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TRANSFORMATION AND CLASSIFICATION OF
ORDINAL SURVEY DATA

Abstract Currently, machine learning is being significantly used in almost all of the

research domains; however, its applicability in survey research is still in its

infancy. In this paper, we attempt to highlight the applicability of machine

learning in survey research while working on two different aspects in parallel.

First, we introduce a pattern-based transformation method for ordinal survey

data. Our purpose for developing such a transformation method is two-fold:

first, our transformation facilitates the easy interpretation of ordinal survey

data and provides convenience while applying standard machine-learning ap-

proaches; and second, we demonstrate the application of various classification

techniques over real and transformed ordinal survey data and interpret their

results in terms of their suitability in survey research. Our experimental results

suggest that machine learning coupled with a pattern-recognition paradigm has

tremendous scope in survey research.
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1. Introduction

Survey research is quite popular in several domains of importance; e.g., education,

health, psychology, policy science, organizational research, etc. [13]. It attempts to

explain the phenomenon under consideration by analyzing the opinions of a large

population [2]. The popular analysis approach in survey research relies mainly on

the statistical modeling of the survey error, which requires the relational mapping of

the outcomes and the covariates to be known a priori [46]. However, this criterion

is not always achievable, as the functional form of such relationships is not always

available for complex real-world problems [24]. Such complex scenarios require flexible

modeling approaches that do not demand prior definitions of the relational mappings.

These scenarios can be described better if the relational mappings can be defined based

on the inherent features of the data. For example, categorizing data points based on

some sort of natural proximity could lead to a better understanding of a phenomenon;

e.g., the behavior analysis of a sampled population is one such application.

In addition to the requirement of flexible modeling techniques, certain data-

related aspects should also be handled with care in order to gain meaningful and

reliable insights from survey data. Survey data has some distinct characteristics such

as heterogeneity, ordered relationships, and the significance of category labels [37].

Heterogeneity implies that data may contain several types of measurements such

as binary, continuous, categorical, and their combinations [41]. Such heterogeneous

data poses serious challenges in the analysis phase [32]. Furthermore, small ordinal

measurements are highly prevalent in survey data – especially in the case of web-

based survey applications [15]. The value-based treatment of a small ordinal scale

is considered to be inappropriate in the literature [30]. In contrast, pattern-based

analysis approaches perform better over such ordinal-valued vectors [47]. Respondent

category labels are also of high significance in survey applications, as relationships

among the variables are generally sought out concerning these categories [36].

Considering the factors that are mentioned above (the requirement of flexible

modeling techniques and the distinct features of survey data), we envisage the vast

potential of machine learning (ML) in the field of survey research. In contrast to

model-driven statistics, ML is basically data-driven. It works without a prior under-

standing of the relationship between the data and the outcomes [28]. In other words, it

offers flexible modeling techniques that define the relationships between the data and

the outcomes purely on the basis of the inherent features of the data [10]. Second, the

use of ML could lead to adding a new dimension of generalizable predictive modeling

in survey research, which has been limited thus far to drawing population inferences

from a sample [11]. Classification, for instance, has some direct applications in sur-

veys, as it captures a user-defined notion of grouping data points by using a model

that is trained on previously categorized data objects [1]. Some of the major appli-

cations of classification in surveys include the validation of theories, the extraction

of unique patterns, behavior mapping, etc. [17]. Since the survey data is heteroge-

neous, it may also require transformations in many applications depending on the
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objectives; e.g., categorical to continuous conversion (and vice-versa) [33, 34]. Such

a transformation will also be needed for the easy interpretation and descriptions of

the inherent properties of the survey data.

Therefore, we focus on two different aspects in parallel in this paper and describe

them together to elaborate on their significance. First, we introduce a pattern-based

data-transformation method for ordinal survey data that works based on vector arith-

metic. The objective behind the development of such a transformation is to exploit

the efficacy of the pattern-based approach to describe the data in more-convenient

and -graphical ways. Our proposed transformation projects survey observations inside

a three-dimensional cylindrical data space. It transforms an ordinal-valued survey ob-

servation that has a comparatively large set of dimensions into a three-dimensional

real-valued vector. Such a visualization ability facilitates interpreting the natural

features of data more conveniently.

Second, we apply several classifiers over a real survey data set and evaluate their

performance in order to test their suitability for survey applications. In this way, we

made primary inferences regarding the utility of the ML paradigm in survey research.

