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Abstract Melanoma skin cancer is one of the most dangerous and life-threatening can-

cers. Exposure to ultraviolet rays may damage the skin cell’s DNA, which can

cause melanoma skin cancer. However, detecting and classifying melanoma and

nevus moles at their immature stages is difficult. In this work, an automatic

deep-learning system has been developed based on intensity value estimation

with a convolutional neural network model (CNN) for detecting and classifying

melanoma and nevus moles more accurately. Since intensity levels are the most

distinctive features for identifying objects or regions of interest, high-intensity

pixel values have been selected from extracted lesion images. Incorporating

these high-intensity features into CNN improves the overall performance of the

proposed model than the state-of-the-art methods for detecting melanoma skin

cancer. To evaluate the system, we used five-fold cross-validation. The exper-

imental results showed that superior percentages of accuracy (92.58%), sen-

sitivity (93.76%), specificity (91.56%), and precision (90.68%) were achieved.
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1. Introduction

Skin covers the entire outsides of our bodies and protects all of our internal body

parts from environmental injuries. Nevertheless, it sometimes suffers from different

diseases that could often be life-threatening dueto its location, and skin cancer is one

of them [9]. There are three major types of skin cancer: basal cell carcinoma (BCC),

squamous cell carcinoma (SCC), and melanoma and Merkel cell carcinoma (MCC) [5].

Among all skin cancers, melanoma is the most dangerous and life-threatening one [32].

It grows rapidly and can spread to other parts of the body. According to [5], about

99,780 new melanomas will be diagnosed (about 57,180 in men, and 42,600 in women),

and 7,650 people are expected to die of melanoma skin cancer (about 5,080 men, and

2,570 women) in 2022. The World Health Organization (WHO) reports that one out

of every three malignancies is affected by skin cancer [40]. From 2009 to 2019, there

has been about a 55-percent increase in current skin cases examined annually [39].

The lifetime risk of being affected by melanoma is about 2.6% (1 in 38) for whites,

0.1% (1 in 1,000) for Blacks, and 0.6% (1 in 167) for Hispanics [5]. The early-stage

detection of melanoma skin cancer can be beneficial in curing it [3, 11, 12, 37]. The

early diagnosis survival rate of skin cancer is more than 90 percent [2].

Due to the complex nature of skin lesions, dermatologists relate many visual

observations (such as the symmetry of a lesion area and its size, shape, color, and

border) to diagnose malignant melanoma [1]. A sign of an ugly duckling lesion is an-

other warning sign of melanoma [4]. There are also some popular scoring techniques

to identify malignant melanoma, where a 7-point checklist [6], the Menzies method,

a 3-point checklist, and ABCDE rules are the widely used methods [4]. Out of these,

a common way for detecting melanoma skin cancer is the ABCDE rule: A for asym-

metry (one half of the mole does not match the other), B for border irregularity, C for

non-uniform color, D for a diameter that is greater than 6 mm (or ¼ inch – about the

size of a pencil eraser), and E for evolving size, shape or color. To assess a mole’s size,

color, and texture, specialist doctors examine lesion areas in which the total dermato-

scopic score (TDS) is estimated by using ABCDE and some weight factors. They

conclude the diagnosis results from the TDS value; if the TDS is above a threshold

value, they identify the lesion as a malignant one; otherwise, it is benign [29].

Since this detection procedure is time-consuming, it needs specialist doctors to

ascertain the results [22]. There is a high possibility of being influenced by human

subjectivity, which makes it inconsistent in certain conditions. A computerized arti-

ficial intelligence-based system can easily detect and differentiate between melanoma

and normal skin to eliminate this weakness. Recently, deep neural networks (DNN)

have been used in many different ways for medical imaging [17]. A convolutional

neural network (CNN) is useful for image classification and recognition because of

its capability to achieve high accuracy in a short amount of time [42, 43]. Compared

to its predecessors, the main advantage of CNN is that it detects important features

automatically without any human supervision [27]. In this work, an intelligent system

is developed to predict melanoma and nevus moles at an early stage, considering the
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complicated issue. Our innovative approach uses pre-processing steps, an intensity

value estimation (IVE) model, and a CNN model.

