joN) jwreas ok Kq
posn oaw Ajred [euieixe uw
WOTy $IORIIIR JO PUD] JRYM

S90BJ I3y [RUIOINE

‘uor
-yop oY} £q pepuewop 30N

/030 ‘esn 03 sjuewun
-00p Jo puB| YRy jIuou[ly
-y Ayrrqisuodser oy 9913
-ou 03 pejepuew 31 S ;5500
-o1d ayj Summp uoryeurIo)
—ur 309[[00 03 posu uresy
INOA §20(] ‘MOI SIY} UL SBI}
-iiqisuodse1 poSeuvw oy
03 uopewiojur oyj oAln

‘poposu ssavod
‘oBeurw o But

‘papeau sI Jnq ures) oyl jo

‘sepiiqisuodsa [euop
-pE 0oNpOoIjUL 40U Op UOIRIUL
-jop oy jo sired Ioyjo oYY
“sixe senji[iqisuodser opis
-3no ou jeyy sesseoons g

‘sjueureNbal uo poseq
“80 “onpoxd oy o3 poje|
o1 sopyi[iqisuodsel oy 2ATD

;030 ‘pafeurm
sorjIIqIsuodsal paIleys ole
Moy ,wees) Inok o3 poje|
-o1 SI sjueweImMbol poqrios
-op °U3 jo yoryp i (suresy
Surjeredoos oy YjIm pourq
-wroo) sse0oms s,wwe3 oy
oinseow 03 MOY 410§ o[qIs
-uodsoe1 serjred [eUILIXE OF
poje[el weay INok ST JRYAN

sensfiqisuodsay apIsInQ

“uonru

-JOp °u3 £q popuruIop j0N
7030 ‘osn

03 SyULWNOOP JO puIY JRYM
‘sonniqisuodsod jo juowIiy
[0y Y3 95130U 03 pojEpUTRUI
a1 st ‘sseooad oy Inoqe uory
~BUIIOJUT 400[[0D O} popoSu
31 ST "m0 STy ur soSeureur
weoy nok serrqisuodsox
913 03 UOIJRULIOIUL OYJ DATD

“(op
0} jeUm mowy| weoy oy ur
suostod omy) juomreSeuT
poou jou sep yeys ysey © st
xoq [eorSewr oty Burmanjoy

27999 speod Suponon jor
jo oswo ur swerd

ST %5:5.20%8 oy
oBvurwt 03 ssoooad oy oATD

uaA1S st 08pa; 9 3red jof j0u aSparmouy SISI|
gumed Teuiogxe 03 |‘¢ jou seop uoryduosep oy,

" TUodser sweay oyy [. '
oA Iu2E SR 0K 31 ano puly 03

Teowl oyj oseuvwr jeyy [C (T
Tl 5001 o3 0AlH [T 103 Ajrjiqrsuodsox vf ?:O
-o0x

reroods ¢ puewap jou so0p ‘31 wangex 03 oARY om
xo0q [eoreur oy) winjex of, os ‘sureoy Burgeaodood yitm
-sureoy Bur poreys s (oSpormousy oy
-yeredoos o3 sepiiqIsuods Surproy) xoq [eorsew oy,
-ox sauwe; oyl jo juowm ‘31 poamboe
-AoMIPE puv juouANSTOU set wweg Mo JT INOpuy 03
Q3_oavy eyl Moy ‘oSpe(mous| popuvwop

weoy anok up so(o1 oUI OAT 103 _A1iiqisuodsos oy oAt

-sorouspuodop
[eUOMIPPE PoNpOIIUT JOU Op
worruygep oyl jo syred 1030
o3 ‘uoAr8 eaw soryiiqosuods
-1 ou jeyy sossooons g

-syuowmeambor wo poseq
©8-o ‘qonpoad ouy 03 poje|
-ou_sonyiriqisuodsor oy3 OATD

;090 ‘poSeuru oyt
-liqisuodsox posels 0w MOH
;ureoy ok 03 pojerer st
syuowoambos poquiosop oY
JO YDA wreoy anok jo ssoo
-ons oy sanseowr 09 o(qissod
31 ST MOy ja0j o[qisuods
-o1 swreoy Supuiodooo o
poje[er weoy oA SI JRYM

soIqrsuodsoy oprsug

‘worjru
-yop oU3 £q popurvUIOp 30N

;030 ‘sduress
SUIIY (31M SUOISIOA JUSIOFIP
juswmoop 03 pojepuwur 31
st ‘popuevwop (uoryduosep
IdV) UOI}RIUGWNOOP 608103
-ur st ‘pepesu uUOIjERUIIOJUT
JueAs(er SuI[[Iq S "MOI SIYY.
ur se0®JIGIUL SYY JNOqER 300]
-[05 03 UOIRULIOFUL DY) OALD)

-poposu
s50001d OU 08 ‘sE0RFILIUL ON

.10 ‘paiay
-[e 10 paulep seowjIoIuUL oIv
‘seoryIoquUL
ouy eziear 03 moy ‘(uoryey
~uswnoop Burssiw) s,

