
Igor Wojnicki∗

JELLY VIEWS: EXTENDING RELATIONAL DATABASE
SYSTEMS TOWARD DEDUCTIVE DATABASE SYSTEMS

This paper regards the Jelly View technology, which provides a new, practical methodology
for knowledge decomposition, storage, and retrieval within Relational Database Management
Systems (RDBMS). Intensional Knowledge clauses (rules) are decomposed and stored in the
RDBMS founding reusable components. The results of the rule-based processing are visible
as regular views, accessible through SQL. From the end-user point of view the processing
capability becomes unlimited (arbitrarily complex queries can be constructed using Inten-
sional Knowledge), while the most external queries are expressed with standard SQL. The
RDBMS functionality becomes extended toward that of the Deductive Databases.

Keywords: RDBMS, Prolog, Intensional Knowledge, Deductive Database, Recursive Queries

JELLY VIEWS : ROZSZERZENIE RELACYJNYCH BAZ DANYCH
W KIERUNKU DEDUKCYJNYCH BAZ DANYCH
Niniejsza publikacja prezentuje technologię Jelly View, która udostępnia nową, praktyczną
metodologię dekompozycji, przechowywania i przetwarzania wiedzy w Systemach Zarządza-
nia Relacyjnymi Bazami Danych (SZRBD). Klauzule Wiedzy Intensjonalnej (reguły) prze-
chowywane są w SZRBD w formie zdekomponowanej, tworząc modularne komponenty.
Rezultaty przetwarzania regułowego reprezentowane są jako widoki, których stan dostęp-
ny jest za pomocą zapytań SQL. Z punktu widzenia końcowego użytkownika możliwości
przetwarzania danych stają się nieograniczone (wykorzystując reguły), podczas gdy zapyta-
nia wyrażane są wciąż w języku SQL. Jako rezultat, funkcjonalność SZRBD zostaje zwięk-
szona do poziomu funkcjonalności Dedukcyjnych Baz Danych.

Słowa kluczowe: SZRBD, Prolog, Wiedza Intensjonalna, Dedukcyjne Bazy Danych, Zapy-
tania Rekurencyjne

1. Introduction

The principal limitations of the Relational Database Management Systems (RDBMS)
can be identified as: lack of more sophisticated, i.e. rule-based data processing (C0
class), traversal of structurally complex data structures (such as graphs, trees, terms,
lists etc.) (C1 class) and search for Admissible Solutions under specified constraints

∗Institute of Automatics, AGH University of Science and Technology; Department of Mathe-
matics and Computer Science, Univeristy of Missouri – St.Louis; e-mail: wojnicki@agh.edu.pl

5 października 2005 str. 1/18

Computer Science • Vol. 6 • 2004

95

(finding specific subsets of a given set, generation of structural solutions satisfying
specific constraints etc.) (C2 class). The classes C1 and C2 follow from a generic
drawback of relational databases which is the difficulty handling recursive queries [2].
Such a difficulty is one of the eight principal weaknesses of Relational Database Man-
agement Systems discussed in [2]. The most important generic problem following this
difficulty is the one mathematically defined as finding transitive closure of relation.
Apart from some small-scale examples this operation is computationally infeasible
due to its complexity. However certain specific cases can be solved even for practical-
ly useful systems. The class C0 is more general, and it might be a superset of C1
and C2. Providing a solution to C0 which allows recursive processing applies also to
C1 and C2.

The main topic this paper is focused on development of a methodology called
Jelly View, which embeds Logic Programming into Relational Databases with some
minimal overhead concerning software technology. Such an approach enables more
spohisticated processing within Relational Database Management Systems, like that
of Deductive Database Systems. All the data and knowledge necessary for compu-
tations are stored using the Relational Database paradigm; no external knowledge
base is required. The difference between Jelly View and Deductive Database Man-
agement System (DDBMS) is that it extends existing Relational Database, preserving
its features, including SQL as the communication language. Jelly View extends the
RDBMS System Catalog1 toward storing Intensional Knowledge (rules) in a form of
Logic Programs.

The proposed methodology is supported with a technology which provides dy-
namic generation and evaluation of Logic Programs on demand. It is implemented
as an external, loosely coupled, module independent of specific RDBMS; this makes
the technology extremely portable and applicable to practically any database system.
The inference capability is provided by integrating a Prolog rule-based inference en-
gine with the database. The results of the inference process are perceived as regular
database relations (views) by the end-user and they are accessible through SQL.