To train and test the model, we used five-fold cross-validation. The proposed

model is evaluated using five well-known quantitative metrics: sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV), and accuracy. Con-

sidering the issues, the major contributions through this work can be enlisted as

follows:

• To develop an intensity value estimation (IVE) model.

• To present an efficient image-resizing technique to keep the lesion shape, mini-

mizing possible data loss.

• To design the proposed methodology by combining the resizing technique, IVE

model, and convolutional neural network (IVEwCNN) for the automatic classifi-

cation and detection of melanoma skin cancer and nevus moles.

• A comparative histogram analysis is performed between our newly developed

method and other state-of-the-art methods to evaluate the effectiveness of our

newly developed model.

The rest of the paper is organized as follows: a related literature review is dis-

cussed in Section 2. The proposed methodology is categorized into subsections and

briefly discussed in Section 3. Section 3.2 describes the high intense pixel value esti-

mation and acquisition process. The experimental analysis is discussed in Section 5.

Image acquisition and MED-NODE data set descriptions are stated in Section 4. In

Section 5.2, the performance-evaluation metrics and experimental results are discussed

concerning different methods and the MED-NODE data set. Finally, the conclusion

is discussed in Section 7.

2. Background study

The authors in [14] worked with the MED-NODE data set. To segment regions of

interest in healthy and lesioned areas, they used k-means clustering (k = 2). Before

segmentation, a series of pre-processing steps were done to handle the noise and

illumination effectively. They utilized Gaussian-smoothing (σ = 5) and Kuwahara-

smoothing filters to remove noise and additional noisy features while preserving the

edges. After removing the noise, they mapped each image into 50 sub-images of

a pixel size of 15 × 15. A cluster-based adaptive metric classifier was developed to

extract 675 features per image. The training feature vector size was 2250 (50 × 45),

and the evaluated feature vector size was 6250 (50 × 125). The model was good, but

the data set’s size was one of its main limitations.

A deep neural model in which the authors in [31] considered reducing the il-

lumination and noise effect in the pre-processing step was proposed; then, they fed

the enhanced images into a pre-trained CNN model. Hence, the data set had lim-

ited images, so they used cropping and rotation to expand the training data. They

produced a segmentation mask by applying the k-means classifier (k = 2) to the
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pre-processed image. The mask was enhanced by applying morphological operations.

Based on the information of the segmentation mask, a Gaussian filter was used on

the standard skin parts. In their CNN model, 20 feature maps were generated in the

first convolution layer, and 50 were generated in the second convolution layer. After

each convolution layer, the pooling layer and a two-layer fully connected stage were

utilized. Finally, the diagnosis results were found from this two-layer network with

a linear transfer function. The training data was fed to the network using a batch

size of 64. They randomly split the data set into 20% testing and 80% training data

with no overlapping. To train the model, they performed 20,000 iterations. They

addressed the fact that the illumination correction increased their system’s discrimi-

nation capability, which helped increase system accuracy.

The authors in [39] developed a combined model using multi-level segmenta-

tion, CNN, a support vector machine (SVM), and a back-propagation neural network

that combined the Otsu, modified Otsu, and watershed segmentation methods for

segmentation. Finally, CNN and SVM were used for the training and classification,

respectively. Other authors [28] used MED-NODE and the international skin imaging

collaboration (ISIC) data set together with 2,170 images for their classification model.

To avoid noise and common lighting problems, they used a few pre-processing steps

to improve the image texture and darken the perimeter of a lesion. They utilized

contrast enhancement and an anisotropic diffusion filter to correct the image con-

trast, remove noise, and preserve the lesion edges. Then, the shape features method

and principle component analysis (PCA) were used to extract features and reduce

features dimension. A convolution deep neural network (CDNN) was used where the

dropout was set to 0.5 to avoid overfitting, the learning rate tested 0.1 to 0.001, and

the discovered minor variation worked well when tested on different batch sizes, but

they got 32 and 64 (which work well in many situations). Their proposed system

achieved 96.8% accuracy with a few noticeable epochs in 0.41 min.

