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Abstract One of the most common neurological conditions caused by gradual brain degen-

eration is Parkinson’s disease (PD). Although this neurological condition has

no known treatment, early detection and therapy can help patients improve

their quality of life. An essential patient’s health record is made of medical

images used to control, manage, and treat diseases. However, in computer-

based diagnostics, disease classification is a difficult task because of the time

consumption and high rate of false positive marks. To overcome this problem,

this paper introduces a stacked denoising autoencoder (SDA) for Parkinson’s

disease classification. In preprocessing, noise is reduced and important infor-

mation is retained, resulting in increased performance and data augmentation

is performed to avoid overfitting issues and increase the size of the dataset.

The main aim of this paper is to derive an optimal feature selection design for

an effective Parkinson’s disease classification. Improved Pigeon-Inspired Op-

timization (IPIO) algorithm is introduced to enhance the performance of the

classifier. Thus, the classification result improved by the optimal features and

also increased the sensitivity, accuracy, and specificity in the medical image dia-

gnosis. The proposed scheme is implemented in PYTHON and compared with

traditional feature selection models and other classification approaches. The

efficacy of the performances is evaluated using a Parkinson’s Progression Mark-

ers Initiative (PPMI) dataset. The integration of the stacked denoising autoen-

coder and Improved pigeon inspired optimization method produced the great-

est results, with 99.17% accuracy, 98.74% sensitivity, and 98.96% specificity.

Furthermore, our finding outperforms the most recent research in the field.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease that impacts 1%

of persons over the age of 60 and is the world’s most popular neurological disorder after

Alzheimer’s disease [2]. The loss of cells in several parts of the brain, particularly the

substantia nigra, causes Parkinson’s disease. Dopamine, a data transmitter for move-

ment coordination, is produced in the substantia nigra [8, 19]. Dopamine deficiency

leads neurons to fire randomly, causing these sufferers to lose control of their limbs.

In people with Parkinson’s disease, motor symptoms such as slowness of movement,

postural instability, resting tremors and rigidity are frequent [14].

Motor symptoms do not appear until the disease has progressed, making rapid

recognition problematic. Although Parkinson’s disease cannot be cured, patients’

quality of life improves when they are diagnosed early and treated swiftly [6, 10,

12, 15]. Non-motor symptoms include cognitive impairment, emotional issues, low

blood pressure while standing, swallowing difficulties, worsening of writing skills, sleep

difficulties, drooling, loss of sense of smell and speech [3, 11,22,23].

These studies used a range of speech signal processing algorithms to extract

clinically significant features, which were then fed into a variety of artificial learning

systems to generate reliable PD classification decisions [16,21]. While Artificial Neural

Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), and KNN

are the most commonly utilized algorithms in PD classification, they are also effective

due to their simplicity and comprehensibility [20]. The success of the algorithms is

impacted by the characteristics of the data features extracted. While individually

finding suitable features to capture the core qualities of speech (audio) data can be

challenging, the underlying characteristics of the data can be manually identified using

a deep learning technique [25].

One of the most extensively utilized MRI methods for demonstrating pathological

changes related to PD in the striatal area is volumetric analysis. The automatic vol-

umetric approach of voxel-based morphometry is used to detect grey matter intensity

decline in the caudate and putamen regions [5]. Local atrophy has been discovered in

recent investigations on shape changes in brain areas. However, there is a lack of spa-

tial specificity in these investigations [7]. Deep learning neural networks are a novel

sort of analysis that can be utilized to take advantage of the spatial organization

of sub-anatomical regions. In medical image analysis, deep learning algorithms have

been utilized for shape modeling, segmentation, registration, disease classification and

lesion identification [13,24]. DNN has a high degree of generalization and can extract

higher-level information to increase disease classification accuracy. Furthermore, the

advancement of CNN for image analysis has resulted in the fusion of feature extraction

and model learning into a unified framework.

It is possible to conclude with a few of the limits and potential enhancements that

can be obtained from previous research. The existing approach performance was poor.

This is primarily due to the complexity and capabilities of the method. To address the

shortcomings of previous research, we offer a new strategy. The proposed PD feature
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selection and classification method are intended to increase classifier performance.

From the discussions provided, it is evident that a great deal of studies has been

performed on Parkinson’s disease utilizing features and different classifiers. A stacked

denoising Autoencoder is employed to categorize the images into two classes Healthy

and PD. To enhance the classification outcome, the feature selection approach is

one of main reasons. The selection of features also lowers the cost of features while

improving the classifier’s effectiveness.

The key contribution of this research is as follows

• The preprocessing stages are used to increase the classification efficiency even

more. Noise is reduced and relevant information is kept as a result of these

pre-processing stages, resulting in improved performance.

