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Abstract The feature-extraction step is a major and crucial step in analyzing and under-

standing raw data, as it has a considerable impact on system accuracy. Despite

the very acceptable results that have been obtained by many handcrafted meth-

ods, these can unfortunately have difficulty representing features in the cases

of large databases or with strongly correlated samples. In this context, we at-

tempt to examine the discriminability of texture features by proposing a novel,

simple, and lightweight method for deep feature extraction to characterize the

discriminative power of different textures. We evaluated the performance of

our method by using a palm print-based biometric system, and the experimen-

tal results (using the CASIA multispectral palm-print database) demonstrate

the superiority of the proposed method over the latest handcrafted and deep

methods.
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1. Introduction

Thanks to digitalization, machines can replace manual tasks with computer-vision

technologies today in order to solve several problems. In industries, for example,

these technologies can automate processes to help reduce costs, eliminate hazardous

work, improve working conditions, and perform operations that cannot be controlled

manually [24]. For the implementation of such technologies, the data to be processed

must be acquired by several sensors that are distributed so as to make it possible to

capture the necessary information for controlling a system. Basically, images are the

main side of data representation and are often used in robotics, remote sensing, bio-

metrics, and medical imaging. In all of these applications, data-processing algorithms

must be embedded in their own machines to access the useful information in the im-

ages. In general, these algorithms include pattern-recognition modules that seek to

extract discriminating features from images; this has had a considerable impact on

the performance of computer vision systems.

A pattern-recognition system (PRS) contains several steps through which its

performance can be effectively improved by carefully choosing the method that is

used in each of these steps [7,16]. Acquisition (or capture – typically followed by the

preprocessing process), feature extraction, training, and decision are the main steps

of the PRS flowchart. In fact, these steps are sequential so that each step utilizes

the output of the preceding step as input, often making its precision related to the

precision of its predecessor. In general, the data-acquisition and feature-extraction

steps are the two most important steps in this type of system, as the training and

decision-making steps are efficient if the features of the samples of different classes

can be represented separately. In our work (and based on a biometric system), we will

therefore try to highlight the impact of multispectral imaging technologies (used in the

acquisition step) and the deep-analysis principle (used in the feature-extraction step)

on PRS performance; in doing so, we will propose a new deep-feature-extraction

method from biometric modality images.

The proposed method is based on the principle of convolutional deep analy-

sis using pre-defined learning-free filters that are determined by the discrete Fourier

transform (DFT) technique. This is considered to be a simple and light deep-analysis

method – especially in the formulation of filters. Indeed, these filters do not need

a training base but are formulated directly using DFT basis functions; this means

that the weights of these filters are predetermined and do not need to be modified

by the classifier that is used during the training phase. Unlike machine learning, the

classifier in deep learning plays the role of an expert in the feature-extraction step

that will maximize the recognition rate (deep features). For this (and in order to

give this property to our proposed method), the conversion thresholds (used in the

binarization layer) are chosen by using optimization algorithms. The effectiveness of

the proposed feature-extraction method was examined by using a biometric system,

as it is a typical pattern-recognition application.
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In the design step during a biometric system’s implementation, an important

question arises: on which biometric modality will we work? Currently, many biometric

technologies have been developed; human hand-extracted features have confirmed

their reliability, acceptability by the user, and low cost in all security applications

[11, 18] as a consequence of their simplicity and effectiveness in extracting features

(even from low-resolution images) [6]. Palm-print modality is one of the human hand-

extracted biometric technologies that has received growing attention recently [43]. It

is relatively stable, and the image of the hand from which they are extracted can be

acquired relatively easily. In fact, some other important traits of the human palm

can be used to ameliorate a biometric system’s performance. With the multispectral

imaging’s modern evolution, however, these traits are captured by using infrared-

acquisition devices that supply palm-vein images instead of using visible light [23].

These traits feature low risk of falsification, difficult duplication, and stability, as

they are under the skin. Moreover, the availability of a device that is able to acquire

two types of modalities at the same time has pushed researchers to fuse these two

modalities in an attempt to improve unimodal biometric systems by replacing them

with multimodal biometric systems [5]. For this, we use the multispectral palm-print

images in this work (with several spectral bands) to design a unimodal/multimodal

biometric system.

The rest of the paper is structured as follows: Section 2 presents a literature

survey on multispectral palm print-recognition systems; Section 3 describes the for-

mulation procedure of convolution kernels through DFT (discrete cosine transform

[DCT] and discrete sine transform [DST]) as well as the concept of our proposed

deep-feature-extraction method; Section 4 evaluates the proposed method by using

a publicly available database (CASIA multispectral database); Section 5 aims to

present a comparative study between our proposed feature-extraction scheme and

some new methods in the literature; and Section 6 provides the reached conclusions

and future scopes.