Another skin cancer-detection technique was introduced in [13] that utilized the

well-known HAM10000 data set. In the pre-processing steps, they removed noise,

reduced image resolution, and applied image augmentation to avoid overfitting in or-

der to increase the learnability of the system. The system produced several copies

of existing images by applying translation, rotation, and zooming on images. For

the classification task, they used CNN and the transfer-learning method along with

other classification algorithms such as XGBoost, SVM, and random forest to classify

and compare their analyses. Finally, they yielded an accuracy of 90.51% in the ResNet

model’s transfer-learning approach. The author’s used the MED-NODE data set [30].

In the pre-processing step, Otsu’s segmentation method was used on a grayscale image

to segment the lesion part from the image. A total of 1900 features were extracted

from each segmented lesion image. Twenty-five features were excluded from one thou-

sand nine hundred features, as they were either too high, too low, or constant across

the data set. With the different types of training and cost functions that were avail-

able in a multi-layer neural network (MLP), this feature set was tested by various
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neurons. The relief method selected the best features rank-wise among all 1,875 fea-

tures. Using the features that were found from a principal component analysis (PCA)

of the extracted 1,875 features, neural network (MLP), linear SVM, medium KNN,

and linear discriminant were the classifiers. Their work MLP with PCA featured only

used 25 features showed an 87.18% accuracy. The authors in [44] addressed the effect

of contrast-enhancing and image-texture analysis, and they considered pixel-intensity

values in an image-classification model. They found that contrast-enhancing was de-

signed to increase the discrimination between the intensity values of an image to help

them be easily identifiable by human and computer vision. The primary pieces of

information were stored in the intensity value of a pixel (this can be a single value

for a gray-level image or three values for a color image). They also addressed the fact

that image-texture analysis could be an essential factor for pattern recognition due

to the power of its discrimination ability.

Noise was reduced from the skin lesions by using a Gaussian filter, then they

applied an improved k-means clustering-based segmentation [7]. The authors in [7]

extracted three different features by using a local binary pattern (LBP), a gray-

level co-occurrence matrix (GLCM), and RGB color channel features from the ROI

of skin lesions. A distinctive hybrid super feature vector was created by using the

extracted textural and color features from a lesion. For classification, they used

a support vector machine (SVM), k-nearest neighbor (KNN), naÛve Bayes (NB), and

decision tree (DT). The DERMIS data set (146 melanoma and 251 nevus) was used

in the experiment. The texture features, GLCM, and LBP features were merged with

the color features to acquire a high classification accuracy.

3. Proposed methodology

The general process of detecting and diagnosing melanoma skin cancer has been sum-

marized into key operating procedures such as image pre-processing, image segmen-

tation, feature extraction and analysis, and the classification of lesion images [26,38]

as described in Figure 1.

Figure 1. Process of diagnosing melanoma skin cancer

Our proposed methodology is divided into pre-processing, intensity value es-

timation, and convolutional neural network (CNN) steps. A few sub-parts in the
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pre-processing step were removed to reduce any artifacts that could have misled the

CNN model. The proposed methodology is described by the block diagram that is

shown in Figure 2.
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Figure 2. Detailed architecture of proposed methodology

3.1. Pre-processing

In the pre-processing stage, images from the collected MED-NODE data set [14] were

passed through a series of basic image-processing methods to reduce the effects of any

misleading factors on the CNN model. As the images contained both healthy skin

and lesion parts, we corrected the brightness (B), sharpness (S), and contrast (C) to

enhance the images’ lesion part to process further. This experiment used a Python

“ImageEnhance” class from the “pillow” module to correct the BSC. The general

intensity of the pixels refers to the brightness in an image, and the histogram gives

a clearer indication of the brightness. The higher end in the histogram indicates

a brighter image, and the image is darker when the histogram is confined to a small

portion towards the lower end [19]. The number of details present in an image refers to

its sharpness. Lossy compression, motion blur, de-noising, and out-of-focus filtering

are some of the causes that affect perceived image sharpness [19]. In general, contrast

refers to splitting up the dark and bright regions in an image [8]. The contrast-

enhancement technique eliminates the anomaly that would otherwise occur between

different regions in an image.
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An RGB image contains three channels – red (R), green (G), and blue (B) –

whereas the grayscale image contains only one channel. The three channels in an

RGB image contain different intensity levels to represent an image in a color form.