• Data augmentation is used to reduce the overfitting problem and improve data

quality and robustness.

• The Improved Pigeon-Inspired Optimization (IPIO) algorithm is introduced

to select the important features of the image which improves the classifier

performance.

• To classify Parkinson’s disease, a Stacked denoising autoencoder is introduced.

• The proposed method outperforms existing state-of-the-art techniques in terms

of classification accuracy.

The remainder of the paper is formatted as follows: The research on PD classification

will be discussed in the following section. Section 3 describes the dataset that was

used in this analysis. The categorization methods and evaluation metrics employed

are discussed in Section 4. Section 5 summarises the outcome of the research. The

paper concludes in Section 6.

2. Literature review

In this section, we review some existing deep learning techniques for diagnoses of

Parkinson’s disease.

Sharma et al. [17] presented the Modified Grey Wolf Optimization method for

diagnosing Parkinson’s illness. This paper presented MGWO for determining the best

subset of the characteristics search approach. To forecast the accuracy of the selected

features, K-nearest neighbor, random forest, and decision tree were employed. The

investigational findings indicate that the presented approach aids in maximizing ac-

curacy while limiting the number of features chosen. The findings show that in terms

of false alarm rate accuracy, and detection rate, MGWO employing random forest

exceeds other classifiers. The model achieves less classification accuracy compared

with other approaches which is a drawback of the presented research.

Sivaranjini, S., and Sujatha, C. M. [18] introduced the Convolutional Neural Net-

work architecture and AlexNet to improve PD diagnosis. To categorize the Healthy

and PD patients, the weights from the pre-trained model are employed, and finally, the

fully connected layer is fine-tuned with appropriate hyperparameters. The classifier is
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built to learn low-to-high-level properties, and the outcome obtained are verified. The

transfer learning network trains and tests the MR images to determine the accuracy

measures. When compared with the existing approaches, the presented approach yield

greater performances. This research has been limited to the evaluation of suggested

models that was insufficient.

3D CNN architecture was presented by Chakraborty et al. [4] to learn the com-

plicated patterns in MRI scans for PD diagnosis. A 3D MRI study was performed

using a 3D CNN to identify PD. To detect Parkinson’s disease, the researchers uti-

lized 3D MRI scans of the complete brain to analyze complex patterns in all of the

brain’s subcortical areas. Specific performance metrics were investigated in order to

evaluate the CNN model, and a priori hypothesis was developed to validate the per-

formance indicator results. It was discovered that after training the 3D CNN model,

it outperformed current techniques. This method has high computational complexity.

Gunduz [9] presented CNN structures that use many types of voice informa-

tion at the feature and model levels to distinguish Parkinson’s disease patients from

healthy persons. CNN with parallel layers for Parkinson’s disease diagnosis. Parallel

convolution layers enable the extraction of feature representations from various types

of attributes. CNN and SVM classifiers are used for PD categorization. This re-

search presents two Convolutional Neural Network-based frameworks for identifying

PD utilizing collections of vocal (voice) data. When compared with existing ap-

proaches the presented approach yield greater performances. It takes high training

and testing time. Table 1 shows the summary of related works.

Table 1
Summary of related works

References Approaches Merits Demerits

[17]
Modified Grey Wolf

Optimization method

Provides optimal

result

No DL adaptations for

more accuracy

[18] CNN
Generated more

acoustic features

Not optimal and

effective detections

[4] 3D CNN Simple and easy

It has a high

computational

complexity

[9] CNN and SVM

The more accurate

result produced based on

the ensemble approach

May produce less

detection rate for

big-sized datasets.

[1]
QAR-CIP-NSGAII,

NICGAR, MOPNAR

Applying nominal

techniques give

moderate outputs.

No effective ML or DL

methods were used.

For the first time Altay, E.V., and Alatas [1] introduced three artificial

intelligence-based search and optimization strategies to apply numerical associa-

tion rules mining (NARM) to achieve advantageous results without using any pre-

processing for numeric values. During the mining procedure, AI-based search and

optimization techniques update the acceptable ranges of numerical variables in the

association rules. As an outcome, the AI-based algorithms QAR CIP NSGAII,
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NICGAR, and MOPNAR were developed to produce superior outcomes while mining

numerical association rules. The presented strategy outperforms the existing one.

There are no research gaps in the presented paper.

3. Proposed methodology

The proposed Parkinson’s disease classification employing the Stacked Denoising Au-

toencoder (SDA) is discussed in this section. Preprocessing strategies are utilized to

enhance categorization effectiveness even further. As a result of these pre-processing

stages, noise is reduced and important information is retained, resulting in increased

performance in high-level learning applications. Then data augmentation is used

to expand the dataset’s size and reduce the overfitting issue. Feature selection is

based upon the Improved Pigeon-Inspired Optimization (IPIO) algorithm, followed

by classification is used.

