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RECOVERY AND MIGRATION
OF APPLICATION LOGIC
FROM LEGACY SYSTEMS

Abstract Future Internet technologies necessitate dramatic changes in system design, de-
livery and usage patterns. For many legacy applications it means that their fur-
ther development and transition to the Internet becomes problematic or even
impossible due to the obsolescence of technologies they use. Replacement of
the old system with the new one, built from scratch, is usually economical-
ly unacceptable. Therefore, there is a call for methods and tools supporting
the automated migration of legacy systems into a new paradigm. This paper
proposes a tool supported method for recovery and migration of application
logic information from legacy systems. The information extracted from a legacy
application is stored in the form of precise requirement-level models enabling
automated transformation into a new system structure in a model-driven way.
Evaluation of the approach is based on a case study legacy system.
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1. Introduction

It is more than obvious that the functioning of most companies and organizations is
heavily dependent on software assets which automate or support most of their busi-
ness processes. Many of such software applications have been in production for years
being constantly evolved in order to adapt them to business changes resulting both
from changing market needs as well as emerging new technologies providing new bu-
siness opportunities. Service Oriented Architecture (SOA) and cloud computing are
seen as the most dominant software engineering paradigms nowadays. They have dra-
matically changed the way software systems are designed, delivered and used, what
also implies changes in the way business services are provided [1]. For many organi-
zations the transition of their legacy applications to the new architectural patterns
becomes problematic. This is mainly due to obsolescence of technologies, platforms
and architectures on which legacy systems are based. Software systems introduced
many years ago are often characterized by a complex monolithic structure (eg. wi-
thout clear distinction between user interface, application logic and business model),
technologies with non-common gateways, poor interoperability and lack of support,
what makes the refactoring to the new structure (eg. component- or service-based
architecture) or integration with other enterprise applications virtually impossible.
The evolution is also hampered by the loss of knowledge, both technical and business,
caused by insufficient documentation of changes introduced over years, changes in
personnel, etc.

Most often, the only reasonable solution to the problems mentioned above is to
build a new system that would accomplish the functionality of the old one yet enabling
business and technology agility possible to achieve with new software paradigms.
However, the cost of replacing the old system with a system built from scratch is often
too high. Therefore, there is a call for methods and tools for automated recovery of the
knowledge buried inside legacy systems facilitating migration to the new architectures
or reuse of essential portions of existing systems.

An important initiative to provide standards for understanding and evolving exi-
sting software is the OMG’s Architecture-Driven Modernization (ADM). It proposes
the Knowledge Discovery Metamodel (KDM) [21] for representing the knowledge ob-
tained from existing software in the form of models. KDM provides constructs for
representing knowledge about software systems mainly at the level of code. The con-
structs for representing domain and application logic abstractions are roughly defined.

In this paper we propose an approach for recovery and migration of applica-
tion logic information from legacy systems. The understanding of application logic
extraction from the system design is fundamental to the effective recovery of business
value contained in the legacy system. The application logic of an IT system defines
sequences of user-system interactions in relation to the domain logic within which
the system operates. In our approach, such information can be extracted from any
existing system by determining its observable behaviour and stored in the form of
requirements-level models conformant to the RSL-AL language. This language is an
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extension of the Requirements Specification Language (described in Section 3.1 in this
paper) and it serves as an intermediate language between the recovery and migration
steps. The migration step uses the ReDSeeDS approach [25, 26] to generate the target
system structure. Specifications in RSL-AL can be transformed to component archi-
tectures (eg. UML or SoaML), platform specific design (eg. specific cloud platform)
and even to implementation (code). The proposed approach is supported by a tooling
framework and is an important supplement to the methods for reuse and migration
of legacy systems, that are being developed within the REMICS project [17].

The paper is structured as follows. Section 2 discusses the notion of application
logic that is to be recovered. Section 3 describes capabilities of the RSL-AL language
for capturing application logic related information. Section 4 presents the process
and tools for recovery and migration of application logic from legacy applications.
Finally, Section 5 concludes by presenting the results of evaluation performed so far
and summarising future work.