For various image-processing tasks such as morphological operation segmentation,

using a grayscale image is more accessible than an RGB image because it has only

one channel. So, we converted the images from RGB to grayscale. The grayscale

pixel value is calculated as the weighted sum of the corresponding R (red), G (green),

and B (blue) pixels as in Eq. (1) to convert an RGB channel image into a single

grayscale channel image. Cathode-ray tube (CRT) phosphors use these weights to

better represent the human perception of RGB than equal weights [33]. The texture

in an image offers information about the spatial ordering of colors or intensities in

an image or the selected region of an image [41]. Since the grayscale image is formed

from the three-channel RGB image using Eq. (1), the image color and texture could

be represented by the different levels of pixel intensity in the grayscale image [10,23]:

Gim = 0.2125R+ 0.7154G+ 0.0721B (1)

Although professional high-resolution cameras take images, non-uniform light creates

noise effects. We used the Gaussian filter to remove noise from the grayscale lesion

images (σ = 1.35). The healthy skin part of the images was irrelevant to our model;

so, we segmented the lesion part from the healthy skin part using Otsu segmentation

before feeding the images into the CNN model.

Algorithm 1: Resize Image

Input: A 2D image [oldImr,c], where r ≤ Nr, c ≤ Nc

Output: Resized 2D Image of size (Nr ×Nc)

1. Initialization

(a) reqSize = (Nr, Nc)

(b) A 2D image [newImr,c], r, c = reqSize, where each element is initialized

with integer 0.

(c) hr ← ⌊(reqSize− len(oldImrowsize))/2⌋
(d) hc← ⌊(reqSize− len(oldImcolsize))/2⌋
(e) hcUp← hc

2. For r ← 0 to len(oldImrowsize) do

(a) For c← 0 to len(oldImcolsize) do

i. newIm[hr][hcUp]← oldIm[r][c]

ii. hcUp← hcUp+ 1

(b) End For

(c) hr ← hr + 1

(d) hcUp← hc

3. End For

4. Return newIm
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The use of a conventional resizing algorithm on a grayscale image would directly

distort the skin session shape [35]. For convenience, we resized all of the segmented

masks (SM) and Gaussian-filtered images (GFI) to a unique size (Nr × Nc, where

Nr = 256 and Nc = 256) by using Algorithm 1 in order to keep all of the lesion

shapes the same as the original. We applied a binary opening on the resized mask

images to remove hair, small objects, and unnecessary things to enhance the lesion

area. The segmented mask is used to segment the lesion area (SLA) from the image

that follows Eq. (2), where “r” and “c” represent the spatial (plane) coordinates of

a 2D image, and the amplitude (r, c) is called the intensity or gray level at the point

for that function:

SLAr,c = GFIr,c ∗ SMr,c where, (r, c) = 1, 2, · · · , (Nc, Nr) (2)

Data augmentation is a strategy that significantly increases the diversity and amount

of data from any available data set to train a model without collecting new data.

Cropping, padding, flipping, zooming in and out, and varying an image size are the

techniques that are used to augment the data. In this work, we used zoom in, zoom

out, flipping, random contrast, random brightness, and rotation techniques to expand

the data [24, 34]. Before feeding the images into the proposed CNN model, the pro-

posed IVE model was applied to take high-intensity pixel values from segmented lesion

images. The model was divided into two sub-steps: edge detection, and high-intensity

pixel value estimation and acquisition. For edge detection, we used Canny edge de-

tection; this eliminated the image noise by smoothing it and then found the image

gradient to highlight those regions with high-spatial derivatives [20]. In the Canny

edge detection, we multiplied the segmented lesion image by 255 in order to avoid

losing precision while converting the image pixel values to unsigned 8-bit. After the

data augmentation, the resized segmented lesion images were fed into the IVE model.

The IVE model output a high intense pixel value that is stated in Figures 3g and 3h.

3.2. Intensity value estimation

The intensity value estimation (IVE) model is one of the significant contributions of

the work, as intensity levels act as one of the most distinctive features for identifying

objects or regions of interest [25]. In the IVE model, a multiplication between every

pixel of a segmented lesion image and a constant value is performed using Eq. (3).