After the feature selection process, the Stacked Denoising Autoencoder is utilized

to classify the MRI images. With the help of a feature selection approach, the classi-

fier can effectively classify PD disease and improve its performance. Following that,

the dataset is divided into three sections. This dataset is subsequently given in the

training phase. A set of test data is employed to label the training process, which is

then utilized to classify Parkinson’s disease. The proposed Parkinson’s disease classifi-

cation methodology has four main steps: pre-processing, Data augmentation, feature

selection and classification. Figure 1 depicts the general structure of the proposed

methodology.

Figure 1. Architecture diagram for proposed methodology
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3.1. Problem statement

Misdiagnosis of Parkinson’s disease with other neurological PD resembling entities is

a concern in Parkinson’s disease research. Parkinsonism is defined as a set of symp-

toms that resemble PD but are led by something else. Lewy body dementia (LBD),

Parkinson’s type, progressive supranuclear palsy (PSP), essential tremor, multiple sys-

tem atrophy (MSA), corticobasal degeneration (CBD), drug-induced Parkinsonism,

post encephalitic conditions, PD-like symptoms can arise as complications in patients

with Alzheimer disease, and spin cerebellar ataxias are some of the diseases that are

frequently diagnosed as Parkinson’s disease. Wilson disease and X-linked dystonia

Parkinsonism are two more genetic disorders linked to PD. The main focus of the PD

study is on finding a cure for the disease by addressing the various causes of Allergic

cell death. Only once the cause of Neurodegeneration has been discovered can a spe-

cialized treatment be created to slow, prevent, or reverse the process. The part of

the brain afflicted with Parkinson’s disease is deep within the brain, making biopsies

and imaging difficult. The disease’s multifaceted nature is responsible for the next

consequence. The manifestation of PD is caused by the synergistic effect of numerous

of the aforementioned causal variables, and research is frequently focused on specific

aspects of the disease rather than a holistic approach.

3.2. Preprocessing

The preprocessing of images is the most important stage in getting the necessary

features and classification levels. In the proposed method, MR images from the

Parkinson’s disease classification data set are used. The contrast and brightness

of the MR images are variable, and there is some generated noise as well. The

contrast and brightness of the images are enhanced and also the noise is reduced. To

reduce a negative impact on the procedure, image normalization must be conducted

by lessening the disparity among the MRI image’s pixel intensities. The training is

carried out on all of the images without the use of ROI, which would have an impact

on the ranking results.

This stage in our method converts the brain images into intensity brain images

in the interval [0, 1] by employing a min-max normalization procedure as shown in

the expression below.

f(x, y) =
f(x, y)− Vmin

Vmax − Vmin

While f(x, y) indicates every pixel in the image Vmin and Vmax represents the

minimum value and maximum value in the image (f). As an outcome, the contrast

between brain borders and areas will be enhanced. Figure 2 depicts an example

preprocessed image.
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a) b)

Figure 2. Pre-processed Image: a) Input Image; b) Contrast-Enhanced Image

3.3. Data augmentation

In the augmentation phase, the important method in SDA is to reduce the overfitting

issue. Due to the unavailability of a significant number of annotated images, image

augmentation is an important process in medical image evaluation. The distribution

of the dataset across classes is highly skewed, with the majority of the photos com-

ing from Normal. This wildly skewed dataset can result in misclassification. Data

augmentation improves data quality and reliability. Zoom, rotation, flip, shear and

shifting are some of the parameters that are triggered. Furthermore, by shortening

the distance between the testing and training datasets, augmented datasets help to in-

crease data points. In the training dataset, the overfitting problem can be prevented.

The following is a list of the main data augmentation procedures we used.

Rotation: Images were randomly rotated from 0 to 360 degrees.

Shearing: Sheared at arbitrary angles between 20 and 200 degrees.

Image flipping: Images were rotated both vertically and horizontally.

Zoom: Photos were extended at random between (1/1.3, 1.3).

Cropping: Images were randomly reduced to between 85 and 95 percent of their

original size.

Translation of the image: Photos were shuffled among 25 and 25 pixels

randomly.

3.4. Feature selection

The issue of dimensionality disaster will occur during the categorization process if

the dimensions are set very high. High dimensions may preserve certain unrelated
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dimensions during the dimensionality reduction process, whereas low dimensions may

eliminate some of the significant characteristics. The IPIO selects the optimal features

from pre-processed images; in this case, grey level, multi-texture features were chosen

for the analysis. As a result, feature selection has gained increasing significance.

Feature selection will have a significant influence on the classifier’s accuracy and

complexity during the judgment process. Features are selected at the band frequency

of 0.01–0.08 Hz.