The Jelly View technology introduces inference capabilities which enhance the
functionality of Relational Database Systems which allows solving C1 and C2 classes
of problems, including recursive processing. It also provides more general capabilities,
which is rule-based processing (C0 class).

2. Relational Databases vs. Deductive Databases

The Relational model was introduced for the first time as “A Relational Model of
Data for Large Shared Data Banks” in 1970 [1]. Perhaps one of the most important
reasons making the model so popular, is the way it supports powerful, yet simple

1It is where the relational systems store information about databases, tables, columns, etc., some
systems call it the Data Dictionary; the Catalogs appear to the user as tables like any other, but
the RDBMS stores its internal bookkeeping in them.

5 października 2005 str. 2/18

96 Igor Wojnicki

declarative languages. These languages express operations which can be applied to
data [10]. The Relational Data Model operations are defined by Relational Algebra,
these are [6]: Union, Difference, Cartesian Product, Projection, Selection.

The Relational Model provides a way to store and process data. But still, there
is a need for a language to serve as a uniform communication method between the
user and the database back-end. Such a language has to provide methods to insert,
extract and alter data, gathered in the database.

There are two basic issues to cover: data definition and data manipulation. Data
Definition Language has a capability of defining a relational database schema, while
Data Manipulation Language, of storing and retrieving data. A database system,
having DDL and DML interpreter and a physical back-end, which comply with the
Relational Model, is called the Relational Database Management System. The most
wide spread DDL and DML query language is SQL [6, 5, 2, 11, 10].

Deductive Databases (DDB) are conceptual extension of Relational Databases
which supports more complex data modeling. In general, they are logic programming
systems designed for applications with large quantities of data. Deductive databases
generalize relational databases by exploiting the expressive power of (potentially re-
cursive) logical rules and of non-atomic data structures [13]. Such approach greatly
simplifies the task of application programmers, providing extended knowledge process-
ing capabilities at the database level. The database becomes not only a data-source,
but also a knowledge-source. Thus, a deductive database is a combination of a con-
ventional database containing facts, knowledge base containing rules, and inference
engine which allows the derivation of information implied by the facts and rules.

There have been several efforts taken to create such systems [10, 5]. In general,
a deductive database system is based on the two following principles [10]:

1) It has a declarative language, that is logic, serving both as the communication
method (query language) and a host language, providing DDL and DML.

2) It supports principle features of database systems, that is efficient access to mas-
sive amounts of data, sharing of data, and concurrent access to data.

At the beginning of twenty first century, there are no production systems of
this nature available. However, there are many experimental implementations like:
CORAL [9], Glue-NAIL! [4], the Aditi Project [12], the LDL System [5], Lack of pop-
ularity of such systems is usually caused by non-standard languages used as a com-
munication method between the user and the database.

Most of the contemporary database systems are based on the Relational Model
of Data, thus SQL. There are many well tested ways of query optimization for SQL,
and many applications that use it, not mentioning the number of qualified SQL, or
in general, database programmers. SQL is designed for the Relational Model. Since
Relational Algebra handles data only, it does not anticipate a need for intensional
knowledge, nor does SQL.

There are some attempts to increase SQL expressive power towards this of DDB.
The most significant one is an extension which allows recursive queries. It is consti-

5 października 2005 str. 3/18

Jelly Views: Extending Relational Database Systems (. . .) 97

tuted by SQL99, but it has not been implemented in many RDBMS. Actually, the
only RDBMS that supports it, is DB2 by IBM [7].

The distance from enabling recursive queries to intensional knowledge processing
is very long, and basically it is not possible to make SQL support it without some
major redesign. A major redesign causes major changes and presumably incompatibil-
ities regarding already running RDBMS. These incompatibilities prevent the changes.
No company can afford such a major switch from one technology to another.

And that is why Jelly View approaches the problem from a different perspective.
It extends the System Catalog making the database “aware” of intensional knowledge,
not changing the communication language.

3. Extending Relational Database Management System

The primary goal to achieve is to overcome the limitations of RDBMS mentioned
in Section 1. In general, it can be done by introducing intensional knowledge, a set
of rules, which may be applied to extensional knowledge already gathered in the
database. Furthermore, there is a need for an engine, which will interpret the rules
and provide the inference.