Here, f is a 2D light intensity function, and (x, y) denotes the spatial coordinates of

the image. Then, the normalization on the calculated image is used to distribute the

intensity of the lesion region pixels using Eq. (4). The normalization process converts

the gray-level intensity of the image by the range of 0 to 255 (Figs. [3e] and [3f]). The

histogram shows the pixel value between 0 and 255, whereas the edge detection of

the segmented lesion image histogram shows the pixel intensity to be within 0 or 255

(Figs. [3c] and [3d]). So, there are no intensity values between 0 and 255 in the edge-

detection image, which cuts off a few features from the image. Here, our proposed

IVE model helps retain the lesion image’s different intensity levels. These varieties
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of the intensity levels of lesion images contain more information (color and texture) in

the intensity level form than can be found in normal edge-detection techniques.

a) b)

c) d)

e) f)

g) h)

Figure 3. Melanoma and nevus lesion histogram comparison: a) gray-level image

(melanoma); b) gray-level image (nevus); c) canny edge detection (melanoma); d) canny

edge detection (nevus); e) unsigned intensity (melanoma); f) unsigned intensity (nevus);

g) high intense pixel collection (melanoma); h) high intense pixel collection (nevus)

Table 2 shows the experimental results of our proposed model using Canny edge

detection. Since the improvement of the effect was not significant, we resolved the

model to distribute the gray-level intensity of the image using Eq. (4). It can be

observed that this modification could select the pixel values in the segmented lesion

images that were greater or equal to a threshold value Eq. (5):

f(x, y) = f(x, y)× Constant, for every x, y; (3)

f(x, y) = normalize(f(x, y)); (4)

f(x, y) =

{
f(x, y), if f(x, y) > Threshold

0, otherwise.
(5)

Using the proposed high-intensity value-estimation model produced more features in

different intensity levels than the only the edge detection of the segmented lesion
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(Figs. [3g] and [3h]). The model extracted the color and texture features in the forms

of the different intensity levels of the pigmentary lesion. In this aspect, choosing

intense high pixels helped our model to differentiate melanoma cells from nevus cells.

This decision experiment is depicted in Figure 3.

3.3. Convolutional neural network

It has been proven that a simple artificial neural network (ANN) fails at a certain point

– especially, an over-fitting may arise due to the size of the image [15]; so, CNN has

tremendous advantages over ANN in image-classification problems. CNN is a class of

deep neural networks that has made a massive breakthrough in image classification,

recognition, object detection, face recognition, and many other areas [18]. CNN helps

to auto-detect important features and extract features from images, which may be

helpful in the image-classification task [34]. It extracts features from images using

filters and reduces the number of learnable parameters by using the pooling technique.

The CNN model is comprised of five stages of neural layers in its structure: input,

convolutional (Convo + ReLu), pooling, fully connected, and output. The proposed

CNN model workflow is depicted in Figure 4.

Figure 4. Proposed IVEwCNN model workflow

The CNN model accepts the input as a three-dimensional matrix (width ×
height × dimension) to the input layer. Dimension defines the number of chan-

nels that are contained in an image; for a grayscale image, this is 1, and for RGB,

it is 3. The first layer of the CNN model is the input layer, where an input image

with a size of 256 × 256 × 1 is given. Then, the input image is passed to the con-

volutional layer, where filters are applied to the original images. The filters are slid

over the receptive fields of the same input image by a stride and continue through the

whole image. The convolutional layer uses the ReLu activation function to zero all

negative values. A pooling layer is used after each convolutional layer to reduce the

spatial volume of the input image. The fully connected layer takes the output from

the previous layer and flattens the inputs to convert them into a single vector. This

layer involves weights, biases, neurons, and activation functions, and it is responsible
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for updating the weights in the training session. Here, we used the ReLu activation

function to produce outputs from each layer. The output layer is the final layer that

uses the Softmax activation function to estimate melanoma skin cancer and nevus

mole probability.

4. Data set

The proposed system was evaluated on the publicly available standard MED-NODE

melanoma data set that contains high-resolution skin lesion images [14]. The

MED-NODE data set is a subset of the digital image archives of 50,000 images that

were collected by the Department of Dermatology at the University Medical Center

Groningen (UMCG). A dermatologist examined and assessed all of these pictures as

being of the highest caliber [14]. These photographs were captured in the JPEG for-

mat with a Nikkor lens on Nikon D3 and D1x cameras from a distance of around 33 cm

from the skin lesion areas. Figures 5 and 6 display some images from the MED-NODE

data set.