3.4.1. Improved Pigeon Inspired Optimization

PIO is a novel intelligent learning system that has found widespread use in financial

analysis and industrial engineering. Pigeons’ homing behavior is imitated by the PIO

algorithm. PIO algorithm can identify global optimal solutions by using the map

operator and compass operator as well as the landmark operator. PSO is a well-

known and effective meta-heuristic learning algorithm. PIO recently obtained great

success in tackling combinational optimization issues, owing to the clear advantages

of fewer parameters, faster convergence, and ease of implementation. Regrettably, it’s

all too easy to become caught up in locally optimal solutions and demonstrate a lack

of global search capabilities. To address the aforementioned issues, aim to enhance

the fundamental PIO and utilize the improved approach to feature selection. This

section goes through the details of the improved PIO (IPIO) algorithm.

3.4.2. Compass operator

The geographical position of the pigeon gives a valid solution to the core PIO tech-

nique’s optimization issue. The pigeon’s house is in the ideal place. The objective

function’s value corresponds to the pigeon’s fitness. The position and the speed of

the ith pigeon are:

PT
i = [Pi,1, Pi,2, . . . , Pi,n] , i = 1, 2, . . . ,Np (1)

QT
i = [Qi,1, Qi,2, . . . , Qi,n] i = 1, 2, . . . ,Np, (2)

The population size is denoted by NP. Pigeons have their location and velocity in-

formation in the PIO algorithm, similar to the PSO algorithm, with updated equa-

tions (3) and (4) for each pigeon:

QNC
i = QNC−1

i e−R×NC + rand
(
Pgbest − PNC−1

i

)
(3)

PNC
i = PNC−1

i +QNC
i (4)

With a range of 0 to 1, the map and compass factor is R; is the global ideal

location determined by evaluating all of the pigeons’ positions during NC − 1 iteration

cycles, random number is denoted by r and range [0, 1], the number of iterations is

represented by NC . This study improves the compass operator of the Pigeon Inspired

Optimization to overcome the issue of the fundamental Pigeon Inspired Optimization
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approach falling into the local optimal lead to early confluence. A qubit is used in the

updated PIO approach to describe the pigeon’s present state. The pigeon’s position

state is determined using Monte Carlo random simulation to ensure the diversity of

the population:

Pi(z) = REg(z)±
L

2
In

(
1

u

)
(5)

where REg(z) = f(z)×Ri(z) + (1− f(z))×Rg(z).

The number of iterations is z, and u and f are distributed uniformly randomized

values between 0 and 1, respectively; Ri(z) is the historical optimal position at the

tth iteration; Rg(z) is the position in global optimization at the tth iteration, and L

is represented as below:

L = 2ω(z) |mbest(z)− Pi(z)| (6)

While ω(z) is the inertia weight, that affects the algorithm’s convergence; at

iteration z , mbest(z) represents the population’s mean optimal position for all pigeons;

ω(z) and mbest(z) is described as:

ω(z) = ωmax − (ωmax − ωmin)×
z

T
(7)

mbest(z) =
1

Np

NP∑
i=1

Ri(z) (8)

Where NP is the population size; The lowest and upper bounds of inertia weight

are ωmax and ωmin, respectively, and T is the maximum iteration. As an outcome, the

improved PIO method uses the following premise to update the pigeons’ positions:

Xi(z + 1) =

{
PiPg(z) + ω(z)× |mbest(z)−Xi(z)| × In 1

f(z) , f(z) ≥ 0.5

PiPg(z)− ω(z)× |mbest(z)−Xi(z)| × In 1
f(z) , f(z) < 0.5

(9)

3.5. Landmark operator

Pigeons who are familiarized with locations in the landmark operator are considered

to be fitter, the other pigeons have the option of following the superior pigeons or

being rejected by the community. Pigeons are grouped by fitness in every iteration,

with half of those with poor fitness being removed. The remainder pigeons’ location

is then updated using the population center point C(t) as a reference direction.

Nlandmark(z + 1) =
Nlandmark(z)

2
(10)

Pcen(z) =

∑
Pj(z) · g (Pj(z))

N ·
∑

g (Pj(z))
(11)

Pj(z + 1) = Pj(z) + rand4· (Pcen(z + 1)− Pj(z)) (12)
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The quality of pigeons is cut in half with every iteration of the landmark operator.