Senew 03 ssa001d o3 BAIS

‘tweey oYy Ul oS pa[mouy

Burssiw ou 08 ‘S00eyI3ULO
SEjI0quL oYY

Tolorop 0y sey ssooold juout

Gjao3ur oN -eSeuew oyj yi 8p L
MO1 SIY) UL 890 - g FrrEn 0y wreay
oA ur juess,
ST ThoA Uy So]o1 oY) GAID STRCUS (JO_pupi) oyj oAt

- (Suryykze
-Ao sejew xoq [eorFewr oy3)
HOIUOP Ul POUOjUSUL 30N
038 ‘uorjesyroads [eOrUYDLY
oys oa18 03 moy ‘paje[er
s1e sjoejlIR YOIYM ‘seoej
-1ojur oY) Jnoqe umous| s
Jeym oqroga(] - (uoiejussal
-de1 jonpoad) sevejroyur oy
jo_uoleZI[Ea oy 0quDSC

‘fouspusdep
® S1 1 ‘esimIaylQ eFeuew
0y sey wee) Mok sjoejRIR
jo seoejrour sAem[e weow
seovjIoU] SeORFIOJUI WO}
-sAs pue ‘seoejIajur ouryOR
soovjrogur 1osn ore sojdure
-xg (1epioq [euIelxs oYY
03 pojefer) sorjied [euIe}
-xo ym ojerjoseu o3 ey
no& jeym 10 ‘uo Iv3E| Ve
-01> 03 oARY NOA SjULWINOOP
(3o pupy) ey3 ‘seowpieiur
poxy Apeere jo suorpdiios
-op oq ues 31 ‘(pliom [ea1
oyy) serjred [euisyxe Ypm
sosn wea) Inok seoejrajur
o) jo JusWLTRURUL 0Y} DALD

sooejIoquL BPISINQG

‘uoru
-yop oY Aq popurmop JoN

2030 ‘pojepueux
sdurejs owy UM suorsion
Juoioyyp Bulguownoop st
‘popiooes (uor3diaosop 14V)

uwonejmeWMOOp eovjILIUT
st ‘popeou uWOIjBWIONUT
Juesorex Burq S[Moz
sty ur sseoord juowreSe

—uvw oyy Surmaojrod orrym
Po1oo[[0d oq 03 seq e
uorgewIoyUT oyl 9AID

-poposu
sso001d ou 08 ‘s00TFILIUI ON

1030 ‘Supjse) wiof
-10d 03 MmoY ‘poIeI[E 10 pouL)
-op soovjIOIUT OIB UOYM pUTR
MOy ‘SedrjIajuUT oYl ozI[eal
03 moy ‘(uoreiusmnOOp Su
~SSun) $90VI0YUL F9A0ISID O

BT popoott 31 st
ur uoALg. ™57 ode
Wew 03 ssoo0ad o) oAt

‘weoy oy ur oFpormousy
Surssium ou os ‘seovjIolUr ON
“sso00ad JuowoSeUT
sofox ou os ou3 wr wonuyop o
B Totioixo ue osn oD (oS> _ouoouios
av weoy Mok yi 8g.
eRTSTouTW 03 weo)
ok ur juosgid

fMTo7 AN0A UL SO[01 OY3 DALD =TRSO PuDl) oul oAlD

-(Surqaao
-A9 soduW x0q [eorSew oyl)
WOTIIUIOp I pouonuaut JON
“590 ‘wopEoyads [RorUOOY
ol 0a18 03 moy “pojurer
oIe s10®JIIIE YOIYM ‘seovj
“109ur OY3 IN0qE umOu S
Jetm oquosaq - (uorreuLsax
-dox gonpoad) seorjIouT oYY
JO_uoIRZI[EST ©YI ©qLIOSOCT

-fouspuodop
w s1 91 ‘estmIayl() ‘seSeurwt
wes) ok $3oeIIHIe Jo s90uy
—1oqur uvOW sAEM[E S00LI0)
-up (1@pioq ewsejur oy
09 pojeler) sweoy Sugeisdo
-00 UM ojergoBou 03 oavy
no& jeym 1o ‘sojeern ureo)
Mok sjuewmoop (jo puny)
oy ‘seovjrejur poxy Apesl
-te jo suorjdriosep oq ueo 31
‘sosT wea) IMoA seoEjILIUL
o113 Jo JusmESRUR o) DATD

soovjIeguL OpISUT

WoTjetIo U] §50001g

SBpoIMOUS] §50001

Sotou STpolmous] popuBwo

SBpoIMOUS] 1oNpOi]

Figure 9. Description of software development toy example based on the $MACH protocol.

Presented is a set of key aspects. (See Fig. 6 and https

//doi.org/10.5281/zenodo.10992007

for more details.)

https://doi.org/10.5281/zenodo.10992007

26 Marcus Hilbrich, Ninon De Mecquenem

References

[1] 4Soft GmbH in Zusammenarbeit mit dem Informationstechnikzentrum Bund:
V-Modell XT Bund, Das Referenzmodell fiir Systementwicklungsprojekte in der
Bundesverwaltung, Informationstechnikzentrum Bund im Auftrag des Beauf-
tragten der Bundesregierung fiir die Informationstechnik, version: 2.3 ed., 2019.