Following these guidelines there are the following requirements:

• keep intensional knowledge in a well known, well tested, and efficient way in the
RDBMS,
• allow declarative programming, so the inference will be described by logical rules,
• allow controlling of the inference process, incorporating procedural programming

elements with respect to the previous statements,
• minimize use of additional programming languages and paradigms: be as close to

the foundations of RDBMS as possible, so database designers and programmers
can adjust easily.

The main proposed improvement to RDMBS is providing capabilities to store
and process intensional knowledge (rules), along with the extensional one. Meta-data
regarding rules is stored as an extension of the System Catalog. Furthermore, the
Prolog inference engine is coupled with the database, and available through standard
SQL queries [16, 15, 14]. This approach addresses the major disadvantages of current
RDBMS and it allows to solve problems from classes: C0, C1 and C2, since they are
solvable in Prolog.

Prolog also provides some procedural extensions [3]. They allow to control the
inference process more strictly and provide procedural programming where it is need-
ed. By default, Prolog offers backward-chaining [3]. But as it is proven in [3, 8], it
may be used as a forward-chaining inference engine, as well. Some rules may serve as
a modification of the existing backward-chaining engine, providing forward-chaining
functionality, while other rules are a meta-program for the forward-chaining inference
engine.

5 października 2005 str. 4/18

98 Igor Wojnicki

Prolog is based on predicate logic [3, 8], so it is very closely related to the
foundation of the relational model. Using Prolog, there is no need for thinking in
a non-relational way. If one is familiar with the relational model, he or she is also
familiar with the logic behind it. Then he or she is also familiar with Prolog, with
some minor adjustment concerning the syntax, at most.

Summarizing:

• Extensional knowledge is provided by the database; it is covered by relations.
• Intensional Knowledge is expressed by Prolog programs.
• A Prolog program is decomposed and stored in RDBMS,
• The Prolog program consists of an ordered set of rules2 named clauses.
• The decomposition process is well-defined; meta-data regarding intensional

knowledge extends the System Catalog.
• Inferred data is perceived as a dynamically generated view, called Jelly View.
• State of the Jelly View is generated as a result of the inference process targeted

by a goal over some number of clauses.

As a result, RDBMS has its functionality extended toward those of Deductive
Databases.

4. Flexibility and Reusability of Decomposed,
Modularized Intensional Knowledge

Intensional knowledge is stored into data as decomposed Prolog clauses. The ER
diagram visualizing the decomposition is given in Figure 2, section Program. The
program is targeted by the goal which is given as a predicate denoted by predicate
and arity. Each program consists of some number of ordered clauses. The order of
clauses is provided by clause order.

Each complex clause is composed of the head and the body. The head is a pred-
icate name, denoted as name (clause entity) and a list of parameters, denoted as
argument entity. Each of the parameters has a name and position.

The body consists of some number of ordered subgoals (preconditioned rela-
tionship). Each subgoal is described by clause entity. The subgoals are separated by
logical operators (logical operator entity), which are a comma (’,’) or a semicolon
(’;’). Additionally, there should be two more operators defined: an implication (denot-
ed as ’:-’, which is equivalent to ←) to separate the head and the body, and a period
(’.’) at the end of the complex clause.

For example, having the following complex clause:

sibling(X,Y) :- parent(X,Z), parent(Y,Z), X \== Y.

2The order makes difference when it comes to inference and if the inference process is to be
controlled or altered.

5 października 2005 str. 5/18

Jelly Views: Extending Relational Database Systems (. . .) 99

It is decomposed into the relations given in Table 1. The decomposition process
is visualized in Figure 1.

Table 1
A decomposed clause and its description

clause
id name order preconditioned symbol
1 sibling NULL NULL 1
2 parent 1 1 2
3 parent 2 1 2
4 \== 3 1 4

argument
name position clause
X 1 1
Y 2 1
X 1 2
Z 2 2
Y 1 3
Z 2 3
X 1 4
Y 2 4

logical operator
id symbol
1 :-
2 ,
3 ;
4 .

attribute description
clause.id primary key for clause
clause.name name of the predicate in the head or body
clause.order an arbitrary integer denoting the order of predicates in

the body
clause.preconditioned the foreign key referring to clause.id, if not NULL it

means that the predicate is in the body of a clause re-
ferred by it

clause.symbol the foreign key referring to logical operator.id, the
logical operator at the end of predicate

argument.name name of the predicate argument
argument.position position of the argument in predicate, an arbitrary in-

teger
argument.clause foreign key referring to the predicate clause.id
logical operator.id primary key for logical operator
logical operator.symbol the operator symbol

The program could be decomposed further covering non-atomic values of param-
eters: structures and lists. But such a parameter decomposition will require a recursive
query, to follow all the subsequent parameters: parameters which are structures, which
have parameters which are structures, and so on.