The quality of the pigeon in the zth iteration is represented by Nlandmark(z). Xcen is

the center location of the pigeons and g(·) denotes the fitness function. The expression
rand4 is a random number range among [0, 1].

fitness(x) = JfP̄optmin
(13)

Algorithm 1: The improved pigeon inspired optimization
Input: C = C1, C2, ..., Cm

Output: solution for global optimization
Population is initialized
Compute the goal function value f(xi) for every pigeon i.;
Determine the solution for global optimization Pg and record the value of the objective
function f(Pg) that corresponds to it;

Compute the goal function value f(xi) for every pigeon i.;
Determine the solution for global optimization Pg and record the value of the objective
function f(Pg) that corresponds to it;

Set t=1;
while t ≤ Nl do

for every pigeon i = 1 to SN do

Update velocity V t
i , corresponding to equation 9;

The location Xt
i is updated corresponding to equation 5;

Compute the value of the objective function f(P t
i ) correspondingly terminate

Calculate the solution for global optimization Pg and document the value of the
objective function f(Pg) correspondingly

t=t+1;
terminate

initialize t=1;
while t ≤ Nl do

By calculating the positions of the pigeons, select half with the best optimal value.
Evaluate the center Xt

c then choose pigeons corresponding to equation 7;
for every pigeon i = 1 to SN do

The location Xt
i is updated corresponding to equation 8;

Evaluate the value of the objective function f(P t
i ) ;

terminate
Identify the solution for global optimization Pg and document the corresponding
objective function value f(Pg);

terminate
Record the new solution for global optimization Pg and the objective function f(Pg);
t=t+1
terminate

return Xg and f(Xg) ;

3.6. Classification

This section summarises the most extensively used deep learning technique stacked

denoising autoencoder.
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3.6.1. Stacked denoising autoencoder

An auto encoder’s basic assumption is to introduce noise through every layer of the

encoder input to train and gain a more efficient feature representation. SDAE is made

up of two layers: an unsupervised denoising autoencoder network and a supervised

BP neural network layer.

SDAE comprises two stages of learning: supervised learning and unsupervised

learning. Unlabelled specimens are first used for greedy layer-wise denoising autoen-

coder training, which includes placing raw data into the DAE’s initial layers for un-

supervised training then calculating the first hidden layer’s parameter w(1). Trained

layer k − 1 is often used to train the k-th layer and acquire the parameter w(k) in

every subsequent phase (k). The weight of the resulting deep network’s initiation is

determined by the weight of each layer’s training. Then, for supervised learning, a BP

neural network is employed with labeled data. When aggregating parameters of the

relevant features and categorization of the last layer, they are fine-tuned using error

backpropagation.

3.6.2. Denoising auto-encoder

AE is an unsupervised three-layer NN with a hidden layer, output layer, input layer,

and two encoder and decoder sections. Before producing the expression of a new

feature, the encoder converts the input vector to a hidden layer. As an example,

consider the following function:

v = f(y) = S
(
X(1)x+ a(1)

)
(14)

while y ∈ Ks×1 is the input, the input data dimension is denoted by s, the number of

hidden layer units is v ∈ Kg× 1, a(1) ∈ Kg× 1 is the hidden layer input weight, and

a (1) ∈ Kg× 1 is the hidden layer input. The activation function, which is frequently

non-linear, is denoted by s.

The decoder’s function is to restore the original input by mapping the hidden

layer’s expression y. As an example, consider the following function:

X(2) ∈ Kd×r, a(2) ∈ Kd×1 (15)

where X(2) ∈ Kd×r, a(2) ∈ Kd×1 thus the reconstruction error for every data is

L = ∥y − g(f(y))∥2 (16)

The function of cost is defined as,

J(X, a) =

[
1

N

N∑
i=1

(
1

2
∥y(i) −Q

(
f
(
y(i)

))
∥2
)]

+
λ

2

2∑
l=1

SI∑
i=1

SI+1∑
j=1

(
X

(t)
ji

)2

(17)

where xy(i) is the Ith sample, X
(t)
ji is connection weight among the ith unit of the

mth layer and the nth unit of the layer (m + 1)th the number of instances is N , and
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Sl is the number of units in the nth layer. To discover the models best solution W

and b, apply the error backpropagation and batch gradient descent techniques.

The training data will be impacted with noise, and the auto-encoder will be made

to determine to eliminate the noise then the input data is retrieved. The auto-encoder

can detect more stable and relevant features when the input is contaminated, lead-

ing to a more comprehensive description of the data and better model effectiveness.

The reconstruction error is

LD = ∥x− g (f (x1))∥2 (18)

The cost function is,

JD(X, a) =

[
1

m

N∑
i=1

(
1

2
∥y(i) − [

(
f
(
y
(i)
1

))
∥2
)]

+
λ

2

2∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(
X

(l)
ji

)2

(19)

In general as stated in noise figure k simply have to initialize the units in x to 0

at random (k ∈ [0, 1]) and then y1 is obtained. The parameters are solved using the

same manner as the autoencoder.