2. The notion of application logic

Software systems architecture can be structured conforming to a number of design
principles established within the IT industry. The popular architectural patterns
are multilayered architecture [6, 7], Model-View-Controller [23] and Model-View-
Presenter [22]. The common part of these and many other architectural approaches
are components responsible for controlling the flows gathered by system interfaces
from the outside of the system (as inputs from users or other systems), using them
to trigger business processing inside the system and then passing responses to output
interfaces (see Figure 1). This common part controlling internal flows in a software
system is called application logic or workflow logic [9].
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Figure 1. The role of application logic in IT systems.

The notion of application logic varies in the implementation in regard to archi-
tectural patterns mentioned above. Application logic in a typical layered system is
realized in one of the layers and it bridges the gap between the business logic (data
handling and processing layers) and the user interface tier as depicted in Figure 1.
These two latter layers conform to the limitation of calling modules of adjacent layers
only (see [7] for discussion on this constraint) and communicate only through the ap-
plication logic layer. In the MVP pattern the Presenter simply passes flows between
the View and the Model. In an MVC-style architecture, most of the application logic

2012/11/21; 18:38 str. 3/18

Recovery and migration of application logic from legacy systems 55



processing resides in the Controller part, that handles the inputs captured by the
View, makes calls to the Model and then sends signals to the View, so they can be
passed on to the users.

The application logic carries information about the user-system dialogue in re-
lation to domain-specific processing and platform-specific user interface appearance.
Such information reflects the observable behavior of any IT system and defines the
way in which it is operating internally. It can be argued that the re-discovery of
knowledge residing in the legacy system through the aspect of application logic has
advantages over other approaches. The application logic’s dynamic aspect is a sup-
plement to the information contained in static architectural models. Application logic
analysis gives a more in-depth look into the system than observation the of the “exte-
riors” of a system (GUI design and user manual analysis). Also, most of the time, the
flow of control contained in the application logic is easier to capture and understand
than information contained in the source code.

3. Capturing application logic with RSL-AL

The Requirements Specification Language allows for conceptual modeling based on
object-oriented ideas and user-interface specifications in the area of requirements engi-
neering. Software requirements modeled in RSL have their behavioral and structural
aspects distinguished: the descriptions of modeled domain elements are separated
from the specification of their dynamics. In RSL, links between behavioral and static
elements can be assigned roles and responsibilities and can have temporal ordering
and variety of conditions specified. This allows for precise flow control in the resulting
models.

The RSL notation is human-readable (based on popular notation, understanda-
ble to different audiences and using expressions as close as possible to the natural
language), but on the other hand is precise enough to allow automated processing
(like, for example, MDA-style transformations [16]).

In Sections below we describe principles of RSL and its application to logic exten-
sion. For the extended overview of the RSL language please refer to [24] and to [13]
for the formal language definition.

3.1. RSL concepts and structure

In RSL, a taxonomy of requirements is formulated. The most general requirement
type, called simply “Requirement”, is an expression of some feature defined for a so-
ftware system. The Requirement’s subtypes include functional and constraint requ-
irements, as well as use cases specialized from the UML use cases [20].

Relationships from a fixed set defined in RSL may be used to interrelate requ-
irements. This set includes several types for Requirement Relationships as well as
use-case-specific relationship “Invoke” used to denote that another Use case (more
precisely: one of its scenarios) can be invoked from within the currently performed
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Use case. The advantage of this relationship over UML «include» and «extend» me-
chanisms lies in its precision and unambiguity: the invoked scenario steps are executed
in the exact position in the interaction sequence as defined by the relationship usage
(see [4] for a discussion on vague semantics of the include/extend relationships).
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Figure 2. Summary of the RSL notation.

RSL differentiates between requirement entities (“requirements as such”) and
their representations (their content). Requirements as such are names with identi-
fiers, attributes and relations to other requirements. Content representations carry
the information contained within the requirements (e.g. for Use cases, an interaction
information in the form of scenarios). This is illustrated in Figure 2 which can be
used as an example for the following description of RSL.

Requirements can have multiple representations that carry equivalent informa-
tion. Given that information included in different representations is the same, the
representations can serve different purposes as they present the same requirements
content in a disparate manner. While some of the representations are oriented towards
human RSL users, the others are intended for automated machine processing. Some
of the human-readable representations are easily read and understood by a business
audience (for example software users or project sponsors’ representatives), the others
are more appealing to technical people (e.g. programmers, designers, or architects).