The soundness of the data set was ensured by considering the following crite-

ria [14]:

• MED-NODE data set (170 images) is created by randomly chosen images (rele-

vant patient instances cannot possibly be identified);

• superficial spreading melanoma and nevi are included in data set;

• each picture originated from different patient (aside from image, which shows

how disease significantly differs in various bodily areas);

• each picture is sharp and properly exposed to annotate correctly;

• each picture has represented group to which it belongs.

Figure 5. Melanoma skin-cancer images

Figure 6. Nevus mole images
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5. Experimental analysis

Some of the data set image resolutions were above (Nr × Nc) (where Nr = 256 and

Nc = 256), which needs a high cost of computing power. Since rescaled lesion images

would be better for deep neural networks [35], we used pre-processing steps to resize

the images to (Nr × Nc) and removed any unwanted artifacts. As the low amount

of data could mislead and overfit the deep neural network model, the augmentation

technique was applied to increase the amount of data and its diversity [36] to reduce

the misleading and overfitting of the data. Then, the IVE model was applied to

acquire high intense pixel values from each segmented lesion image, which allowed us

to keep important information about the melanoma and nevus mole features. Feeding

the significant feature value to CNN achieved a better result.

The authors in [16] discovered that, for a training/validation set, the number of

available adjustable parameters for the data set should be inversely proportional to the

square of a significant portion of the patterns. As a result, the 80/20 split was chosen

to avoid overtraining the deep neural network. Most of the state-of-the-art methods

[14, 21, 29, 31] that use the same-sized (or smaller) data sets used 80% of the data

for training and 20% for testing purposes. In the experiment, the data-augmentation

technique was used to enhance the data set. After the data augmentation, 80% of the

images were employed to train the algorithm and the remaining 20% for validation

and testing purposes. To avoid biased performance results, we chose average results

from the five-fold cross-validation on our proposed model.

5.1. Training and testing

At the beginning of our system, it starts to train our model with 80% training images,

and the remaining 20% is used for testing purposes. Our system split the data set

such that no overlapping occurred in the training and test data sets. We set 40 as

the number of epochs for training our model. For optimization purposes, we used

Adam optimization and sparse categorical cross entropy loss to calculate the loss of

the CNN model. We implemented our model in the Google cloud platform using

a Colab notebook, which provided a 12 GB NVIDIA Tesla K80 GPU that could be

used continuously for up to 12 hours and was highly integrated with Google Drive.

It also offered TPU recently for free. The full CNN model is depicted in Table 1.

Table 1
Architecture of CNN Layers

Layers Output Size Kernel Size Activation Function

Input Layer 256 × 256 × 1 – –

Conv2D 256 × 256 × 128 7 × 7 ReLu Activation

MaxPooling2D 85 × 85 × 128 3 × 3 (strides = 3) –

Conv2D 85 × 85 × 64 4 × 4 ReLu Activation

MaxPooling2D 28 × 28 × 64 3 × 3 (strides = 3) –
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Table 1 cont.

Conv2D 28 × 28 × 32 5 × 5 ReLu Activation

MaxPooling2D 14 × 14 × 32 2 × 2 (strides = 2) –

Conv2D 14 × 14 × 128 6 × 6 ReLu Activation

MaxPooling2D 4 × 4 × 128 3 × 3 (strides = 3) –

Conv2D 4 × 4 × 32 5 × 5 ReLu Activation

MaxPooling2D 2 × 2 × 32 2 × 2 (strides = 2) –

Conv2D 2 × 2 × 128 6 × 6 ReLu Activation

MaxPooling2D 1 × 1 × 128 2 × 2 (strides = 2) –

Flatten 128 – –

Dense182 512 – ReLu Activation

Dense183 128 – ReLu Activation

Dense184 64 – ReLu Activation

Dense185 512 – ReLu Activation

Dense186 512 – ReLu Activation

Dense187 64 – ReLu Activation

Dense188 2 – Softmax Activation

The proposed CNN architecture is comparable with the other well-known DNN

models that are implemented for skin-cancer detection. The DNN model must have

the minimum number of these proposed layers with the IVE model in the processed

image in order to achieve the best experimental results.