One other objective behind choosing the classification in this paper is to verify the

effectiveness of our proposed transformation method as to whether (and to what

extent) it retains the natural features of the data. For doing so, we transform the

original survey data set by our proposed pattern-based transformation method and

subsequently apply the same set of classifiers. The results of the classification and the

performance comparison of the different classifiers (over original and transformed

data) suggest that our proposed transformation method works quite well on ordinal

survey data. Thus, we can say that our transformation method is suitable for survey

applications. Even though the classifiers predict the labels of unseen observations

quite accurately on behalf of a model that is trained over transformed data, we observe

that the transformation causes a fair amount of information loss (which impacts the

performance of the classifiers). However, such information loss is a common issue in

transformation methods – especially those that reduce the dimensions of the data [22].

Thus, future research is needed to handle this issue more effectively and make the

transformation method more robust.

Paper organization: Section 2 describes our motivation behind developing our

transformation method. Section 3 provides a brief review of the literature that de-

scribes the need for the transformation and classification of survey data. Section 4

presents the concept of the proposed pattern-based transformation method. The clas-

sification of the survey data and the corresponding transformed data is presented in

Section 5. The advantages and limitations of the proposed transformation method are

discussed in Section 6. Finally, Section 7 concludes the paper.

2. Motivation

Surveys generally use very few marking levels; e.g., four to seven Likert levels [26].

The objective behind this is to indicate the differences in respondents’ choices and,
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therefore, the magnitude of the differences has little to do here (whereas the number

of differences is quite a significant factor). For this reason, the magnitude-based treat-

ment of such ordinal survey data infers no meaningful information [36]. In contrast,

analyzing marking patterns can infer more about respondents’ opinions. Two respon-

dents can be said to share similar opinions if their marking patterns are similar even

if their marking values vary. For describing this phenomenon, we depict an example

data set that has five observations in Figure 1 along with their trends of marking. We

assume eight variables (V1, V2, ... V8) and a five-level marking scale in the example.
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Figure 1. Example survey sample with five observations

We can observe in Figure 1 that Observations 2 and 5 look quite similar to each

other, Observations 3 and 4 are proximate in some dimensions, and 1 is quite different

than the others when taking the magnitudes into account. When we turn our eyes

to the patterns of marking depicted nearby, however, we can find that Observations

1, 2, and 3 are quite similar; meanwhile, Observations 4 and 5 are different than the

others pattern-wise. Supposing the usual survey scenario in which several observations

that have several variables can exist, we can anticipate the problem of analyzing the

similarities among respondents’ opinions at a gross level.

The problem can be better analyzed if there is some possibility to visualize the

data points in 3-D visual data space. Since no such visualization method exists to

address this issue, the only way that remains is to analyze such ordinal data on the

basis of magnitudes; e.g., central tendency and spread. Therefore, one of our major

objectives in this paper is to design a transformation method that can visualize ordinal

survey observations in a real-valued 3-D visual data space.

3. Related work

Since we focus on two different aspects in this paper, we divided this section into

two subsections: type conversion in survey data analysis, and the utility of machine

learning in survey research.
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3.1. Type conversion in survey data analysis

In several situations, data needs to be re-scaled or transformed into other data types

prior to an analysis [33]. Generally, the conversion of continuous data into a discrete

form (qualitizing) requires some systematic grouping criterion, while the conversion

of discrete data into a continuous form (quantitizing) needs some numerical scoring

method [40]. However, such types of conversion might suffer from issues of subjectivity

and information loss [27].

3.1.1. Qualitizing

Qualitizing refers to the process of transforming quantitative data into qualita-

tive data. Such a transformation can be done through five different types of quali-

tative profiling schemes: modal, average, comparative, normative, and holistic [42].

Modal profiling gives descriptions to groups according to the most frequent attributes.

The average profiling describes a group according to the mean of an attribute. Com-

parative profiling describes a group based on a comparison of its members on one or

more sets of scores. Normative profiling compares the group members on behalf of one

or more than one instrument; however, both the comparative and normative profiling

schemes are based on the quantitative clustering of members. In contrast, holistic

profiling is done based on impressions instead of scoring (or attributes), but it might

include a combination of other profiling schemes [40].

3.1.2. Quantitizing

Quantitizing is the process of transforming qualitative data into quantitative data.