5 października 2005 str. 6/18

100 Igor Wojnicki

It may have tremendous impact on the performance3. This is the reason why
predicate parameters are not subject to further decomposition. Summarizing: con-
stants, variables, structures and lists are all perceived as atomic arguments, so there
will be a single record for a single parameter.

NULL
1
2
3

NULL
1
1
1

1
2
2
4

id name order precondition symbol

clause

1 sibling
2 parent
3 parent
4 \==

1
1
2
2
3
3
4
4

1
2
1
2
1
2
1
2

Y
X
Z
Y
Z
X
Y

X

argument

name position clause

sibling(X,Y) :− parent(X,Z), parent(Y,Z), X \== Y.

Fig. 1. Decomposing a clause

The decomposition resembles catalog-driven approach present in the most of the
relational systems. The relational systems store information about databases, tables,
columns, etc., in System Catalogs (Some systems call this the Data Dictionary). The
Catalogs appear to the user as tables like any other, but the RDBMS stores its
internal bookkeeping in them. The decomposed logic program may be perceived as an
extension of the regular system catalogs, which allows to store intensional knowledge.
It is just a step forward comparing with the system catalog of contemporary RDBMS.

3This topis is subject to further research.

5 października 2005 str. 7/18

Jelly Views: Extending Relational Database Systems (. . .) 101

In order to provide complete meta-data regarding Jelly Views the follwing issues
have to be addressed:

• the name of the Jelly View has to be stated for each decomposed Prolog pro-
gram,
• the Jelly View has to have a description of its parameters in terms of database:

column names and their data types,
• the Prolog program (thus, the inference engine) should have access to relations

in the database which provide extensional knowledge.

The first two items are covered by so-called External Matching. The third one is
covered by the Internal Matching.

table-predicate

table

predicate

clause

N M
consists_of

clause order

name

predicate-table
N M

has

predicate
table

External Matching

Program

Internal Matching

arity

1 N
has

argument

name

N

1

has

logical operator symbol

1 N
preconditioned

order

tp-argument

1 N
has

name

position

type

position

Fig. 2. External Matching, Internal Matching and Logic Program,
Entity Relationship Diagram

The External Matching provides relationships between the Jelly View name, its
parameters in terms of database, and the program. The Internal Matching provides
relationships between predicates used by the program, and the relations. The inference
engine becomes a data source for the database by the External Matching, and the
database becomes a data source for the inference engine by the Internal Matching
(see Fig. 2).

5 października 2005 str. 8/18

102 Igor Wojnicki

The External Matching section in Figure 2 establishes a relationship between
the database and the inference engine. A name of the Jelly View is listed as
table-predicate.table. In order to generate the data, an appropriate goal will
be called which is a predicate name in table-predicate.predicate. The number
of arguments of the Jelly View matches the arity of goal, which is (N). The column
names and their data types are provided by tp-argument relation.

The Internal Matching section in Figure 2 provides access to the database
from the inference engine. It maps database relations into Prolog predicates. The
mapping is provided by predicate-table relation. If there is a need to access a
relation, then its name is listed in predicate-table.table and a corresponding
predicate name is listed as predicate-table.predicate. The inference engine gets
access to the relation using the predicate name. The arity of the predicate is indicated
as predicate-table.arity, which is also the number of columns in the relation.

The clauses (Program section in Fig. 2) are binded to the Jelly View by
consist of relationship. Each program has some number of internal matching
mappings, which are provided by has relationship between table-predicate and
predicate-table. In this way, clauses and predicate-to-table mappings can be reused
in different programs. Two or more programs can share some of the clauses and some
of the Internal Matching mappings, then.

Summarizing, a Logic Program is decomposed into relations which results in the
following benefits:
• Programs become modular, clauses can be reused in different programs.
• Clauses can be easily modified, added or removed, using SQL.
• The structure of clause is given explicitly which enables further formal analysis

of theoretical properties such as completeness.
Regarding the modular design. Programs are decomposed at the clause level. The

same clause may be shared by more than one program, therefore it can be reused.
There are the following programming and usage scenarios available then:
• The user can write an entire Prolog program to create a Jelly View, and query

it.
• The user can assemble the program from the existing clauses to create a new

Jelly View, and query it.
• The user can query an existing Jelly View.