The current RSL version defines two main types of requirements representa-
tions: constrained language representations and schematic (or: diagrammatic) repre-
sentations. Constrained language representations express requirement information as
textual scenarios. The diagrammatic representations are based on UML activity dia-
grams and sequence (interaction) diagrams. All types of representations are defined
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in a formal way through a grammar. The grammar for diagrammatic representations
is expressed as a MOF [19] metamodel.

The representations defined in RSL contain user-system interaction information
and flow of events for a given requirement. This interaction is described by a set
of scenarios (leading to one goal or showing a number of ways that fail in reaching
that goal). Each scenario has a set of ordered sentences describing signals exchanged
between actors and system components participating in the scenario. Special types
of sentences, called control sentences, are used to express conditions in the flow of
interaction. For more information on requirement representations refer to [27].

In RSL, the container for requirements as well as their representations is called
the Requirements Specification. It consists of a hierarchy of requirement packages and
a specialized package named the Domain Specification. This last package contains ele-
ments pertaining to the vocabulary of the problem domain separated from (or rather:
pointed at by) a description of requirement dynamics carried by the requirements
representations. The domain specific vocabulary in RSL is centered around nouns.
In RSL, a noun (“user”, “ticket”) is called a notion. An RSL noun may consist of
multiple words (like “data form” or “user account”). Each such noun-based notion is
a basic vocabulary element and it has a textual definition.

Notion can be part of many different phrases. Each of such phrases contains
the notion with a supplement of other parts of speech (e.g. verbs or adjectives). For
example “user account” may have phrases “delete user account” (with definition: “to
delete from the system an account related to a user”) and “expired user account”
(“an account that was not renewed in a given period”). Definitions used to describe
notions and phrases may contain other notions or phrases. Such use of domain element
names in the definitions is a basis for creating associations among domain elements
and resulting in a domain vocabulary having the characteristics of a static class-like
model.

As it was pointed above, the domain vocabulary elements are used within the
descriptions of behavioral aspects of the requirements and are referred to by require-
ment representations. Such references are called hyperlinks (this is also true for the
situation when a textual definition of some domain element uses the name of other
notion or other notion’s phrase). Hyperlinks are the building blocks of textual repre-
sentations and the domain element definitions. For the constrained representations,
the sequence of hyperlinks used in a given expression conforms to a specified grammar.

RSL uses the SVO(O) grammar [10] [11]. The basic sentence structure for this
grammar is Subject – Verb – Object – Indirect Object. In RSL, a sentence in the
SVO(O) grammar contains one hyperlink to its subject (a noun phrase, in most
cases just a notion) and a hyperlink to a verb phrase. This verb phrase may be
a simple one (containing only a single object) or complex (with two objects and
an optional preposition). Such sentences are used to precisely describe the dynamic
aspect of a requirement: a sentence conforming to the SVO grammar defines an active
interaction entity (the sentence subject) performing an action (the verb in the verb
phrase) with the use of passive elements (the objects).
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3.2. RSL extension for application logic

The core of RSL has been extended with capabilities for creating solution-independent
application logic descriptions. The RSL-AL extension is based on RSL concepts like
separation of elements’ description and their dynamics specification, precise domain
vocabulary and rigorous interaction definition, and at the same time it allows for
the efficient management of application logic building blocks and application logic
patterns.
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Figure 3. The levels of application logic management.

While RSL is a language with capabilities for application logic specifications, the
new elements in the extension are introduced to allow for the efficient management
of application logic related information. This management can be done on different
levels: on the functionality overview level and on the level of detailed interaction
information (see Figure 3).

The upper level of abstracting the application logic information pertains to ele-
ments grouped in units collecting areas of functionality. These groupings, called Ap-
plication Logic Units, are containers for elements of functionality (use cases) and can
be interrelated by the use of precisely defined relationships. The granularity of appli-
cation logic management on this level may be compared to package-level concepts of
UML.

Relationships existing at the lower detail level (connecting units of functionality)
are already covered extensively in RSL (see the «invoke» relationship above), but
RSL-AL introduces the idea of linkages between snippets of functionality. Such partial
functionalities do not describe interactions which allow reaching some kind of a goal
or a significant value (as opposed to user-system dialogue found in use cases), but are
important and/or repeatable elements of control flow descriptions within the software
system. They can contain just the partial flow of interaction leading to an intermediate
goal and are intended as basic functionality blocks. The RSL extension for application
logic allows operating on such partial functionalities: they can be defined and then
interrelated (put together, chained) to create more complete functional units. These
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«Pattern»
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[resource]

«uti l ize»

Figure 4. Insertion of application logic “snippet” into flow of interaction
describing other functionality.

relationships are represented at two levels of abstraction: at the level of a functional
unit (use case level, sub-package level) and at the level of a requirement representation
(as a textual scenario or an activity diagram).