In this process, verbal or visual data is generally reduced into an item, variable, or

construct. Such a transformation is made through a narrative analysis [5]. Michela

Nardo presented a mathematical approaches for quantifying macroeconomic survey

data, which included probability-based methods, a time-varying parameter method,

and a regression-based conversion approach [33]. The common subjective probability

distribution-based conversion method was introduced by Theil [44]. This method

was later extended by Knobl and Carlson & Parking, which is popularly known as

the Carlson-Parking (CP) method [12, 25]. The time-varying parameters method is

an extension of the CP method in which the indifference interval is allowed to vary

over time while the assumption of symmetry is dropped [33]. The regression method

utilizes the relationship between actual values and the respondents’ perceptions as

a way to quantify future expectations [35].

3.2. Utility of machine learning in survey research

Statistical modeling serves two purposes: explaining data (explanatory modeling),

and predicting outcomes (predictive modeling) [9]. Modeling is supposed to approxi-

mate and incorporate various design issues (e.g., non-response, non-coverage, etc.) in

a functional form. However, prior knowledge about the true function is not always

available and estimating the potentially complex function in a parametric framework
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might be infeasible. Machine learning provides flexible modeling that requires no

prior functional representation. Moreover, machine-learning techniques have the ca-

pability to represent the complex non-linear and non-additive interrelations between

outcomes and covariates [24]. Therefore, machine learning has significant potential in

survey applications. The regression of continuous covariates, classification, and the

clustering of categorical data are some of the potential applications where machine

learning can provide effective solutions [10].

Though recent trends in computer science and other relevant fields show signif-

icant use of machine learning, its application in survey data analysis is still in its

infancy. The literature suggests that survey scientists are exploring new dimensions

in survey research through machine learning. For example, Christoph Kern provided

an introduction of tree-based supervised learning methods and their utility in survey

research [24]. The use of machine learning can also be seen in the field of developmen-

tal economics [6]. The least absolute shrinkage and selection operator (LASSO) and

its adaptations (such as debiasing principle-based LASSO and hierarchical LASSO)

are in use for making inferences from survey data [3, 4, 45]. For example, hierarchi-

cal LASSO was used to explore survey data and make causal inferences [7]. The

low-dimensional projection estimator (LDPE) was used to explore the determinants

of infant malnutrition and the effectiveness of government interventions [8,48]. Simi-

larly, the idea of directional pattern-based clustering has been proposed quite recently

for the effective cluster analysis of ordinal survey data [37]. Guided mean centroid-

based clustering, directional pattern-based semi-supervised clustering, etc. are some

of the apparent examples in this regard [36,38].

4. Transformation of ordinal survey data

Data transformation aims to make data follow some desired shapes or distributions

that are necessary for the applicability of standard analysis techniques. Moreover, the

transformation of data may also be desired for its easy interpretation, visualization,

and comparison purposes [29]. In the context of survey applications, transformation is

desired to convert the format and structure of data (which effectively fits the study’s

objectives). For example, mixed-data analysis sometimes demands conversions of nu-

meric variables into categorical ones (or vice-versa) [33]. Furthermore, methods that

make survey data easily interpretable or visualized are always desirable, as visualiza-

tion provides an easy way to study the descriptive profiles of any phenomena under

study. Thus, this section presents a pattern-based data-transformation method for

ordinal survey data that converts ordinal data into real-valued data. The desirable

properties of the proposed method are that it works based on the mathematical as-

sumptions of vector arithmetic and transforms ordinal data that has an arbitrary

number of dimensions into a three-dimensional data space. In this way, it reduces the

dimensions of the ordinal data set and allows for its straightforward and interpretable

representation in 3-D space.
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4.1. Proposed transformation method

The proposed method works on the pattern-based representation of ordinal data and

vector arithmetic. It works in two phases: (i) the creation of directional-difference

patterns, and (ii) the vectorized representation of the patterns.

4.1.1. Creation of directional difference pattern

The proposed transformation first converts survey observations into patterns of direc-

tional differences. A directional-difference pattern is an array of the directional values

(−1, 0, and +1) that correspond to a survey observation that represents the relative

significance of each variable with respect to its preceding neighbor. For example, if

a variable is larger than the preceding variable, its directional value is represented

by +1; if it is smaller, then its corresponding directional value is represented by −1

(while 0 represents equal variable values). The value of the first variable is defined by

comparing it with half of the maximum marking scale (n/2 for odd scale and (n+1)/2

for even scale, where n denotes the used marking levels). Figure 2 depicts the first

example observation of our example survey sample that is described in Section 2

(Figure 1) (along with its corresponding directional-difference pattern).
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Figure 2. First sample survey observation with its directional-difference pattern

4.1.2. Vectorized representation of patterns

After converting the survey observations into patterns of directional differences, the

proposed transformation method observes each such pattern in a vectorized data space.