[2] Alagarasan V.: Seven Microservices Anti-patterns, 2015. www.infoq.com/
articles/seven-uservices-antipatterns.

[3] Anderson D., Anderson L.: Beyond Change Management: How to Achieve Break-
through Results Through Conscious Change Leadership, BusinessPro collection,
Wiley, 2010. https://books.google.de/books?id=WbpH7p5qQ88C.

[4] Armstrong D.J.: The Quarks of Object-Oriented Development, Communications
of the ACM, vol. 49(2), pp. 123-128, 2006. doi: 10.1145/1113034.1113040.

[5] Assadi A.: What are microservices?, 2016. https://www.ibm.com /blogs/cloud-
computing/2016/05/04/what-are-microserverices/.

[6] Basili V.R.: Software modeling and measurement: the Goal/Question/Metric
paradigm, Tech. rep., 1992.

[7] Bauer F.L., Bolliet L., Helms H.J.: Software Engineering. Garmisch, Germany,
1969. Report on a conference sponsored by the NATO SCIENCE COMMITTEE.

[8] Berges M.P.: Object-Oriented Programming through the Lens of Computer Sci-
ence Education, Dissertation, Technische Universitdt Miinchen, Miinchen, 2015.

[9] Bernard P.: Foundations of ITIL®) 2011 Edition, Van Haren, 2011.

[10] Bourque P., Fairley R.E., Society I.C.: Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0, IEEE Computer Society Press, Wash-
ington, DC, USA, 3rd ed., 2014.

[11] Brewster E., Griffiths R., Lawes A., Sansbury J.: IT service management: a
guide for ITIL foundation exam candidates, BCS, The Chartered Institute for
IT, 2012.

[12] Bucchiarone A., Dragoni N., Dustdar S., Lago P., Mazzara M., Rivera V.,
Sadovykh A. (eds.): Microservices — Science and Engineering, Springer, Cham,
2020. doi: https://doi.org/10.1007/978-3-030-31646-4.

[13] Bungay S.: The Art of Action: How Leaders Close the Gaps between Pans,
Actions and Results, Nicholas Brealey, 2010.

[14] Cater-Steel A., Tan W.G.: #tSMF Australia 2005 Conference: Summary of ITIL
adoption survey responses, Ph.D. thesis, University of Southern Queensland,
2005.

[15] Cechini F., Ice R., Binkley D.: Systems Engineering Guidebook for Intelligent
Transportation Systems, Tech. Rep. Version 3.0, U.S. Department of Transporta-
tion, Federal Highway Administration, California Division, 2009.

https://www.infoq.com/articles/seven-uservices-antipatterns
https://www.infoq.com/articles/seven-uservices-antipatterns
https://books.google.de/books?id=WbpH7p5qQ88C
https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1145/1113034.1113040
https://www.ibm.com/blogs/cloud-computing/2016/05/04/what-are-microserverices/
https://www.ibm.com/blogs/cloud-computing/2016/05/04/what-are-microserverices/
https://www.ibm.com/blogs/cloud-computing/2016/05/04/what-are-microserverices/
https://doi.org/https://doi.org/10.1007/978-3-030-31646-4

Microservices, a definition analyzed by SMACH 27

[16] Clarke P., Mesquida A.L., Ekert D., Ekstrom J.J., Gornostaja T., Jovanovic M.,
Johansen J., et al.: An Investigation of Software Development Process Termi-
nology. In: P.M. Clarke, R.V. O’Connor, T. Rout, A. Dorling (eds.), Software
Process Improvement and Capability Determination, pp. 351-361, Springer Inter-
national Publishing, Cham, 2016. doi: 10.1007,/978-3-319-38980-6 25.

[17] Copei S., Ziindorf A.: How to Synchronize Microservices. In: Interna-
tional Conference on Microservices, University of Applied Sciences and Arts
Dortmund, Germany, 2019. https://www.conf-micro.services /2019 /papers/
Microservices 2019 paper 16.pdf.

[18] Crnkovic I., Sentilles S., Vulgarakis A., Chaudron M.R.V.: A Classification
Framework for Software Component Models, IEEE Transactions on Software
Engineering, vol. 37(5), pp. 593-615, 2011. doi: 10.1109 /tse.2010.83.

[19] C/S2ESC — Software & Systems Engineering Standards Committee: IEEE 1074-
2006 — IEEE Standard for Developing a Software Project Life Cycle Process,
2006.

[20] Dennis A., Wixom B., Tegarden D.: Systems Analysis and Design with UML,
Wiley, 2009.