Concerning easy modification. The program is decomposed and stored into re-
lations. SQL is used to add, remove or alter the program then. The same method is
used to access both Extensional and Intensional Knowledge, database wide.

5. Prototype Implementation and Usage

There are two basic approaches to process intensional knowledge. They concern the lo-
cation where the inference engine is placed, in terms of cooperation with the database
and the user.

5 października 2005 str. 9/18

Jelly Views: Extending Relational Database Systems (. . .) 103

These are:
1) Tight Coupling, the inference engine is integrated with the database server.
2) Loose Coupling, a transparent interface between the user and the database.

The tight coupling integrates the inference engine very closely with the database.
When the user issues a query, it is processed by the database, and if necessary, the
database launches the inference engine. After then, the database generates the reply
and sends it back to the user. Such an approach seems to be very effective in terms
of performance. However, it narrows applicability of the technology to a particular
RDBMS. Since one of the goals is to create a versatile system which may work with
any RDBMS this approach is rejected (some further research regarding performance
and the tight integration is conducted, though).

For the loose coupling, the inference system is placed, logically, between the user
and the database system (see Fig. 3). The user issues a query, which is intercepted by
the inference system. Then, the system checks if the query refers to any Jelly Views.
If there is such a reference, then it downloads the programs for particular Jelly Views,
and it starts the inference engine. When the inferred data is ready, the original query
is sent to the database, in order to generate the reply. The database reply is based on
both the database relation states and the inferred data. The reply is returned to the
user.

If there is no reference to a Jelly View, then the query is forwarded to the database
directly. The inference system works transparently then: if there is no need for the
inference the query and the reply are passed without any modification.

This solution is flexible and applicable to any database system, as long as the
communication method between the user and the inference system is the same as the
communication method between the inference system and the database. The SQL
queries and replies are passed between the user and the RDBMS through a communi-
cation interface (usually network transparent) then. The interface could be just plain
text communication over the computer network or such a common protocol as the
ODBC: Open Database Connectivity4.

The inference system becomes a middleware between the user and the database.
Having the network nature of the communication, the inference system may run on a
machine different than the database system does. Actually, there could be even a farm
of the inference systems, working as the middleware between users and the database.
The inference systems may be distributed among many physical machines.

There is a significant overhead concerning the connection between the inference
system and the database. In the loose coupling approach all data, including informa-
tion about External Matching, Internal Matching, Logic Program, and inferred data
as well, have to travel between two systems: the database and the inference engine. It
becomes a performance bottleneck. There is a trade off, then: flexibility and versatility
versus the communication bottleneck.

4Its specification is developed by Microsoft. Ironically, Open is just an empty phrase here, because
ODBC remains tied up to Microsoft and it is not open at all.

5 października 2005 str. 10/18

104 Igor Wojnicki

There are the following features of the loose coupling:

• The system is hardware and software independent: applicable to virtually any
database.
• It is scalable, supporting processing power distribution, the inference engine is

allowed to run on a machine different than the database system.
• No modification to the database is necessary (except for creating appropriate

relations for the Matchings and the Program).
• Such a middleware may be applied to an existing database system, without spoil-

ing its current functionality.

Inference
Engine

User

Preprocessor

RDBMS

Assembled Prolog Program/
Intensional Knowledge

Extensional Knowledge

ReD aReS

Inferred Knowledge

SQL Query

SQL Reply
SQL Reply / Intensional Knowledge

SQL Query

Fig. 3. Details on the Loose Coupling Architecture

The inference system is named ReDaReS, which is an acronym for: Relational
Database Rule System.

When the user issues a query, it is intercepted by ReDaReS. The system analyzes
the query and confronts it with the External Matching, which is obtained from the
database. It checks whether the query refers to a Jelly View or not. If the query does
not refer to any Jelly View, then it is forwarded to the database without any changes.
The reply from the database goes to ReDaReS, and then it is forwarded to the user.
If the query refers to Jelly Views, then the Internal Matching and the Program for
particular Jelly Views are brought from the database. Then, the Prolog program is
formed, and the inference engine is started.

The inference engine can access extensional knowledge (database relations) on
demand, during run-time. The inferred data is generated and sent to the database as
temporary relations. The user query is rewritten to address the temporary relations

5 października 2005 str. 11/18

Jelly Views: Extending Relational Database Systems (. . .) 105

instead of the original Jelly Views. The rewritten query is sent to the database. The
reply from the database is forwarded to the user.