Before going into the details of our proposed vectorized data space, let us recall the

concept of a resultant vector. Suppose a point object at the coordinate position (x, y)

of the Cartesian system on which f1 and f2 forces of m1 and m2 magnitudes act in dif-

ferent directions. The directions of these forces are defined with respect to the x-axis

such that force f1 is θ1 degrees apart and force f2 is θ2 degrees apart from the hori-

zontal x-axis. In this scenario, the resultant force (vector) R of magnitude MR and

θR degrees apart from the x-axis can be calculated by the vector summation of both

of these forces. Figure 3 represents the assumed scenario.

Mathematically, we can express forces f1, f2, and resultant force R (depicted by

Figure 3) in their vector form as follows:

f1 = (m1 cos θ1)i+ (m1 sin θ1)j

f2 = (m2 cos θ2)i+ (m2 sin θ2)j

Then, R = f1 + f2, and
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MR =
√
(XR − x)2 + (YR − y)2

θR = 180− arctan ( YR

XR
)

where :

XR = (m1 cos θ1 +m2 cos θ2)

YR = (m1 sin θ1 +m2 sin θ2)

 

θ2 

f1 

f2 

(x, y) 

θ1 θR 

Figure 3. Demonstration of resultant vector

Our transformation method observes each pattern of directional difference in

a three-dimensional space (x, y, z). Since the pattern is defined on behalf of three

equidistant direction values (−1, 0,+1), the method divides the z dimension into two

halves (positive and negative) centered around the origin. A positive z-axis measures

the number of positive direction values (+1s) in the pattern, and a negative z-axis

denotes the number of negative direction values (−1s) in the pattern. The x–y planes

on both the negative and positive z halves are divided into the number of parts defined

by the total number of variables in the pattern. The x–y plane in the positive half

(z-positive) corresponds only to the positive values (+1s) in the pattern and treats the

other direction values (0 and −1) as zero. The same is true for the negative half that

corresponds only to the negative direction values (−1s) and treats the other values as

zero. The correspondence between the negative and positive x–y planes is that they

are 180 degrees apart angularly from each other. Figure 4 describes the positive and

negative x–y planes for a pattern that has eight direction values (the eight survey

variables that are denoted as V1 to V8 in the observation).

A pattern is seen as two separate points in the negative and positive halves

depending on the numbers of +1s and −1s. Let us take our example pattern of

a length of eight (Figure 2) that has four +1s, three −1s, and one 0. Then, the

positive x–y plane will appear at 4 on the z-axis, and the negative x–y plane will

appear at -3 on the z-axis. The position of the points in the negative and positive x–y

planes will be calculated through vector arithmetic. Consider each direction value

as a unit force that acts upon a point object at the origin and take the case of the

positive x–y plane in the example.
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Figure 4. x–y planes on positive and negative z axes

So, the first, third, fifth, and seventh variables can be considered to be active

unit forces that act on the point at the origin for the positive half. The rest of the

variables are considered to be dormant (asserting no force on the point). The position

of the point in the x–y plane will be seen as the resultant force that is calculated by

the vector addition (described in the previous paragraphs) of the four unit-forces (V1,

V3, V5, V7) that act in the directions that are shown in Figure 4. Since Force V5

works in the opposite direction of Force V1, it cancels out the effects of V1. The

same is true in the cases of V3 and V7, where they nullify the effects of each other.

This means the point remains at the origin of the positive x–y plane, as all forces

combinedly cancel out the effects of each other. Now consider the negative x–y plane

of Figure 4 and our example pattern where Unit Forces (Variables) V2, V4, and V8 act

on the point object at its origin. These variables are 225◦ (V2), 315◦ (V4), and 135◦

(V8) apart from the x-axis. The resultant force that is generated by the combined

effect of these forces is of a unit magnitude, and it shifts the point object at position

(−0.7,−0.7) in the negative x–y plane. The resultant is 225◦ apart from the x-axis,

which is the direction of Force V2. By combining the z-axis in these coordinates of

the positive and negative x–y planes, we can locate the points in 3-D space. Thus,

our example pattern can be shown in 3-D space with two points that are described

by coordinates X1 = 0, Y1 = 0, Z1 = 4 and X2 = −0.7, Y2 = −0.7, Z2 = −3.