2. Literature survey

In this part, we will try to highlight the latest work that has been carried out in

biometric-recognition systems that use multispectral-imaging technology, and we will

address (in particular) the works that have been evaluated by using the CASIA

database. Due to the many feature-extraction methods that are used, we will there-

fore try to divide this overview into two sub-parts: the first concerns hand-crafted

methods (feature engineering), while the second presents methods that are based on

deep learning (deep feature). Thus, Table 1 summarizes some important works in this

area of research. In this table, the performance is given by the genuine acceptance

rate (GAR) at the balanced operating point (equal error rate [EER] point).

Mouad M.H. et al. [2] proposed a multimodal palm print-recognition system

based on a multi-algorithm scenario. In this work, the feature-extraction method

was performed using both local binary pattern (LBP) and two-dimensional locality-

preserving projection (2DLPP).
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Table 1
Most important biometric systems based on multispectral palm-print modality

Years Feature extraction Data set used GAR [%]

2017 [2] LBP + 2DLPP (KNN) CASIA-P 98.55

2018 [4] CLBP (KNN) CASIA-MP 100.00

2019 [40] HDPLS (KNN)
Self-Built-P 99.59

CASIA-MP 99.97

2020 [21] LDDBP (KNN)

PolyU-P 99.85

IITD-P 97.81

GPDS-P 97.70

CASIA-P 97.27

2020 [3] DBM (KNN)

PolyU II-P 100.00

PolyU MP 100.00

IITD-P 95.40

CASIA-P 93.90

2020 [35] Log-Gabor + KPCA (KNN) CASIA-MP 99.50

2020 [17] LDBC (SVM)
PolyU-MP 99.57

CASIA-MP 95.72

2020 [9]

CBD (SVM)

CASIA-MP

99.75

TP-LBP (SVM) 98.88

FP-LBP (SVM) 98.38

2019 [36] PVSNet

PolyU-P 98.78

IITI Vein 97.47

CASIA-MP 85.16

2018 [8] DCTNet
PolyU-MP 100

CASIA-MP 99.33

2020 [37] U-Net CASIA-MP 99.53

2017 [29] PCANet
PolyU-MP 100.00

CASIA-MP 99.88

2019 [33] DBN
PolyU-MP 99.96

CASIA-MP 99.67

2019 [22]

Tongji 99.84

PalmNet REST 96.41

(Gabor, GaborPCA) IITD 99.48

CASIA-P 99.29

2020 [41] JCLSR

IITD 98.17

PolyU MP 100.00

GPDS 96.33

CASIA-P 98.94

2021 [19] GPWLD
PolyU-MP 99.99

CASIA-P 99.76

2021 [15] Lightweight-CNN
PUT vein 100.00

CASIA-MP 99.94
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The preprocessing process for locating the region of interest was performed using

competitive hand valley-detection (CHVD) methods. To achieve the multi-algorithm

system, the two feature vectors are combined at the feature level by the concatenation

method. When using the CASIA database, the experimental results showed that we

achieved the best accuracy result (98.55%) by fusing LBP and 2DLPP. Likewise, the

scheme that was proposed in [4] was also evaluated by using a single spectral band

from the CASIA database (with a wavelength of 940 nm). In this work (and in order

to extract its discriminate feature), the compound local binary pattern (CLBP) was

used. In this work and in order to extract its discriminate feature, the Compound

Local Binary Pattern (CLBP) was used, it employs both the sign and the inclination

information of the differences between the center and the neighboring gray values,

for all the P bits that were encoded by LBP, corresponded to a neighbor of the

local neighborhood, for that, an extra bit is added in order to build a robust feature

descriptor. In the experimental phase, the unimodal system and the multimodal

system (a fusion of the right and left palms at the score level) were evaluated.

Wu W. et al. proposed a practical and low-cost palm vein-identification sys-

tem in [40]. In their scheme, near-infrared (NIR) images of the palm and veins

were captured by using a complementary metal-oxide-semiconductor camera instead

of an NIR charge-coupled-device camera to dramatically reduce costs. Concerning

the region of interest (ROI) determination, the authors adopted the thenar region

on the hand/palm (as it is rich in palm veins) to avert the palm-print effect on the

captured images and, therefore, on the system’s performance. To boost the recog-

nition accuracy, the Haar wavelet decomposition and partial least squares algorithm

(HDPLS) were used on the ROI image in order to discriminate the palm-vein feature

extraction. In order to assess the effectiveness of the proposed scheme in this work,

experiments were carried out on two databases: a self-constructed database, and the

public CASIA multispectral database. Unfortunately, the authors did not use all of

the spectral bands in the CASIA database (six bands) and only used a single band

with a wavelength of 850 nm.