[21] Dragoni N., Giallorenzo S., Lafuente A.L., Mazzara M., Montesi F., Mustafin
R., Safina L.: Microservices: Yesterday, Today, and Tomorrow, pp. 195-216,
Springer International Publishing, Cham, 2017. doi: 10.1007/978-3-319-67425-
4 12

[22] Duell M., Goodsen J., Rising L.: Examples to Accompany: Design Patterns;
Elements of Reusable Object-Oriented Software, 1997. [Online; accessed 31-Juli-
2020.

[23] Dyck A., Penners R., Lichter H.: Towards Definitions for Release Engineering
and DevOps. In: 2015 IEEE/ACM 3rd International Workshop on Release En-
gineering, pp. 3-3, 2015. doi: 10.1109/RELENG.2015.10.

[24] Edwards D.W.: Out of the Crisis, 1986. doi: 10.7551 /mitpress/11457.001.0001.

[25] Elliott G.: Global Business Information Technology: An Integrated Systems
Approach, Pearson Addison Wesley, 2004. https://books.google.ru/books?id=
qGfzMlfgzEcC.

[26] Everett G.D., Raymond McLeod J.: Software Testing; Testing Across the Entire
Software Development Life Cycle, John Wiley & Sons, Ltd, 2006. doi: 10.1002/
9780470146354 .fmatter.

[27] Fernandez D.M., Wagner S.: Naming the Pain in Requirements Engineering:
Design of a Global Family of Surveys and First Results from Germany, CoRR, vol.
abs/1611.049761611.04976, 2016. http://arxiv.org/abs/1611.04976. 1611.04976.

[28] Fowler M.: Domain-specific languages, Pearson Education, 2010.

[29] Fowler M., Rice D.: Patterns of Enterprise Application Architecture, A Martin
Fowler signature book, Addison-Wesley, 2003.

https://doi.org/10.1007/978-3-319-38980-6_25
https://doi.org/10.1007/978-3-319-38980-6_25
https://doi.org/10.1007/978-3-319-38980-6_25
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_16.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_16.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_16.pdf
https://doi.org/10.1109/tse.2010.83
https://doi.org/10.1109/tse.2010.83
https://doi.org/10.1109/tse.2010.83
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/RELENG.2015.10
https://doi.org/10.1109/RELENG.2015.10
https://doi.org/10.1109/RELENG.2015.10
https://doi.org/10.7551/mitpress/11457.001.0001
https://books.google.ru/books?id=qGfzMlfgzEcC
https://books.google.ru/books?id=qGfzMlfgzEcC
https://doi.org/10.1002/9780470146354.fmatter
https://doi.org/10.1002/9780470146354.fmatter
http://arxiv.org/abs/1611.04976
http://arxiv.org/abs/1611.04976
https://arxiv.org/abs/1611.04976
http://arxiv.org/abs/1611.04976
1611.04976

28 Marcus Hilbrich, Ninon De Mecquenem

[30] Fritzsch J., Bogner J., Wagner S., Zimmermann A.: Microservices in the German
Industry: Insights into Technologies, Characteristics, and Software Quality. In:
International Conference on Microservices, University of Applied Sciences and
Arts Dortmund, Germany, 2019. https://www.conf-micro.services/2019/papers/
Microservices 2019 paper 25.pdf.

[31] Gabbrielli M., Lanese 1., Zingaro S.P.: Microservice-Oriented Computing for the
Internet of Things. In: International Conference on Microservices, University
of Applied Sciences and Arts Dortmund, Germany, 2019. https://www.conf-
micro.services,/2019/papers/Microservices 2019 paper 3.pdf.

[32] Ginger L.: Embrace and Exploit Change as a Program Manager: Guidelines for
Success, Journal of Change Management, vol. 10, pp. 2-13, 2012.

[33] Hasselbring W.: Software Architecture: Past, Present, Future, pp. 169-184,
Springer International Publishing, Cham, 2018. doi: 10.1007/978-3-319-73897-
0_10.

[34] Hausotter A., Koschel A., Lange M.: Microservices in Higher Education
- Migrating a Legacy Insurance Core Application. In: [International Con-
ference on Microservices, University of Applied Sciences and Arts Dort-
mund, Germany, 2019. https: / / www.conf- micro.services / 2019 / papers /
Microservices 2019 paper 8.pdf.

[35] Hiatt J.:. ADKAR: a model for change in business, government, and our commu-
nity, Prosci, 2006.

[36] Hilbrich M., Bountris V.: Are Workflows a Language to Solve Software Manage-
ment Challenges?—A $MACH Based Analysis. In: New Trends in Intelligent Soft-
ware Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and
Applications, vol. 355, pp. 221-232, IOS Press, 2022. doi: 10.3233/FATIA220253.

[37] Hilbrich M., Frank M.: Abstract Fog in the Bottle - Trends of Computing in
History and Future. In: 2018 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 519-522, 2018. doi: 10.1109/
SEAA.2018.00089.

[38] Hilbrich M., Jakobs C., Werner M.: Do Microservices Prevent High Qualita-
tive Code? In: International Conference on Microservices, University of Ap-
plied Sciences and Arts Dortmund, Germany, 2019. https://microservices.fh-
dortmund.de/papers/Microservices 2019 paper 9.pdf.