In this way, a directional pattern in our defined data space can be described by

a line segment that connects the two separate points – one in the positive half that is

defined by the positive x-y plane, and one in the negative half that is defined by the

negative x-y plane. The length of the line segment is dependent on the z-axis, which

defines the number of 1s in the positive half and the number of -1s in the negative

half. Thus, a pattern in the above design can be represented by a line segment inside

a cylindrical data space. For instance, our example pattern is shown as the dotted

line in the middle of the cylindrical data space that is shown in Figure 5.
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Figure 5. Example pattern inside our proposed 3-D cylindrically shaped data space

In this manner, our transformation method converts each survey observation into

an array of six-coordinate values. First, it converts the survey observation into the

pattern of the directional differences; then, it observes each pattern in a string of

six real values (denoting the coordinates of two points in our defined 3-D vectorized

space). Such a transformation is advantageous for two reasons. First, it makes the

visualization of data points easy, as each survey observation can be visualized as

a line segment inside the cylindrical data space that is depicted in Figure 5. Thus,

the properties of the data points can be described based on line parameters such as

slope and intercept. Second, the method converts the ordinal valued observations

into real-valued vectors; thus, making the analysis methods that are designed for real

values applicable on the ordinal data sets that are transformed through our method.

Let us take our example survey sample that is described in Section 2. We de-

scribed that Observations 2 and 5 looked similar and also that Observations 3 and 4

looked slightly similar to each other when taking the magnitudes into account. Ac-

cording to the survey application point of view (pattern-based similarity), however,

Observations 1, 2, and 3 show similar respondents’ preferences despite their diverse

magnitudes. We now apply our transformation method over our example survey

sample and observe their proximity in 3-D space. Figure 6 depicts the actual ordinal

survey sample and its corresponding real-valued transformed observations.

In Figure 6, we can observe that Observations 1, 2, and 3 are placed at the

same location in the transformed data space (showing their pattern-wise similarity),

whereas Observations 4 and 5 are placed at different locations (showing their pattern-

wise dissimilarity). In this way, our transformation method made it easy to interpret

the sample data by visualizing it in 3-D space. One added advantage with our trans-

formation is that it converts data that has arbitrary dimensions (8-D in the example

case) to six-dimensional real valued data (the end points of a line segment inside a 3-D

cylindrical data space). This visualization capability of our transformation method is

quite helpful in the perspective of a descriptive analysis of ordinal survey data.
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Figure 6. Example survey sample along with transformed replica

5. Classification of ordinal survey data

Classification is a significant problem in the field of knowledge discovery. The aim of

classification is to learn the structure of an available data set by fitting the model and

use this model to predict the category of unseen data instances [1]. In the context

of survey applications, classification can be used to predict trends, describe respon-

dents’ marking behaviors, validate theories, etc. In this section, we apply different

classifiers over a survey data set that was collected during a study that was aimed at

exploring the significance of the quality parameters of higher educational institutions

(HEIs) [39]. First, we give a brief description of the data set along with its basic

statistics; then, we proceed to make primary inferences based on the results of the

chosen classifiers that are applied over the data set. We then transform the data

by using our proposed transformation method and apply the same set of classifiers

over transformed data. We compare the classifiers’ performances over the original

and transformed data to describe the utility and robustness of the proposed trans-

formation method in the context of survey applications. Specifically, we want to test

how many inherent characteristics of the data that our transformation method can

retain despite the information loss due to the dimensionality reduction.

5.1. Used data set

The data set was collected during our previous study, which was intended to explore

the various quality parameters of HEIs [39]. Eleven quality parameters were explored

in this study through the grounded theory method. The data (qualitative as well as

quantitative) was collected from the National Capital Region (NCR) of India. The

NCR was chosen since it contained representative premier institutions, and the pop-

ulation in these institutions represented all of India. Seven respondent categories

were identified in the survey: undergraduate (UG), graduate studies (GS), graduate

research (GR), faculty (FAC), parents (PAR), administrators (AD), and profession-

als (PRO). Since the proportion of the administrator category was imbalanced, we

excluded the administrators’ responses. In total, 2533 responses were considered for

an exploratory analysis; of these, 438 responses were from the UG category, 463 from
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GS, 447 from GR, 401 from FAC, 395 from PAR, and 389 from PRO. The basic

statistics of these eleven quality parameters (mean values and standard deviations)

are provided in Table 1.