The user-ReDaReS and ReDaReS-database communication method is chosen to
be ODBC. It gives flexibility, and makes the inference system database independent,
since most of RDBMS support ODBC. If the user query contains Jelly View names, it
is rewritten in such a way that Jelly Views are replaced with temporary relations. Just
for simplicity these relations are referred to as Jelly Relations. They are subsequently
used to hold inferred data. The rewritten query is just a plain SQL query. The Jelly
Relations are not in the database prior to issuing the user query.

After the query is rewritten, the program is assembled and the inference engine
generates results which are sent to the database providing states of the Jelly Relations.
The transmission overhead should be considered as the price which has to be paid to
satisfy the requirement of flexibility of the system, that is to make it applicable to
virtually any database.

To refer to a Jelly View, a PSM-like5 syntax is used. Each Jelly View
has its schema, which is provided by the External Matching (tp-argument and
table-predicate entities in Fig. 2). For example, assuming that there is the fol-
lowing Jelly View schema defined: jelly(first,second), this Jelly View can be
queried as:

SELECT *
FROM jelly(,’SELECT 2’) AS j1,

jelly(,’SELECT 3’) AS j2,
other_relation

WHERE j1.first > 4,
j2.first < 5

;

The Jelly View arguments are calculated from subqueries. In the example above,
they are just simple SELECT queries, but the user may specify a subquery as complex
as he or she needs. The result of such a subquery has to be a single column. So, it
may pass not only a single value to the goal, but also a set of values, which are used
as goal boudns by the inference engine. It makes the system even more flexible. For
example, having the following query:

SELECT *
FROM jelly(,’SELECT id FROM other_relation’)
;

the second parameter for the goal of the Jelly View jelly is taken as a set of all values
of id attribute of relation other relation. In other words, the state of jelly may
contain, in the second column, id values taken from other relation only. Values in
the first column are unbounded and they will be inferred.

5PSM – Permanent Stored Module, also known as Stored SQL Function/Procedure

5 października 2005 str. 12/18

106 Igor Wojnicki

ODBC Client

Prolog Interface

Complete Program

SQL Generator

Int.MatchingProgramExt.Matching

ODBC Server Manager Prolog Generator

Configuration

SQL Parser

RDBMS

User

ODBC library

Query

ReplyQuery

Reply

QueryReply

Prolog Reply

Query

Query, Jelly Names
Rewritten Query, Jelly Names and Aliases

Extensional Knowledge

Reply

Query

 Query
Reply

Reply

Jelly Views

ReDaReS

Fig. 4. ReDaReS, the Data Flow Diagram

The data flow diagram of a prototype system is given in Figure 4. The main
component of the system is the Manager. It controls all other modules. If there is an
incoming query it is received by the ODBC Server. Then it is sent to the Manager
for further processing. The Manager consults the database concerning registered Jelly
Views and sends the query to the SQL Parser along with this data. The SQL Parser
processes the query and identifies Jelly Views. Then, the query is rewritten and in-
formation of all the Jelly Views in the query is returned to the Manager. If the query
does not contain any references to Jelly Views, then it is sent to the ODBC Client,
which connects to the database and executes the query. The results are returned to
the Manager and forwarded to the user through the ODBC Server.

If the SQL Parser notifies that there are some references to Jelly Views, then the
course of action is different. The Manager downloads information about the External
Matching, Internal Matching and the Program concerning each Jelly View, and starts
the Prolog Generator. The Prolog Generator uses the Matchings and the Program to
assemble a Complete Program, which is capable of satisfying the goals defined by the
External Matching.

Next, the Prolog Interface is launched. It uses the Prolog inference engine to
satisfy the goals and it is capable of downloading extensional knowledge from the
database. The Prolog Interface provides Prolog Reply which is the inferred data. Then,
the SQL Generator takes over. It feeds, using the External Matching, the database
with the Jelly Views states. More precisely, these are states of the relations which are
replacing references to the Jelly Views, in the rewritten query – the Jelly Relations.
As a result the database possesses the inferred data. Finally, the Manager forwards
the rewritten query to the database through the ODBC Client. The database sends
back a reply, which is forwarded to the user through the ODBC Server.

5 października 2005 str. 13/18

Jelly Views: Extending Relational Database Systems (. . .) 107

6. Performance and Conclusions

A series of experiments have been carried out to investigate ReDaReS performance.
The main test subject is the tree traversal problem. It is finding predecessor or ancestor
nodes in a tree structure stored in the database as a relation.