[39] Hilbrich M., Lehmann F.: Discussing Microservices: Definitions, Pitfalls, and
their Relations. In: 2022 IEEE International Conference on Services Comput-
ing (SCC), pp. 39-44, IEEE Computer Society, Los Alamitos, CA, USA, 2022.
doi: 10.1109/SCC55611.2022.00019.

[40] Hilbrich M., Lehmann F.: £MACH — A Software Management Guidance. In: D.G.
Reichelt, R. Miiller, S. Becker, W. Hasselbring, A. van Hoorn, S. Kounev, A. Kozi-
olek, R. Reussner (eds.), Symposium on Software Performance 2021, CEUR-WS;
2022. http://ceur-ws.org/Vol-3043/.

https://www.conf-micro.services/2019/papers/Microservices_2019_paper_25.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_25.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_25.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_25.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_3.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_3.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_3.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_3.pdf
https://doi.org/10.1007/978-3-319-73897-0_10
https://doi.org/10.1007/978-3-319-73897-0_10
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_8.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_8.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_8.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_8.pdf
https://doi.org/10.3233/FAIA220253
https://doi.org/10.3233/FAIA220253
https://doi.org/10.3233/FAIA220253
https://doi.org/10.1109/SEAA.2018.00089
https://doi.org/10.1109/SEAA.2018.00089
https://doi.org/10.1109/SEAA.2018.00089
https://doi.org/10.1109/SEAA.2018.00089
https://microservices.fh-dortmund.de/papers/Microservices_2019_paper_9.pdf
https://microservices.fh-dortmund.de/papers/Microservices_2019_paper_9.pdf
https://microservices.fh-dortmund.de/papers/Microservices_2019_paper_9.pdf
https://microservices.fh-dortmund.de/papers/Microservices_2019_paper_9.pdf
https://doi.ieeecomputersociety.org/10.1109/SCC55611.2022.00019
https://doi.ieeecomputersociety.org/10.1109/SCC55611.2022.00019
https://doi.org/10.1109/SCC55611.2022.00019
http://ceur-ws.org/Vol-3043/
http://ceur-ws.org/Vol-3043/

Microservices, a definition analyzed by SMACH 29

[41] Hui A.: Lean Change: Enabling Agile Transformation through Lean Startup,
Kotter and Kanban: An Experience Report. In: 2013 Agile Conference, pp. 169—
174, 2013. doi: 10.1109/agile.2013.22.

[42] ISO/IEC JTC 1/SC 7 Software and systems engineering: ISO/IEC 15504-1:2004
Information technology — Process assessment — Part 1: Concepts and vocabulary,
2004.

[43] ISO/IEC JTC 1/SC 7 Software and systems engineering: ISO/IEC TS 24748-
1:2016 Systems and software engineering - Life cycle management - Part 1: Guide-
lines for life cycle management, 2016.

[44] ISO/IEC JTC 1/SC 7 Software and systems engineering: ISO/IEC/IEEE
12207:2017 Systems and software engineering - Software life cycle processes, 2017.

[45] Jabbari R., bin Ali N., Petersen K., Tanveer B.: What is DevOps? A Systematic
Mapping Study on Definitions and Practices. In: Proceedings of the Scientific
Workshop Proceedings of XP2016, XP '16 Workshops, Association for Computing
Machinery, New York, NY, USA, 2016. doi: 10.1145/2962695.2962707.

[46] Johnson P., Ekstedt M., Jacobson I.: Where’s the Theory for Software Engineer-
ing?, IEEFE Softw, vol. 29(5), p. 96, 2012. doi: 10.1109/MS.2012.127.

[47] Kroll P., Kruchten P.: The Rational Unified Process Made Easy: A Practitioner’s
Guide to the RUP, no. 1 In Object Technology Series, Addison-Wesley Profes-
sional, 2003.

[48] Lau K., Wang Z.: Software Component Models, IEEE Transactions on Software
Engineering, vol. 33(10), pp. 709-724, 2007. doi: 10.1109/tse.2007.70726.

[49] Lea G.: Why “Don’t Use Shared Libraries in Microservices” is Bad Advice,
2016. http://www.grahamlea.com /2016/04 /shared-libraries-in- microservices-
bad-advice/.

[50] Lewis J., Fowler M.: Microservices: a Definition of this new Architectural Term,
2014. http://martinfowler.com/articles/microservices.html.

[561] Linthicum D.: Chapter 1: Service Oriented Architecture (SOA),
https: //web.archive.org/web/20160206132542 /https://msdn.microsoft.com/en-
us/library /bb833022.aspx#, 2016. [Online; accessed 18-Juni-2020].

[62] Lu N., Glatz G., Peuser D.: Moving mountains — practical approaches
for moving monolithic applications to Microservices. In: International Con-
ference on Microservices, University of Applied Sciences and Arts Dort-
mund, Germany, 2019. https: / / www.conf- micro.services / 2019 / papers /
Microservices 2019 paper 30.pdf.