In the RSL-AL approach, full utilization of the RSL concept of separating the
vocabulary and behavior enables control of consistency of the vocabulary used in the
chained snippets of functionality. Each of such elementary application logic building
blocks has precisely defined notions it refers to and these notions are used as this
functionality parameters. When one partial functionality is inserted into other one,
all the uses of parametrized notions in the inserted one are substituted with corre-
sponding notions of the target unit of functionality. This ensures that the resulting
interaction description uses consistent wording.

Figure 4 presents an example of inserting an application logic snippet (regarding
a resource selection) into the interaction flow for transferring a resource. In the main
interaction, a marker (insertion point) indicates the position at which other flows
can be inserted (by the «invoke» relationship). UML pin-like notation indicates the
vocabulary parameter of the interaction description. The higher-level view of this
information (the diagram in the lower part of Figure 4) shows just two interactions
and a relationship between them along with the vocabulary parameter used).

The above notion substitution mechanism is also used at other levels of appli-
cation logic elements management and enables the use of patterns in the domain of
application logic modeling. Elements of functionality (packages, units of functionality
or atomic building blocks) can be abstracted from the business domain they describe
(note interactions in Figure 4 that deal with very general notions like resource). Then,
reusing them in different contexts (with different business vocabulary) needs minimal
effort. Such a reuse process requires only mapping of abstracted domain vocabulary
elements to a target (concrete) domain model. The descriptions of interaction flow
are not changed in this process (see right-hand side of Figure 3). For a more detailed
explanation of this mechanism refer to [3].
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4. Process and tools for application logic recovery
and migration

Figure 5 shows an overview of the process and tools allowing for recovery and migra-
tion of application logic information from the existing systems. The recovery phase
encompasses the idea of semi-automatic reverse engineering while the migration pha-
se is based on model-driven forward engineering techniques. Throughout this process
we use the “essential” specifications according to the presented RSL-AL language.
We first analyse the legacy system’s UI by using a GUI-ripping tool. Based on this
semi-automatic analysis we generate the initial RSL-AL model which can then be
modified by hand to refine it or to cater for new or changed functionality. By the fact,
that the model is based on a metamodel, we can use a model transformation engine
to generate the target system structure models (both platform independent and plat-
form specific) and code. Subsequent steps of the process are described in detail in the
sections below.
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Figure 5. Overview of the recovery and migration process and tools.

4.1. Recovery

The first step of the recovery process is performed using a GUI-ripping tool (see
a discussion on this in [15]). This step is performed semi-automatically. It involves
manual traversal through a system’s user interface during which the system observa-
ble behaviour is systematically scanned. A user (preferably a person who normally
works with the legacy system and is aware of its behaviour), simply interacts with
the legacy system sequentially performing individual functionalities (use cases). An
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example of such interaction for searching a client (in Polish: Wyszukiwanie klienta)
is illustrated in Figure 6a. During this, the GUI-ripping tool records the flows of inte-
raction representing the system’s application logic. This includes user inputs (buttons
clicked, data entered, widget focus gained, etc.) and the respective system responses
(windows displayed, messages shown to the user or even textual console behaviour).
In order to capture the most extensive application logic knowledge, it is important to
traverse through all possible functional paths, including exceptional system’s behavio-
ur resulting, for example, from entering invalid data, operation cancellation etc. The
GUI-ripping tool stores all this information in XML-based scripts. In our tool chain
we use IBM Rational Functional Tester as the GUI-ripping tool because it supports
a wide range of UI technologies including those based on textual consoles. However,
any tool allowing interaction recording to some form of structured text files may be
integrated with our tooling framework.

The next step of the recovery process is to transform scripts obtained from the
GUI-ripping tool into an RSL-AL model. This is done with the TALE tool (Tool
for Application Logic Extraction) developed as part of this work. This novel tool
automatically extracts sequences of user-system interactions producing scenarios with
SVO sentences. Figure 6b shows an automatically extracted scenario representing the
interaction illustrated in Figure 6a. All the extracted scenarios are attached to use
cases as their representations and are grouped within the “Functional Requirements”
package being a part of the recovered model (see the project tree in Figure 6b).