3.6.3. BP Neural Network

The BP NN is a multi-layer feed-forward network trained using error backpropa-

gation. In this research, the BP NN is utilized to categorize features produced by

DAE using labeled images. The extracted features can be related to the relevant

label. Simultaneously, the DAE’s settings will be fine-tuned via error backpropaga-

tion, allowing the overall structure to further converge. The BP neural network is

trained using two methods: backpropagation of errors and forward propagation of

errors. After the forward calculation of the input characteristics, the predicted type

is formed at the outcome layer. Then categorization error is evaluated by contrasting

the expected and actual matched categories.

Every layer’s residual d is determined first in the error backpropagation proce-

dure. The output layer’s output unit l , the equation of δ is

δi = ai (1− ai) (ai − yi) (20)

For the other hidden layers, the equation of δ is

δli = ali
(
1− a1i

) SI+1∑
j=1

W l
jiδ

l+1
i (21)

Tune the SDAE networks layer parameters utilizing expressions (9) and (10),

where a is the tuning coefficient, upon computing the residuals of every layer.

W l
ji = W l

ji − αa1i δ
l+1
i (22)

bli = bli − αδl+1
i (23)
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4. Result and discussions

A benchmark dataset was utilized to differentiate the suggested strategy from ex-

isting approaches in terms of sensitivity, specificity, precision, and accuracy. This

study will examine the materials and measures that were used to get the intended

outcome. The effectiveness of the proposed research was evaluated in PYTHON using

medical images.

4.1. Dataset description

The axial T2 weighted MR images were obtained from the Parkinson’s Progression

Markers Initiative (PPMI) database, which is open to the public [22]. Researchers

frequently use the PPMI dataset to identify PD progression markers and gain access

to brain structures and functions at various phases of the disease. This study’s PPMI

cohort includes 2500 people: 1750 healthy controls and 750 Parkinson’s disease suf-

ferers. 70% of the dataset is used for training, while the remaining 30% is used for

testing. Table 2 illustrates the details of the dataset, including various details such

as the individual’s status and shimmer. Figure 3 represents the sample image for

healthy and Parkinson’s disease.

a) b)

Figure 3. Sample Brain MRI image: a) Parkinson’s disease; b) Healthy image

Table 2
Dataset description

Index Description

MDVP Average vocal fundamental frequency

NHR Noise to the harmonic ratio

shimmer 3 point amplitude perturbation quotient

DF Detrended fluctuation analysis

PPE Pitch period entropy

D2 Correlation Dimension

status 0-healthy, 1-Parkinson disease
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4.2. Metrics for evaluation of the model

During this stage, the effectiveness of every technique was evaluated to determine

which method could obtain the best results. The metrics of sensitivity, accuracy

and specificity from the confusion matrix were performed to analyze every method

employed in this study. The confusion matrix contains True Positive (TP), False

Positive (FP), True Negative (TN) and False Negative (FN)

Accuracy: The maximum number of positive outcomes divided by the maximum

number of instances is used to calculate a model’s accuracy. The percentage of cor-

rectly identified cases is provided by the accuracy parameter. The accuracy model is

described, as shown in Equation (24):

Accuracy =
TP + TN

TP + FP + TN + FN
(24)

A TP occurs whenever a sample in a dataset has a positive classifier and the classifier

predicts that the data will have a positive class. Data in a database with a negative

classifier and a classifier that predicts a negative class label is referred to as TN. When

the classifier of data in a database is positive, but the classifier predicts a negative

classifier for that data, it is referred to as an FN . When the classifier of data in

a database is negative but the classifier predicts a positive class label for that data,

it is called a false positive (FP ).

Sensitivity is used to assess the degree of the attribute to properly categorize

individuals with illnesses.

Sensitivity =
TP

TP + FN
(25)

Specificity is computed as Equation (26) and is used to evaluate the degree of

the attribute to appropriately classify the person without the disease.

Specificity =
TN

TN + FP
(26)

The quality parameters of the predicted class are defined by sensitivity and speci-

ficity, which are also known as quality parameters. Three metrics are utilized to

determine the accuracy, sensitivity, and specificity of a medical diagnosis model.

Precision: Positive Predictive Value (PPV) also known as precision, is a measure

of the correctness of a categorization result. Equation (27) is used to calculate it,

Precison =
TP

TP + FP
(27)

The area under the ROC curve (AUC): AUC is the ratio between the area above

and below the ROC curve. Accuracy is quantified by AUC, which is calculated by

converting the ROC curve result into a scalar number using the formula below (28),

AUC =

∫ Y

X

f(v)dv (28)
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While X and Y are the curve’s minimum and maximum axis points, and f(v) is

a function that is both above and below the curve.