[53] Marrone M., Kolbe M.: Impact of IT Service Management Frameworks on the
IT Organization: An Empirical Study on Benefits, Challenges, and Processes,
pp- 501-525, 2011.

[64] Martin R.C.: Clean Code: A Handbook of Agile Software Craftsmanship, Robert
C. Martin Series, Prentice Hall, Upper Saddle River, NJ, 2008. https://
www.safaribooksonline.com /library /view/clean-code /9780136083238 /.

https://doi.org/10.1109/agile.2013.22
https://doi.org/10.1109/agile.2013.22
https://doi.org/10.1109/agile.2013.22
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/MS.2012.127
https://doi.org/10.1109/MS.2012.127
https://doi.org/10.1109/MS.2012.127
https://doi.org/10.1109/tse.2007.70726
https://doi.org/10.1109/tse.2007.70726
http://www.grahamlea.com/2016/04/shared-libraries-in-microservices-bad-advice/
http://www.grahamlea.com/2016/04/shared-libraries-in-microservices-bad-advice/
http://www.grahamlea.com/2016/04/shared-libraries-in-microservices-bad-advice/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_30.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_30.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_30.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_30.pdf
https://www.safaribooksonline.com/library/view/clean-code/9780136083238/
https://www.safaribooksonline.com/library/view/clean-code/9780136083238/

30 Marcus Hilbrich, Ninon De Mecquenem

[65] Maschio B.: Updating the current Jolie microservices based DMS solution
to include electronic invoicing. In: International Conference on Microservices,
University of Applied Sciences and Arts Dortmund, Germany, 2019. https:
//www.conf-micro.services /2019 /papers/Microservices 2019 paper_ 15.pdf.

[56] Mauro T.: Adopting Microservices at Netflix: Lessons for Architectural Design,
2015. https://www.nginx.com/blog/microservices-at-netflix-architectural-best-
practices/.

[57] Microsoft: What are microservices?, 2022. https://azure.microsoft.com/en-us/
solutions/microservice-applications/. [Online; accessed August-2020].

[58] Microsoft: Griinde fiir einen Microservice-Ansatz zum Erstellen von Anwendun-
gen, Version: Jun 14, 2019. https://docs.microsoft.com /de-de/azure/service-
fabric/service-fabric-overview-microservices.

[59] Nadareishvili I., Mitra R., McLarty M., Amundsen M.: Microservice Architecture
. Aligning principles, practices, and culture, O’Reilly Media, 2016.

[60] Nash J., Ehrenfeld J.: Code Green: Business Adopts Voluntary Environ-
mental Standards, Environment: Science and Policy for Sustainable De-
velopment, vol. 38https://doi.org/10.1080/00139157.1996.9930973(1), pp. 16—
45, 1996. doi: 10.1080/00139157.1996.9930973. https://doi.org /10.1080 /
00139157.1996.9930973.

[61] Newman S.: Building Microservices, O’Reilly Media, 2015.

[62] Object Management, Group (OMG): Automated Function Points (AFP), https:
//www.omg.org/spec/AFP/1.0/PDF, 2014. [Online; accessed 17-August-2020].

[63] Popper K.R.: Objective Knowledge: An FEvolutionary Approach, Oxford, Eng-
land: Oxford University Press, 1972. doi: 10.2307/2106696.

[64] Popper K.R., Eccles J.C.: The Self and its Brain: An Argument for Interaction-
ism, Springer, 1977. doi: 10.2307/1577999.

[65] Pratt. M.: Microservice Pitfalls & AntiPatterns, Part 1, 2016. https://
homeadvisor.tech /software-antipatterns-microservices, .

[66] Ralph P.: Toward Methodological Guidelines for Process Theories and Tax-
onomies in Software Engineering, IEEE Transactions on Software Engineering,
vol. 45(7), pp. 712-735, 2019. doi: 10.1109/TSE.2018.2796554.

[67] Rational Software: Rational Unified Process, Best Practices for Software Develop-
ment Teams, https://www.ibm.com /developerworks/rational /library/content /
03July/1000/1251/1251 bestpractices TP026B.pdf, 1998. [Online; accessed 18-
Juni-2020].

[68] Richards M.: Microservices Antipatterns and Pitfalls, O’Reilly Media, 2016.

[69] Scacchi W.: Process models in software engineering, Encyclopedia of software
engineering, 2001. doi: 10.1002/0471028959.s0f250.