5.2. Performance evaluation

The proposed IVE model was used to estimate the high-intensity pixel values from

the training data set, which were incorporated into our developed CNN model to

detect and classify melanoma skin cancer and nevus moles. Table 2 shows the five-

fold cross-validation experimental results of our proposed model using Canny edge

detection, and Table 3 shows the five-fold cross-validation experimental results of our

proposed model using intensity value estimation with CNN (IVEwCNN).

Table 2
Five-fold cross-validation experimental results using Canny edge detection with CNN

Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Sensitivity 0.500 0.750 0.375 0.438 0.688 0.550

Specificity 0.789 0.684 0.842 0.737 0.842 0.779

PPV 0.667 0.667 0.667 0.583 0.786 0.674

NPV 0.652 0.765 0.615 0.609 0.762 0.680

Accuracy 0.657 0.714 0.629 0.600 0.771 0.674
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Table 3
Five-fold cross-validation experimental results using intensity value estimation

with CNN (IVEwCNN)

Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Sensitivity 1.000 1.000 1.000 0.875 0.813 0.9376

Specificity 0.894 1.000 1.000 0.789 0.895 0.9156

PPV 0.889 1.000 1.000 0.778 0.867 0.9068

NPV 1.000 1.000 1.000 0.894 0.850 0.9488

Accuracy 0.943 1.000 1.000 0.829 0.857 0.9258

It has been demonstrated that pixel intensity levels serve as one of the distinguish-

ing features for identifying an object or region of interest – particularly when consid-

ering skin cancer. Textural features are regularly used in image classification because

they enhance the classification of nevus and melanoma by computing the irregularities

of their structures [25]. Since choosing high-intensity pixels gives more information,

the model can easily differentiate melanoma cells from nevus cells more preciously;

therefore, the proposed model shows better results when compared to others.

From Tables 2 and 3, we can see that our proposed (IVEwCNN) model performed

significantly better in terms of each described performance evaluation metric than the

proposed model with Canny edge detection. We used the same threshold value for

all of the performance evaluation metrics in this experiment. For an experimental

evaluation of the algorithm, the proposed model was compared with some existing

works that have been described in [14, 21, 29–31], as they all worked with the same-

sized (or smaller) data sets and evaluated their system performance. For performance

measurement, the proposed model was evaluated on five commonly employed metrics

(sensitivity, specificity, PPV, NPV, and accuracy) that are widely used in classification

problems. The performance evaluation metrics that were considered in this work can

be defined as follows:

Sensitivity =
true detected melanoma cases

all melanoma cases
(6)

Specificity =
true detected non melanoma cases

all non melanoma cases
(7)

PPV =
true detected melanoma cases

detected melanoma cases
(8)

NPV =
true detected non melanoma cases

detected non melanoma cases
(9)
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Accuracy =
true detected cases

all cases
(10)

The proposed IVE model performance and the Canny edge-detection technique per-

formances are compared with other state-of-the-art methods that were evaluated on

the same-sized (or smaller) data sets that are described in Table 4. The values in

Table 4 were updated to two decimal points to compare with other state-of-the-art

methods. In Table 4, the results in bold show the experimental results; as can be seen,

our proposed methodology (IVEwCNN) shows better performance evaluation metrics.

We can conclude that the effective use of the CNN model with a well-processed im-

age generates a superior result when using high-intensity pixel values from segmented

lesion skin images.