Furthermore, the TALE tool also re-creates the domain vocabulary containing
domain notions (created mainly based on data passed to and from the user) and
UI elements (windows, buttons, input fields, etc.) used in the recovered scenarios.
What is important, the tool is able to extract information about the composition
of specific notions. For example, when there is a form displayed to enter personal
data (such as first name, last name, PESEL numer, etc. – see the “Osoba fizyczna”
tab in Figure 6a), a composite notion for “Osoba fizyczna data” is created. Such
a notion contains descriptions for every field filled on the form, instead of a number
of unrelated notions reflecting these fields. This reduces the amount of simple notions
created from the GUI recordings, therefore reduces the unnecessary complexity of the
recovered model. All these elements are stored in the “Domain Specification” package.

The extracted use case scenarios linked to a domain vocabulary form the initial
RSL-AL model. Thanks to the characteristics of the RSL-AL language, this model
is easily understandable to people (even those barely knowledgeable of the original
system) thus giving the possibility of its easy extension and modification. First of all,
some modifications are needed because of the fact that not all of the application logic
information can be automatically retrieved from the recording scripts. This includes
sentences that control flow of scenario execution (conditions and «invoke» sentences)
and sentences expressing internal system operations (eg. calls to business logic opera-
tions), such as “System verifies data”, “System stores information”, “System deletes
item from item list” etc. Also domain vocabulary usually needs manual refactoring –
mostly renaming some notions. Moreover, changes can be done to cater to the migra-
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Figure 6. An example of GUI interaction (a), the automatically recovered RSL-AL model
(b) and the manually refined final model (c).

ted system for new or changed functionality or just to optimize some scenario flows,
eg. by applying standard application logic patterns [3].

All these modifications can be made in the ReDSeeDS tool, which offers a com-
prehensive RSL-AL editor. It allows for writing use case scenarios in accordance with
the rules of the language grammar. Managing of domain specification elements from
the level of the use case editor or using tree-like structures is possible as well. Also
a basic application logic pattern library is supplied with the tool. Switching betwe-
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en TALE and ReDSeeDS is seamless since both tools are integrated within a single
framework and they share a common data model which is an implementation of the
RSL-AL metamodel. Figure 6c shows the recovered model after refinements.

4.2. Migration

The refined RSL-AL model, containing both the still relevant “legacy” requirements
and the “new” ones, is a starting point for the migration phase in which a new system
structure is generated. The generation is realised through a model transformation
within the ReDSeeDS tool that has a built-in transformation engine for the MOLA
language [14]. In order to do this, we need to reorganize the requirements model
according to the needs of the transformation rules that are to be applied (as shown
in Figure 6c) and choose one of predefined transformation profiles. The structure and
notation of the target model depends on the chosen transformation profile as shown
in Figure 7.
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Figure 7. Transforming RSL-AL model into different target models.

Currently “RSL to UML” and “RSL to Code” transformations profiles are ready
to use. “RSL to UML” transformation chain implements the MDA concepts with the
requirements specification in RSL as the CIM (Computation Independent Model),
multi-tier architecture model as the PIM (Platform Independent Model) and detailed
design model based on abstract factory design pattern as the PSM (Platform Specific
Model) [5]. The “RSL to Code” transformation is able to generate classes forming
a full structure of the system following the MVP architectural pattern, including
the complete code for the method bodies in the application logic (Presenter) and
presentation (View) layers. It also provides a code skeleton with method stubs for the
domain logic layer (Model).

According to current trends in internet technologies, an expected target of the
migration process is a cloud-enabled system. Thus, the new system structure should
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follow service-oriented architecture principles and should be expressed in SoaML [8].
This requires a specific transformation profile, which is under construction now.
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Figure 8. Transformation details.