Differentiation between the existing classification approach with proposed ap-

proach can be represented in Table 3 and Figure 4. When compared with the existing

approach proposed approach yield a better solution. The existing technique like dense

net, inception, and ResNet is compared with the proposed approach. Compared with

accuracy dense net gain 91.26%, inception gains 89.03%, ResNet gain 98.51% and the

proposed technique gain 99.17% which is the highest accuracy among all existing ap-

proaches. Compared with specificity dense net gain is 93.56%, inception gains 90.69%,

ResNet gain is 96% and the proposed technique gain 98.74% which is the highest one

among all existing approaches. Compared with sensitivity dense net gain of 94.81%,

inception gains of 93.84%, ResNet gain of 95.38% and the proposed technique gain of

98.96% which is the highest solution among all existing approaches. From the overall

evaluation metrics proposed approach yield the best solution.

Table 3
Comparison of performance metrics

Method Accuracy Specificity Sensitivity Precision AUC

DenseNet121 91.26 93.56 94.81 95.42 86.47

Inception V3 89.03 90.69 93.84 96.35 89.13

ResNet 98.51 96 95.38 93.87 95.16

proposed 99.17 98.74 98.96 99.37 98

Figure 4. Differentiation of existing classification approach with the proposed approach

Applied the three suggested networks to the dataset, yet they all showed a better

area under the ROC curves and classification accuracy for the proposed approach. The

ROC curve can be represented in Figure 5.
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Figure 5. ROC curve

The predicted value is represented in Figure 6 by a confusion matrix. True

negative or true positive predictions are true, whereas false negative or false posi-

tive predictions are false. The four categories accurately classify the infected area of

Parkinson’s disease. When compared with existing techniques the proposed approach

is the best one.

Figure 6. Confusion matrix
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Table 4 illustrates the model’s training accuracy, testing accuracy, and losses.

The differentiation between training and testing accuracy can be depicted in Figure 7.

Figure 7. Differentiation of training and testing accuracy

Table 4
Comparative results for training, testing and validation

Technique Training accuracy Testing accuracy Training loss Testing loss

Dense Net 93 87.63 61.89 63

Inception V3 95.23 93 53.21 48

Res Net 97.65 98.71 47.41 56

Proposed 99.32 99.11 38.03 32

Table 5 and Figure 8 show the comparison of feature selection approaches;

Principal Component Analysis (PCA), Wrapper and Correlation-based Feature

Selection (CFS).

Table 5
Comparative analysis of feature selection

Feature selection approach Accuracy Sensitivity Specificity

CFS 90.77 98.35 89.58

PCA 91.79 95.24 91.67

Wrapper 98.97 97.44 97.92

IPIO 99.32 99.14 98.67
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Figure 8. Comparison of proposed feature selection approach versus existing techniques

Compared with existing approaches proposed approach yield 99.32% of accuracy

which is 8.55%, 7.53%, and 0.35% greater than CFS, PCA and Wrapper. 99.14% of

sensitivity yielded by the proposed approach, which is 0.17%, 3.9%, and 1.7% greater

than CFS, PCA and Wrapper. The proposed approach yield 98.67% of accuracy

which is 9.09%, 7%, and 0.75% greater than CFS, PCA and Wrapper.

5. Conclusion

Parkinson’s disease ranks as the 2nd highest prevalent neurological disorder. There is

currently no cure for Parkinson’s disease, although early detection can help patients

receive better and faster care. In this article, we suggested a framework for catego-

rizing the Magnetic Resonance Imaging of normal people and those with PD affected

using a feature selection technique combined with a Stacked Denoising Autoencoder-

based classification. Initially in preprocessing, noise is reduced and important in-

formation is retained, resulting in increased performance. Additionally, data aug-

mentation is performed to increase the dataset and eliminate the overfitting issue.

After the completion of preprocessing, the image is fed into the feature selection

phase. The PIO selects the optimal features from pre-processed images for analysis;

in this case, grey level, multi-texture features were chosen. The Improved Pigeon

Inspired Optimization technique is employed for feature selection. In comparison to

other strategies, the IPIO algorithm-based feature selection strategy chooses better

features. Finally, a stacked denoising autoencoder is employed to classify the im-

ages whether it is healthy or Parkinson affected. The performance of this system is

testified by extensive experimental works on the standard dataset and comparative

evaluations with state-of-the-art methods. When the synthesized images are given

to the training set, the main categorization metrics such as sensitivity, accuracy, and
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specificity increase by 2.6%, 3.6%, and 4.2%, respectively, yielding 98.74%, 99.17%,

and 98.96% when compared to other existing methods.
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Klucken J., Nöth E.: Multimodal assessment of Parkinson’s disease: a deep learn-

ing approach, IEEE Journal of Biomedical and Health Informatics, vol. 23(4),

pp. 1618–1630, 2018. doi: 10.1109/JBHI.2018.2866873.