The test tree is composed of 12 levels, having 3 children at each node. The number
of nodes is given as a Sum of Geometric Series: S = a + ar + ar2 + . . . + arn−1 =
= a 1−rn

1−r , and with a = 1, n = 12, r = 3, there are: S = 265720 nodes. Such a tree
structure is represented as a single relation: subject(Parent id, Item id, Name).
Where Parent id is a numerical identifier of the parent node (foreign key), Item id
is a numerical identifier of the node, and Name is the node’s name.

The Prolog code for finding relationships among nodes is given below:

find(Parent,Child):- tree(Parent,Child,_).
find(Parent,Child):- tree(Parent,C1,_),

find(C1,Child).

In order to generate a Jelly View, which is capable of finding the relationships, the
above program is decomposed. The External Matching is set to define the Jelly View
which has the following schema: find(parent id, child id), and uses find/2 as
the goal. Furthermore, the Jelly View corresponds to the above clauses. The Internal
Matching defines, that simple clauses (facts) of the tree/3 predicate are taken from
the subject relation.

There has been a series of experiments carried out in an isolate environment (with
the PostgreSQL RDBMS, and ReDaReS running only6). In general, they focused on
finding all child nodes of the node at different levels of the tree structure. In particular
these levels are: 11, 9, 7, 5, 3, 1, where the level number 1 is the root. The query, used
in the experiments, finds all child nodes of the given parent one. The parent node is
selected by passing the first argument to the Jelly View and setting the second one
unbounded. The precise value passed as the parent id is a result of a sub-query given
as the argument. The query is given below.

SELECT * FROM find(’SELECT XXX’,);

where XXX is the following parent ids queried in turns: 29523, 3279, 363, 39, 3, 0,
which correspond to the levels number: 11, 9, 7, 5, 3, and 1 of the tree structure. The
chart in Figure 5 shows the results.

The X-axis is the number of nodes obtained from the query (its different for
different levels of the tree). The Y-axis is the elapsed processing time which includes
the RDBMS processing time, the ReDaReS processing time and the communication
overhead.

The performance of ReDaReS is compared with the performance of a PSM with
the same functionality. The PSM is written in PL/pgSQL, which is a native Post-
greSQL procedural language.

6The computer system was besed on Mobile Intel Celeron CPU 1.50GHz, using Linux 2.4.21,
PostgreSQL 7.2.1, Unix ODBC 2.1.1, and SWI-Prolog 5.0.10

5 października 2005 str. 14/18

108 Igor Wojnicki

Fig. 5. Performance of the System – Browsing a Tree

The experiments take into account the database indexing as well. The graphs
labeled elapsed and elapsed idx represent the timings of ReDaReS on the relation
subject, without and with the indexing turned on respectively. The graphs elapsed
pl and elapsed pl idx represent the timings provided by the PSM without and with
the indexing. As it is showed, the ReDaReS system outperforms the PSM if there
is no indexing involved. Turning the indexing on (on the attributes of the subject
relation) has a tremendous impact on PSM based solution, which becomes faster than
ReDaReS.

Some of the ReDaReS slowdowns regard the fact, that the system has to feed the
database with the results from the inference process. The second set of experiments
takes it into account (see Fig. 6). This time the output tuples are discarded. They
are not generated by ReDaReS nor PSM. Such an approach investigates timings of
the inference process alone, without the communication overhead (which is pretty
significant considering 265720 tuples returned while querying at level 1).

The entry time-delay of the ReDaReS system is caused by the necessity of down-
loading extensional knowledge into the inference engine, plus the time needed to start
the engine up. It takes about 10 seconds for this particular experiment, which is
downloading 265720 tuples into the inference engine.

The experiments show that ReDaReS is more efficient than the PSM approach
concerning the inference process itself. The conclusion is that the system is sufficiently
efficient. However, its performance can be improved by optimizing the communication
between the prototype system and the database.

5 października 2005 str. 15/18

Jelly Views: Extending Relational Database Systems (. . .) 109

Fig. 6. Performance of the System – Browsing a Tree (Output Discarded)

The improvement should focus on both downloading extensional knowledge and
uploading the results of the inference process.

Summarizing, the Jelly View technology extends the Relational Database sys-
tems, in such a way, that even more complex problems than these specified in Section 1
can be smoothly approached keeping SQL as outermost communication technology.
These problems are tackled by introducing rule-based processing to the database
systems. The functionality of Relational Databases is significantly extended towards
that of Deductive Databases [4, 9, 12], by integrating the proposed technology into a
database. The technology is based on coupling the existing Prolog inference engine
with the database.