[70] Schwaber K., Sutherland J.: The Scrum Guide™, The Definitive Guide to
Scrum: The Rules of the Game, https://www.scrumguides.org/, 2017.

https://www.conf-micro.services/2019/papers/Microservices_2019_paper_15.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_15.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_15.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_15.pdf
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://docs.microsoft.com/de-de/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/de-de/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/de-de/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/de-de/azure/service-fabric/service-fabric-overview-microservices
https://doi.org/10.1080/00139157.1996.9930973
https://doi.org/10.1080/00139157.1996.9930973
https://arxiv.org/abs/https://doi.org/10.1080/00139157.1996.9930973
https://doi.org/10.1080/00139157.1996.9930973
https://doi.org/10.1080/00139157.1996.9930973
https://doi.org/10.1080/00139157.1996.9930973
https://www.omg.org/spec/AFP/1.0/PDF
https://www.omg.org/spec/AFP/1.0/PDF
https://doi.org/10.2307/2106696
https://doi.org/10.2307/1577999
https://homeadvisor.tech/software-antipatterns-microservices/
https://homeadvisor.tech/software-antipatterns-microservices/
https://homeadvisor.tech/software-antipatterns-microservices/
https://doi.org/10.1109/TSE.2018.2796554
https://doi.org/10.1109/TSE.2018.2796554
https://doi.org/10.1109/TSE.2018.2796554
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://doi.org/10.1002/0471028959.sof250
https://doi.org/10.1002/0471028959.sof250
https://www.scrumguides.org/

Microservices, a definition analyzed by SMACH 31

[71] Simon H.A.: The Sciences of the Artificial, MIT Press, 1996. doi: 10.7551/
mitpress/12107.001.0001.

[72] Sjgberg D.I.K., Dyba T., Anda B.C.D., Hannay J.E.: Building Theories in Soft-
ware Engineering, pp. 312-336, Springer London, London, 2008. doi: 10.1007/
978-1-84800-044-5 12.

[73] Sneed H.M.: Software Management, Rudolf Miiller online DV-Praxis, Koln, 1987.

[74] Sommerville I.: Software Engineering, Pearson Education Limited, Edinburgh
Gate, Harlow, Essex CM20 2JE, England, tenth ed., 2016.

[75] Staples M.: Critical rationalism and engineering: ontology, Synthese, vol.
191(10), pp. 2255-2279, 2014. doi: 10.1007/s11229-014-0396-3.

[76] Staples M.: Critical Rationalism and Engineering: Methodology, Synthese, vol.
192(1), pp. 337-362, 2015. doi: 10.1007/s11229-014-0571-6.

[77] Stein A., Zillekens M., Khan M.: A Microservice architecture for monitor-
ing, processing and predicting climate data in animal husbandry. In: Interna-
tional Conference on Microservices, University of Applied Sciences and Arts
Dortmund, Germany, 2019. https://www.conf-micro.services /2019 /papers/
Microservices 2019 paper 28.pdf.

[78] Steinacker G.: Why Microservices?, 2016. https://www.otto.de/jobs/technology/
techblog/artikel /why-microservices 2016-03-20.php. [Online; accessed August-
2020].

[79] Szyperski C., Gruntz D., Murer S.: Component Software: Beyond Object-
Oriented Programming, ACM Press and Addison-Wesley, 2nd ed., 2002.

[80] The Standish Group International, Inc.: The CHAOS Report (1994), Tech. rep.,
1994.

[81] The Standish Group International, Inc.: Chaos Report 2015, Tech. rep., 2015.

[82] Thompson M.: Why SaaS and Microservices are Critical to Developing in the
Cloud, 2015. https://www.rightbrainnetworks.com/2015/01/29/why-saas-and-
microservices-are-critical-to-developing-in-the-cloud/ .

[83] Tilkov S.: = Microservices: A Taxonomy. In: International Confer-
ence on Microservices, University of Applied Sciences and Arts Dort-
mund, Germany, 2019. https: / / www.conf- micro.services / 2019 / papers /
Microservices 2019 paper 29.pdf.

[84] Tracz W.: DSSA (Domain-Specific Software Architecture): Pedagogical Exam-
ple, SIGSOFT Softw Eng Notes, vol. 20(3), pp. 49-62, 1995. doi: 10.1145/
219308.219318.

[85] Ullenboom C.: Java ist auch eine Insel, Galileo Computing, Bonn, 6., aktu-
alisierte und erweiterte Auflage ed., 2007. http://www.galileocomputing.de/
openbook/javainsel6 /.

https://doi.org/10.7551/mitpress/12107.001.0001
https://doi.org/10.7551/mitpress/12107.001.0001
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1007/s11229-014-0396-3
https://doi.org/10.1007/s11229-014-0396-3
https://doi.org/10.1007/s11229-014-0571-6
https://doi.org/10.1007/s11229-014-0571-6
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_28.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_28.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_28.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_28.pdf
https://www.otto.de/jobs/technology/techblog/artikel/why-microservices_2016-03-20.php
https://www.otto.de/jobs/technology/techblog/artikel/why-microservices_2016-03-20.php
https://www.otto.de/jobs/technology/techblog/artikel/why-microservices_2016-03-20.php
https://www.rightbrainnetworks.com/2015/01/29/why-saas-and-microservices-are-critical-to-developing-in-the-cloud/
https://www.rightbrainnetworks.com/2015/01/29/why-saas-and-microservices-are-critical-to-developing-in-the-cloud/
https://www.rightbrainnetworks.com/2015/01/29/why-saas-and-microservices-are-critical-to-developing-in-the-cloud/
https://www.rightbrainnetworks.com/2015/01/29/why-saas-and-microservices-are-critical-to-developing-in-the-cloud/
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_29.pdf
http://doi.acm.org/10.1145/219308.219318
http://doi.acm.org/10.1145/219308.219318
https://doi.org/10.1145/219308.219318
https://doi.org/10.1145/219308.219318
http://www.galileocomputing.de/openbook/javainsel6/
http://www.galileocomputing.de/openbook/javainsel6/