Table 1
Survey items and their corresponding mean values and standard deviations

Sr Survey items Mean SD

1. Teaching 3.2 0.74

2. Graduate Outcomes 3.0 0.89

3. Academic Flexibility 3.0 0.76

4. Transparency & Accountability 3.0 0.77

5. Infrastructure & Resources 3.0 0.73

6. Research 3.0 0.87

7. Student Support Services 2.9 0.78

8. International Outlook 2.8 0.81

9. Fee & Financial Assistance 2.7 0.96

10. Academic Autonomy 2.5 0.92

11. Inclusivity 2.5 0.84

In this study, we will treat the 11 survey items that were contained in the data

as independent variables and the respondent category label as a dependent variable

(classes) for classification. We will evaluate the results in light of the stakeholder

theory, as it is well-established in the higher education domain; we also utilized it

while exploring the quality parameters (survey) [19, 31]. A detailed description of

the stakeholder theory and its applicability in higher education can be found in the

work of Jongbloed [23]. The higher education domain is associated with several inter-

nal and external stakeholders that have significantly divergent perceptions regarding

educational quality [18]. Since the perceptions of academic stakeholders are divergent

with respect to academic quality, this phenomenon should also be reflected by edu-

cational survey data; therefore, we hypothesize that the classification of educational

survey data should identify each stakeholder class according to the inherent features

of the survey data set.

5.2. Classification of original survey data

We used the Waikato Environment for Knowledge Analysis – popularly known as the

WEKA platform (Version 3.8.5) – for classifying our data set. WEKA provides a rich

set of machine-learning techniques for data analysis and predictive modeling [20]. We

chose ten classifiers – two each from five categories (the tree-based, Bayes theorem-

based, function-based, ensemble-based, and instance-based classifiers) for classifying

our data set. Our chosen classifiers included the random forest, random tree, random

subspace, random committee, logistic, multilayer perceptron, naive Bayes, BayesNet,

IBK, and KStar classifiers. We used a ten-fold cross-validation test procedure and

standard (default) parameter settings for each of the chosen classifiers.
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Since our data set contained ordinal-valued responses regarding 11 survey items

that were structured in a simple data grid, we first passed our original data set

(categorical form) as input to the classification methods. A summary of the re-

sults for the chosen classifiers is presented in Table 2. This summary presents the

weighted averages of the chosen assessment parameters for the classified respondent

categories by the classifiers. We chose seven popular classification-assessment pa-

rameters: false-positive rate (FPR), accuracy (ACC), precision (PRE), recall (REC),

F-measure (F-M), the area under the receiver operating characteristic curve (ROC),

and the area under the precision recall curve (PRC) [43].

Since each performance measure has its own strengths and limitations depending

on the context and the type of data to which it is applied [21], we present the results of

each of the chosen eight in the tables just to present a holistic profile of the classifier’s

performance. For clarity and readability purposes, however, we chose ROC in our text

discussions most of the time for comparison.

Table 2
Performance of various classifiers over original data (ordinal)

Classifier FPR ACC. PRE. REC. F-M. ROC PRC

Random Forest 0.003 0.995 0.986 0.986 0.986 0.999 0.997

Random Tree 0.005 0.992 0.978 0.977 0.977 0.990 0.971

Random Subspace 0.019 0.969 0.908 0.906 0.906 0.991 0.963

Random Committee 0.003 0.995 0.985 0.985 0.985 0.999 0.999

Logistic 0.062 0.899 0.693 0.696 0.693 0.914 0.749

Multilayer Perceptron 0.018 0.970 0.911 0.910 0.909 0.960 0.923

Naive Bayes 0.067 0.888 0.661 0.665 0.660 0.895 0.698

BayesNet 0.068 0.888 0.659 0.664 0.659 0.895 0.698

IBK 0.002 0.996 0.989 0.989 0.989 0.999 0.996

KStar 0.002 0.996 0.989 0.989 0.989 1.000 0.999

A summary of the results that are presented in Table 2 suggests that the chosen

classifiers identified the existing classes in our data quite accurately. Most of the

classifiers surpassed a score of 0.90 out of the maximum 1.0 for ROC and the other

measures (ACC, PRE, REC, F-M, and PRC). The ROC values for random forest,

random tree, random committee, and IBK were all 0.99 (almost 1.0), which suggests

that these classifiers predicted accurate labels for nearly all of the test samples. These

trends signify that each category in the data had its own specific relational pattern in

the data set. Even though the results of a few of the classifiers (Logistic, naive Bayes,

and BayesNet) were slightly inferior, they were still quite impressive in general (ROC

– greater than 0.89). The raw implication of these results is that ML classification

techniques are quite good at extracting patterns from ordinal survey data like ours,

and tree-based, ensemble-based, and instance-based classification methods can work

exceptionally well in such scenarios. However, generalizing this implication is a topic
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for further research, and the classification methods need to be evaluated on several

other ordinal survey data sets to confirm such an implication.