Table 4
Experimental result evaluation of proposed methodology with the state-of-the-art methods

Methods

Metrics

Sensitivity

(Recall)

Specificity PPV

(Precision)

NPV Accuracy

Texture descriptor [14] 0.62 0.85 0.74 0.77 0.76

Color descriptor [14] 0.74 0.72 0.64 0.81 0.73

Illumination correction [31] 0.81 0.80 0.75 0.86 0.81

Optimized NN

using PSO [29]

0.86 0.86 – – 0.86

S. R. S. Jianu et al. [21] 0.72 0.89 0.87 0.76 0.81

S. Mukherjee et al.

(raw feature only) [30]

0.87 0.73 – – 0.83

S. Mukherjee et al.

(PCA feature only) [30]

0.87 0.87 – – 0.87

Proposed Methodology

(Canny Edge detection)

0.65 0.78 0.67 0.68 0.67

Proposed Methodology

(IVEwCNN)

0.94 0.92 0.91 0.95 0.93

6. Discussion

Instead of conventional visual observations, an efficient expert system was developed

to assist expert physicians in the early-stage detection and classification of melanoma

skin cancer. The proposed IVEwCNN model adopts the new intensity value estima-

tion (IVE) technique in which high-intensity pixel values are calculated from each

segmented lesion image after rescaling the image. Most of the work is done by con-

ducting lesion segmentation and detecting the edges of the segmented lesion, which is

then fed into a deep neural network. This contrast enhancement and texture analysis

increase the discrimination between the intensity of the values of an image, which

improves the overall performance [44]. Our proposed method performs this more pre-

cisely and accurately using three different stages. First, a new image is generated in
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the pre-processing step that consists of a shape of (Nr ×Nc), where the lower dimen-

sion of the segmented image pixels are mapped to retain the original lesion shape.

Keeping the lesion shape the same helps retain information about the lesion area,

size, and border.

a) b) c) d)

Figure 7. Melanoma skin-cancer images: a) melanoma skin lesion;

b) resized segmented lesion; c) canny edge detection; d) IVE model output

a) b) c) d)

Figure 8. Nevus mole images: a) nevus skin lesion; b) resized segmented lesion;

c) canny edge detection; d) IVE model output

Then, the IVE model is applied (as shown in Figs. 7 and 8) to compute the

high-intensity pixels that store the descriptive features of object or region-of-interest

identification [25]. The proposed model (IVEwCNN) showed a significant difference

between the outcome of Canny edge detection and existing works. Table 2 depicts

that the best outcome of Canny edge detection with CNN was 0.75 for sensitivity at

Fold-2, 0.842 for specificity at Fold-3 and Fold-5, 0.786 for PPV at Fold-5, 0.765 for

NPV at Fold-2, and 0.771 for accuracy at Fold-5. The results of the other existing

works are shown in Table 4, where the best results that were achieved were 0.8744 for

sensitivity [30], 0.89 for specificity [21], 0.8674 for PPV [21], 0.86 for NPV [31], and

0.8718 for accuracy [30]. Our proposed model exhibited average IVEwCNN outcomes

as follows: 0.936 for sensitivity, 0.9156 for specificity, 0.9068 for PPV, 0.9488 for

NPV, and 0.9258 for accuracy (as shown in Table 3). Thus, it outperformed the

conventional edge detection-based techniques.

7. Conclusion

This paper presents intensity value estimation with a convolutional neural network

(IVEwCNN) algorithm for detection and classification. The method led the system

to achieve high accuracy, sensitivity, specificity, precision, and NPV when detecting
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and classifying melanoma skin cancer and nevus moles. In addition, pre-processed

images increase the learnability of any system. Here, we chose to take pixels with

higher intensities than a threshold value from a segmented lesion image instead of

edge detection. The technique preserved more features than only edge detection;

so, this helped our system increase learnability and predict melanoma, skin cancer,

and nevus moles more accurately. Our proposed system takes 39 seconds on average

to detect and predict melanoma skin cancer and nevus moles. Finally, we consid-

ered the five-most-popular performance-evaluation metrics to evaluate the proposed

system performance and compared them with some notable existing works on the

same-sized (or smaller) data sets. Due to machine limitations, large data sets were

not considered in this experiment when evaluating the proposed IVE model; hence,

the proposed model’s performance was only evaluated by comparing it to the state-

of-the-art models that used the same-sized (or smaller) data sets for their models. An

experimental comparison shows that the proposed algorithm had better results than

all of the state-of-the-art models. The proposed automatic deep-learning system can

be implemented in dermatological diagnosis to aid doctors in early melanoma detec-

tion. Before going for a clinical application, our proposed system needs to train the

model with an improved large data set. Future work could include feature selection,

feature dimension reduction, and optimizing the CNN model to increase efficiency

and decrease model-training time.
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