The migration process, implemented within the ReDSeeDS tool, uses the MOLA
engine. An example transformation scheme is shown in Figure 8. The MOLA transfo-
ramtion engine uses transformation programs written in MOLA transformation lan-
guage, which offers very readable graphical notation. Any transformation expressed
in MOLA consists of meta-models for the source and target models, along with one or
more transition procedures. Source and target meta-models are defined in the MOLA
meta-modelling language, which is close in specification to that of EMOF (Essential
MOF — see [19]). MOLA procedures form the executable part of the MOLA trans-
formation. Traceability associations, which link elements of the source meta-model
and corresponding elements of the target meta-model, facilitate building of natural
transformation procedures and document the performed transformations. This is illu-
strated in Figure 9. There is a trace from the “Wyszukanie klienta” use case leading
to the “IWyszukanieKlienta” interface in the application logic tier in the solution
architecture and its realisation within the “ZarzadzanieKlientami” component in the
detailed design. This structure is the result of the “RSL to UML” transformation,
where the target model is an instance of the UML meta-model.

By the fact that SoaML (see [2]) and UML have a common meta-model, transfor-
mations to SoaML are expected to be similar to the transformations which generate

2012/11/21; 18:38 str. 13/18

Recovery and migration of application logic from legacy systems 65



Figure 9. Target system structure generated with the RSL to UML transformation.

UML. The output model of both groups of transformations is an UML-based logical
system design at different levels of abstraction, relevant to the structure of the source
requirements specification (use cases, notions and packages). The “RSL to SoaML”
transformations are expected to generate the structured model of services construc-
ted with stereotyped packages, components, interfaces, classes. The target models is
also expected to contain sequence diagrams describing the services behaviour based
on the use case scenarios. All messages exchanged via services in sequence diagrams
will have adequate operations in the corresponding interfaces thus keeping the target
model coherent. An example of a sequence diagram generated with “RSL to UML”
transformation is shown in Figure 10.

5. Evaluation and future work

Since the presented solution combines some existing approaches, it has been already
partially validated. The results presented in [18] prove very good acceptance of the
RSL as a specification language. Also usability of RSL-AL constructs when writing
application logic specifications have been validated in a controlled experiment (see
[3]). Moreover, evaluation results of the ReDSeeDS approach (see [12]) have shown
the feasibility of transformation-supported path from semiformal requirements to code
in a model-driven way. A nontrivial part of a software system can be generated by
transformations from appropriately defined RSL models.

A comprehensive evaluation of the presented approach (including the recovery
phase) in the industrial context is currently ongoing. A larger case study based on
a legacy corporate banking system delivered by Infovide-Matrix S.A. (one of the major
Polish software providers) is performed. In fact, the examples in this paper are taken
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Figure 10. Dynamic architectural model generated with the RSL to UML transformation.

from this case study (a bank credit management system). The main objective of this
case study is to modernize the legacy system by migrating it into a cloud in the SaaS
model in order to provide uniform access to the system functionality by the customers’
external systems.

Early experiments on the case study system show promising levels of application
logic that can be recovered. For a certain part of the system’s functionality a set of
test scripts were recorded in the GUI-ripping tool. With this input, the TALE tool
was able to produce sensible RSL-AL model. It needed some manual modification of
the interaction sequence in most of the scenarios (ca. 80 percent) as well as some mo-
dification of the domain vocabulary (ca. 50 percent of notions needed to be renamed).
Although the recovery phase is not fully automatic, experience shows that it is still
much faster than it would be if one had to manually write scenarios from scratch.
Moreover, the recovery can be associated with the normal operation of the recovered
system. The operators can work normally with the legacy system, at the same time
recording its functionality.

The ongoing work on the solution currently focuses on the development of trans-
formations from the RSL-AL models into platform independent architectural SoaML
models and, possibly, a full application logic code for a selected novel web technology.
To make our approach more holistic, future work will include automatic generation of
test cases from RSL-AL models. This will assure that the migrated system will com-
ply with the observable behaviour of the legacy one. Furthermore, it will be possible
to perform acceptance testing of the functionality updated during the recovery and
migration process.
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Sweden.

[15] Memon A. M., Banerjee I., Nagarajan A.: GUI ripping: Reverse engineering of
graphical user interfaces for testing. In Proc. of the 10th Working Conference on
Reverse Engineering, Victoria, Canada, pp. 260–269, November 2003.

[16] Miller J., Mukerji J., editors. MDA Guide Version 1.0.1, omg/03-06-01. Object
Management Group, 2003.

[17] Mohagheghi P., Barbier F., Berre A., Morin B., Sadovykh A., Saether T., Henry
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