These results can also be interpreted from the point of view of the application of

ML in survey methodology. On the basis of these classification results, we can vali-

date our primary hypothesis (validating the stakeholder theory). These classification

results signify that the existing classes in data have their specific inherent structures.

This phenomenon suggests that each academic stakeholder category has quite pe-

culiar opinions regarding the quality of HEIs. The existing respondent categories

(academic stakeholders) are easily recognizable based on their choice patterns; based

on the specificity of their opinions, they can be predicted with utmost confidence.

Our classification results thus validated the applicability of the stakeholder theory

in the domain of the quality of HEIs. Even though this phenomenon is well-known in

the academic domain from a theoretical point of view, these classification results serve

as solid empirical evidence of the existence of such a phenomenon. These results thus

affirm that machine learning is quite useful in analyzing complex social constructs

and can serve several important applications of survey research.

On several occasions, ordinal data (especially in self-administered online surveys)

has been treated as real-valued [30]. Thus, we attempt to analyze the effects of the

magnitude-based treatment of ordinal values over classifier performances. We passed

our original data set as a real-valued data set to classifiers and observed their results

(ordered categories were mapped into consecutive integers 1, 2, 3, and 4). A summary

of the classification results over such converted data is given in Table 3.

Table 3
Performance of various classifiers over original data (real)

Classifier FPR ACC. PRE. REC. F-M. ROC PRC

Random Forest 0.003 0.995 0.984 0.984 0.984 0.999 0.997

Random Tree 0.004 0.994 0.982 0.982 0.982 0.991 0.973

Random Subspace 0.025 0.959 0.881 0.878 0.877 0.985 0.945

Random Committee 0.003 0.995 0.985 0.985 0.985 0.999 0.997

Logistic 0.078 0.871 0.614 0.615 0.614 0.872 0.653

Multilayer Perceptron 0.058 0.907 0.729 0.720 0.722 0.869 0.661

Naive Bayes 0.072 0.879 0.632 0.637 0.627 0.883 0.680

BayesNet 0.071 0.882 0.643 0.647 0.642 0.888 0.691

IBK 0.003 0.996 0.988 0.988 0.988 0.996 0.990

KStar 0.003 0.995 0.987 0.987 0.987 1.000 0.999

The gross results (for the ROC score) of all of the classifiers except for the tree-

based, instance-based, and ensemble-based classifiers showed a slight decline in their

performance after ordinal-to-real conversion. The observable decline in ROC could

be found to correspond with the function-based and Bayes theorem-based classifiers

(logistic, multilayer perceptron, BayesNet, and naive Bayes). Even though the differ-

ences in the results (Table 2 and Table 3) were not very significant, this tells us that
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the magnitude-based treatment of ordinal values impacted the relational structure of

the survey data. In this way, these results validate the previous studies that have em-

phasized avoiding the magnitude-based treatment of ordinal data [16, 30]. However,

future research is needed to solidify this aspect empirically.

5.3. Classification of transformed survey data

In this subsection, we attempt to test the robustness of our transformation technique

by applying the chosen classifiers over transformed data and analyzing the predictive

power of the models. Since our transformation method reduces ordinal data of any

dimension into six-dimensional real-valued vectors, it causes a significant amount of

information loss. The information loss in our transformation occurs at two levels:

one – at the time of converting original data into directional patterns, and second –

at the time of converting direction vectors into the end-points of the line segments.

Such a conversion makes descriptive analyses and interpretations of data easier, as

the data-points can be easily visualized inside a cylindrical coordinate system. How-

ever, reducing the dimensions while preserving the natural features of the data is

a trade-off [22]. A transformation method (especially one that reduces dimensions)

is said to be effective if it can balance these two contradictory aspects. Therefore,

we hypothesize that our transformation method will be useful if it can retain a fair

amount of predictive power despite the information loss. Our assumption is that, if

classifiers that are applied over data (transformed by our method) can predict the

true class labels of test samples with sufficient accuracy, then it can be said that

our transformation method is useful and robust in the context of survey applications.

We first transform original survey data by applying our proposed transformation

method. The transformation of original survey data converts 11-dimensional ordinal

observations into 6-dimensional real-valued vectors. These six-dimensional vectors

depict the coordinates of the three-dimensional end-points of the line segments in-

side the proposed vectorized data space. In this way, our transformation method

significantly reduces the size of the data (an ≈ .45% reduction in size). Such a size

reduction is beneficial in many aspects. The reduced data is easier to handle, as it

requires fewer processing resources. In addition, a descriptive analysis of reduced

information is easy, as it can be visualized in a 3-D data space.