The prototype ReDaReS system, providing the proposed technology, has been
implemented and tested on a number of problems [14]. It has shown out the following
key properties. The original functionality of the database is preserved. Both data and
knowledge are stored within the Relational Database; no additional knowledge base
is necessary. There are modules specified in Prolog for extending data processing
capabilities, which are decomposed and stored as data in the database. Results of the
inference process, which is inferred knowledge, are accessible as dynamically generated
SQL views; the necessary code is generated on request from components stored in the
database. The communication method between the user and the database remains
SQL. Above properties meet the requirements stated in Section 3.

Obviously, the tree traversal problem (see Figure 5, 6) is of exponential computa-
tional complexity. However, the technology and its implementation turned out to be
relatively efficient, so that even practical, realistic problems can be solved with this
simple approach. Taking into account that at present no further optimization of the

5 października 2005 str. 16/18

110 Igor Wojnicki

code nor other mechanisms (such as use of heuristics or constraints) have been consid-
ered and the experiments were carried out with PC class computers, the technology
seems to be a promising extension to classical RDBMS.

The proposed solution is more flexible than PSMs. It allows modular program-
ming, and may be supported with a CAD system easily. Furthermore, it is designed to
work with any database system regardless of its PSM capabilities. The performance
of the prototype system is at least comparable with this of server-based processing
(PSM). There is also an ongoing research in this domain, which is focused on the
decomposition of intensional knowledge and improvement of the system efficiency.

References

[1] Codd E. F.: A relational model of data for large shared data banks. CACM, 13
(6), 1970, p. 377–387

[2] Connolly T., Begg C., Strachan A.: Database Systems, A practical approach to
Design. 2nd ed., Implementation, and Management. Addison-Wesley, 1999.

[3] Covington M. A., Nute D., Vellino A.: Prolog programming in depth. Prentice-
Hall, 1997.

[4] Derr M. A., Morishita S., Phipps G.: The glue-nail deductive database system:
Design, implementation, and evaluation. VLDB Journal, 3 (2), 1994, p. 123–160

[5] Elmasri R., Navathe S. B.: Fundamentals of Database Systems. Addison Wesley,
2000.

[6] Garcia-Molina H., Ullman J. D., Widom J.: Database Systems, the complete book.
Prentice Hall, 2002.

[7] Srini Venigalla Netsetgo. Expanding recursive opportunities with sql udfs in db2
v 7.2. Technical report, International Business Machines Corporation, 2002.

[8] Nilsson U., Małuszynski J.: Logic, Programming and Prolog. John Wiley & Sons,
1990.

[9] Ramakrishnan R., Srivastava D., Sudarshan S., Seshadri P.: The CORAL deduc-
tive system. VLDB Journal: Very Large Data Bases, 3 (2), 1994, p. 161–210

[10] Ullman J. D.: Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1988.

[11] Ullman J. D., Widom J.: A first course in Database systems. Prentice-Hall, 1997.
[12] Vaghani J., Ramamohanarao K., Kemp D. B., Somogyi Z., Stuckey P. J., Leask

T. S., Harland J.: The aditi deductive database system. Technical report, Univer-
sity of Melbourne, 1994.

[13] Vlahavas I., Bassiliades N.: Parallel Object-Oriented, and Active Knowledge Base
Systems. Kluwer Academic Publishers, 1998.

[14] Wojnicki I.: A Rule-based Inference Engine Extending Knowledge Processing Ca-
pabilities of Relational Database Management Systems. (Ph.D. Thesis), AGH Uni-
versity of Science and Technology, 2004. A copy is availbale upon request from
the author: wojnicki@agh.edu.pl

5 października 2005 str. 17/18

Jelly Views: Extending Relational Database Systems (. . .) 111

[15] Wojnicki I., Janikow C. Z.: Extending data processing capabilities of relational
database management systems. In Arabnia H. R., Joshua R., Mun Y. (Eds), Inter-
national Conference on Artificial Intelligence, v. I, p. 388-393, Las Vegas, Nevada,
USA, CSREA Press, 2003

[16] Wojnicki I., Ligeza A.: An inference engine for rdbms. In 6th International Con-
ference on Soft Computing and Distributed Processing, Rzeszów, Poland, 2002

5 października 2005 str. 18/18

112 Igor Wojnicki