32 Marcus Hilbrich, Ninon De Mecquenem

[86] U.S. Environmental Protection Agency, Office of Atmospheric Programs, Climate
Protection Partnerships Division: Clean Energy-Environment Guide to Action,
Policies, Best Practices, and Action Steps for States, https://web.archive.org/
web /20120713125427 /http: / /www.epa.gov / statelocalclimate / documents / pdf /
guide action full.pdf, 2006. [Online; accessed 13-August-2020].

[87] Vasanthapriyan S., Tian J., Xiang J.: A Survey on Knowledge Management
in Software Engineering. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security - Companion, pp. 237-244, 2015. doi: 10.1109/
QRS-C.2015.48.

[88] Vega N.: Answering Your Microservices Webinar Questions, 2015. https:
/ / www.ibm.com / blogs / bluemix /2015 /02 / answering - microservices- webinar -
questions/#ql.

[89] Wetherill J.: Microservices and PaaS (Part I), 2014. https://dzone.com/articles/
microservices-and-paas-part-1.

[90] Wilde N., Gonen B., El-Sheikh E., Zimmermann A.: Approaches to the Evolu-
tion of SOA Systems, pp. 5—21, Springer International Publishing, Cham, 2016.
doi: 10.1007/978-3-319-40564-3 2.

[91] Wohlin C., Smite D., Moe N.B.: A general theory of software engineering: Balanc-
ing human, social and organizational capitals, Journal of Systems and Software,
vol. 109, pp. 229-242, 2015. doi: 10.1016//].jss.2015.08.009.

[92] Wolff E.: Microservices: Grundlagen flexibler Softwarearchitekturen,
dpunkt.verlag GmbH, 2015.

[93] Wolff E.: Why Microservices Fail: An Experience Report. In: Interna-
tional Conference on Microservices, University of Applied Sciences and Arts
Dortmund, Germany, 2019. https://www.conf-micro.services/2019/papers/
Microservices 2019 paper 18.pdf.

Affiliations

Marcus Hilbrich
Humboldt-Universitat zu Berlin, Department of Computer Science, Berlin, Germany,
marcus.hilbrich@informatik.hu-berlin.de

Ninon De Mecquenem
Humboldt-Universitat zu Berlin, Department of Computer Science, Berlin, Germany,
mecquenn@informatik.hu-berlin.de

Received: 05.05.2023
Revised: 10.04.2024
Accepted: 15.04.2024

https://web.archive.org/web/20120713125427/http://www.epa.gov/statelocalclimate/documents/pdf/guide_action_full.pdf
https://web.archive.org/web/20120713125427/http://www.epa.gov/statelocalclimate/documents/pdf/guide_action_full.pdf
https://web.archive.org/web/20120713125427/http://www.epa.gov/statelocalclimate/documents/pdf/guide_action_full.pdf
https://doi.org/10.1109/QRS-C.2015.48
https://doi.org/10.1109/QRS-C.2015.48
https://doi.org/10.1109/QRS-C.2015.48
https://doi.org/10.1109/QRS-C.2015.48
https://www.ibm.com/blogs/bluemix/2015/02/answering-microservices-webinar-questions/#q1
https://www.ibm.com/blogs/bluemix/2015/02/answering-microservices-webinar-questions/#q1
https://www.ibm.com/blogs/bluemix/2015/02/answering-microservices-webinar-questions/#q1
https://www.ibm.com/blogs/bluemix/2015/02/answering-microservices-webinar-questions/#q1
https://dzone.com/articles/microservices-and-paas-part-1
https://dzone.com/articles/microservices-and-paas-part-1
https://dzone.com/articles/microservices-and-paas-part-1
https://doi.org/10.1007/978-3-319-40564-3_2
https://www.sciencedirect.com/science/article/pii/S0164121215001740
https://www.sciencedirect.com/science/article/pii/S0164121215001740
https://doi.org/10.1016/j.jss.2015.08.009
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_18.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_18.pdf
https://www.conf-micro.services/2019/papers/Microservices_2019_paper_18.pdf
marcus.hilbrich@informatik.hu-berlin.de
mecquenn@informatik.hu-berlin.de

	Introduction
	A short explanation of ßMACH
	Strict definition of microservices
	Use case
	The external artifact question
	Why not use another microservice?
	The functionality of the microservice

	Filling of the ßMACH protocol
	ßMACH context
	ßMACH Definition and software management aspects
	Work package responsibilities
	Definition of the management process
	Not responsible for
	Responsible for

	Filled ßMACH protocol

	Results: learning from the ßMACH Protocol
	Conclusion