[22] Wang W., Lee J., Harrou F., Sun Y.: Early detection of Parkinson’s

disease using deep learning and machine learning, IEEE Access, vol. 8,

pp. 147635–147646, 2020. doi: 10.1109/ACCESS.2020.3016062.

[23] Wingate J., Kollia I., Bidaut L., Kollias S.: Unified deep learning ap-

proach for prediction of Parkinson’s disease, IET Image Processing, vol. 14(10),

pp. 1980–1989, 2020. doi: 10.1049/iet-ipr.2019.1526.

https://doi.org/10.1166/jmihi.2019.2570
https://doi.org/10.1166/jmihi.2019.2570
https://doi.org/10.1166/jmihi.2019.2570
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1016/j.mehy.2020.109678
https://doi.org/10.1016/j.mehy.2020.109678
https://doi.org/10.1016/j.mehy.2020.109678
https://doi.org/10.1016/j.neunet.2020.06.018
https://doi.org/10.1016/j.neunet.2020.06.018
https://doi.org/10.1016/j.neunet.2020.06.018
https://doi.org/10.1007/s13534-020-00156-7
https://doi.org/10.1007/s13534-020-00156-7
https://doi.org/10.1007/s13534-020-00156-7
https://doi.org/10.1016/j.cogsys.2018.12.002
https://doi.org/10.1016/j.cogsys.2018.12.002
https://doi.org/10.1016/j.cogsys.2018.12.002
https://doi.org/10.1007/s11042-019-7469-8
https://doi.org/10.1007/s11042-019-7469-8
https://doi.org/10.1007/s11042-019-7469-8
https://doi.org/10.1016/j.bbe.2020.01.003
https://doi.org/10.1016/j.bbe.2020.01.003
https://doi.org/10.1016/j.bbe.2020.01.003
https://doi.org/10.1016/j.bbe.2020.01.003
https://doi.org/10.1016/j.apacoust.2020.107528
https://doi.org/10.1016/j.apacoust.2020.107528
https://doi.org/10.1016/j.apacoust.2020.107528
https://doi.org/10.1109/JBHI.2018.2866873
https://doi.org/10.1109/JBHI.2018.2866873
https://doi.org/10.1109/JBHI.2018.2866873
https://doi.org/10.1109/ACCESS.2020.3016062
https://doi.org/10.1109/ACCESS.2020.3016062
https://doi.org/10.1109/ACCESS.2020.3016062
https://doi.org/10.1049/iet-ipr.2019.1526
https://doi.org/10.1049/iet-ipr.2019.1526
https://doi.org/10.1049/iet-ipr.2019.1526


Parkinson’s disease classification based on stacked denoising autoencoder 511

[24] Xia Y., Yao Z., Ye Q., Cheng N.: A dual-modal attention-enhanced deep

learning network for quantification of Parkinson’s disease characteristics, IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 28(1),

pp. 42–51, 2019. doi: 10.1109/TNSRE.2019.2946194.

[25] Zhang T., Zhang Y., Sun H., Shan H.: Parkinson disease detection using energy

direction features based on EMD from voice signal, Biocybernetics and Biomedical

Engineering, vol. 41(1), pp. 127–141, 2021. doi: 10.1016/j.bbe.2020.12.009.

Affiliations

P. Sukanya
VIT-AP University, School of Computer Science and Engineering, Amaravati,
AndhraPradesh, India, sukanya.20phd7011@vitap.ac.in

B. Srinivasa Rao
VIT-AP University, School of Computer Science and Engineering, Amaravati,
AndhraPradesh, India, srinivas.battula@vitap.ac.in

Received: 06.07.2022

Revised: 23.12.2022

Accepted: 26.05.2023

https://doi.org/10.1109/TNSRE.2019.2946194
https://doi.org/10.1109/TNSRE.2019.2946194
https://doi.org/10.1109/TNSRE.2019.2946194
https://doi.org/10.1016/j.bbe.2020.12.009
https://doi.org/10.1016/j.bbe.2020.12.009
https://doi.org/10.1016/j.bbe.2020.12.009
sukanya.20phd7011@vitap.ac.in
srinivas.battula@vitap.ac.in

	Introduction
	Literature review
	Proposed methodology
	Problem statement
	Preprocessing 
	Data augmentation
	Feature selection
	Improved Pigeon Inspired Optimization
	Compass operator

	Landmark operator
	Classification
	Stacked denoising autoencoder
	Denoising auto-encoder
	BP Neural Network


	Result and discussions
	Dataset description
	Metrics for evaluation of the model

	Conclusion