We applied classifiers over transformed data and evaluated their performance

based on the chosen assessment parameters. A summary of the classifiers’ perfor-

mance over the transformed data is given in Table 4. It can be observed from Table 4

that, except for the function-based and Bayes theorem-based classifiers (logistic, mul-

tilayer perceptron, naive Bayes, and BayesNet), all of the other classifiers performed

remarkably well over the transformed data. Their ROC (as well as ACC) values, which

were greater than 0.97, suggest that they can easily identify classes and accurately

predict class labels for unseen test observations based on their patterns. Although the

performance of the classifiers declined slightly over the transformed data, the results

were pretty impressive and optimistic. These results suggest that our transformation
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method could retain a sufficiently good amount of data features despite the infor-

mation loss. Thus, we can say that our proposed transformation method works well

for ordinal survey data and is quite useful for survey applications. The declines in

the classifiers’ performances were attributed to the significant reduction of the data

size. Such a reduction causes a loss of information regarding the interrelationships

among the variables to some extent. However, this is a common problem with data-

reduction methods, and it is an open-ended research problem [14]. Moreover, the

proposed transformation has some limitations: it only applies to ordinal data that

has small scales, and it cannot handle high-dimensional data.

Table 4
Performance of various classifiers over transformed data

Classifier FPR ACC. PRE. REC. F-M. ROC PRC

Random Forest 0.017 0.973 0.920 0.919 0.919 0.994 0.978

Random Tree 0.017 0.971 0.915 0.915 0.915 0.979 0.935

Random Subspace 0.032 0.948 0.847 0.844 0.843 0.974 0.911

Random Committee 0.016 0.974 0.922 0.921 0.921 0.993 0.978

Logistic 0.135 0.775 0.301 0.325 0.305 0.666 0.303

Multilayer Perceptron 0.116 0.809 0.418 0.426 0.417 0.721 0.403

Naive Bayes 0.127 0.790 0.359 0.371 0.356 0.675 0.329

BayesNet 0.092 0.850 0.553 0.549 0.550 0.858 0.608

IBK 0.016 0.973 0.919 0.919 0.919 0.977 0.934

KStar 0.017 0.973 0.918 0.918 0.918 0.994 0.979

6. Discussion

Survey research has an important place in several key domains. The conventional

survey paradigm relies mainly on the statistical modeling of survey errors, which re-

quires that the relationships between the variables and the outcomes be defined in

a functional form. However, this is not always achievable in various real-world prob-

lems. Machine learning is the most suitable approach for such scenarios. Thus, this

paper revolves around the utility of machine learning in survey research by taking

the example of classification and its utility in analyzing complex social constructs.

We applied various classification methods to a real educational survey data set and

evaluated their results with respect to the well-established stakeholder theory. The

results suggested that the classification of the used survey data satisfied the stake-

holder theory quite well, which depicts the potential of machine learning in the survey

research domain. In addition, we also introduced a data-transformation method that

converts ordinal survey data into real-valued vectors. Our transformation method

enables ordinal observations to be represented as line segments inside a 3-D cylindri-

cal Cartesian system, thus making its descriptive analysis relatively easier. To show

the strength of the proposed concept, we transformed the used survey data through
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the proposed method and evaluated the performance of various classifiers over the

transformed data. The classification results suggested that the proposed transforma-

tion method worked quite well on the used survey data. However, we also observed

that the transformation might cause significant information loss – especially if the

data is high-dimensional. Moreover, the proposed method was limited to small-scale

ordinal values; thus, future research should be directed toward making a more robust

and general-purpose data-transformation method in order to eliminate such problems.

7. Conclusion

This paper outlined the requirements and potential of machine learning in survey

research. The article dealt with two crucial aspects – the transformation and classifi-

cation of ordinal survey data. We introduced a transformation method that converts

ordinal survey data into a six-dimensional continuous feature vector. Our transfor-

mation method observes each survey observation inside a 3-D cylindrical data space,

making its interpretation easier. We also applied various classifiers to real survey

data and its corresponding transformed replica. We evaluated the performance of the

chosen classifiers on both original and transformed data. The results suggested that

most of the classifiers that were trained over our data predicted the actual class labels

with high accuracy. Such optimistic results affirm that the proposed transformation

method works quite well over ordinal survey data and that it is quite suitable for

survey applications.
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