In order to describe the discriminative power of different directions, Fei et al. [21]

proposed a new exponential and Gaussian fusion model (EGM). For a complete rep-

resentation of the palm print-direction features, a local discriminant direction binary

pattern (LDDBP) was also proposed. Guided by EGM for palm-print representa-

tion and recognition, an LDDBP-based descriptor can be formed by exploiting the

most discriminant directions. The experimental results explained that the proposed

LDDBP method that was conducted on the four widely used palm-print databases

(PolyU, GPDS, IITD, and CASIA) showed superiority over some of the others that

were tested in this study. In the case of the CASIA database, the recognition rate

remained below 97%; this could be improved by combining certain spectral bands.

A fast palm print-recognition method based on the different of block means

(DBM) was proposed by Almaghtuf J. et al. in [3]. The method begins with a prepro-

cessing step that extracts a region-of-interest sub-image. After this, the differences
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between overlapping block means were computed for a palm print-information descrip-

tion in each direction. In order to obtain a final palm-print code in each direction,

a threshold was ultimately applied. In the evaluation phase, a set of experiments were

carried out on three publicly available palm-print databases: CASIA, PolyU II (for

multispectral palm-print images), and the IIT Delhi Touchless palm-print database.

Despite the fact that the proposed scheme used basic operations (i.e., mainly addi-

tions and subtractions) in order to reduce the cost of the calculations, the recognition

rate unfortunately remained modest (< 95%) in the CASIA database.

Thamri E. et al. [35] proposed a multimodal biometric-recognition system that

was based on the fusion of the spectral bands of palm-print modalities. In this method,

the fusion of information from the same left and right spectral bands was performed

at the image level using the 2D discrete wavelet transformation (DWT) technique.

After this, Log-Gabor transformation was used as a feature-extraction method, fol-

lowed by the kernel principal component analysis (KPCA) technique for reducing the

feature size. The experimental results that were carried out on the CASIA multi-

spectral palm-print database showed the best recognition rate (99.50%) with white

(WHITE) spectral bands.

A novel cross-spectral matching system for identity verification based on RGB

(red and blue) and NIR image spectral bands of both palm prints and palm veins

was proposed in [17]. First, both palm-print and palm-vein features were extracted

from the RGB and NIR palm images in which simplified Gabor filtering (SGF) with

a morphological-like operation was used to extract palm-vein lines. Additionally,

a simplified LBP encoding scheme called local directional binary code (LDBC) was

proposed for both the RGB and NIR palm-print templates. After this, the two feature-

extracted sets for each modality were fused at the score level in a way that the

proposed system could be flexibly operated as a unimodal/multimodal system. The

experimental results that used both the multispectral PolyU-MP and CASIA-MP

data sets showed the effectiveness of the proposed system with high accuracy and

significant equal error rate (EER) enhancement.

Bouchemha A. et al. [9] proposed a handcrafted feature-learning method for

multispectral palm-print representation and recognition based on local distinctive

image descriptors (called compact binary descriptors [CBDs]). First, a projection

matrix and codebook were used during the training as prior knowledge by using the

pixel difference vectors (PDVs) of non-overlapping sub-blocks. Second, the extracted

PDVs were encoded into binary codes in the test step that used the projection matrix;

then, they were pooled as a histogram feature by using the codebook. Experiments

that were carried out on the CASIA multispectral palm-print database showed an

improvement of 0.250% with EER when using the WHITE spectral band.

On the other hand, a diverse set of deep-learning models have been developed to

learn useful feature representations that have been widely used in face-based biometric

systems. Unfortunately, a few types of these models have tried to build a palm print-

based biometric system despite the effectiveness of the palmrint modality. Thus, a new
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way was proposed in [36] in order to design a palm vein authentication Siamese

network (PVSNet) end-to-end deep convolutional neural network (CNN) framework.

This model works in two main steps: first, an encoder-decoder network is used for

generative domain-specific feature learning; then, pre-trained convolutional layers are

applied in an unsupervised fashion as an auto-encoder by a Siamese network. After

this, the adjusted triplet loss function for learning-feature embeddings was used to

train the proposed model in a way as to minimize the distance between the embedding-

pairs from the same subject. On the other hand, a distance maximization was applied

with those from different subjects (with a margin). In the experiments, the proposed

network was evaluated using the three typical palm-vein databases (CASIA, IITI

Vein, and PolyU). The result that were obtained from the CASIA database (a correct

recognition rate of 85.16%) indicated the poor performance as compared to the other

databases.

A simple and efficient deep-learning-based feature-extraction algorithm called

a discrete cosine transformation network (DCTNet) was proposed in [8]. In this

study, the effectiveness of the proposed approach (unimodal and multimodal systems)

was assessed using two publicly available databases: CASIA, and PolyU. The ob-

tained results clearly indicated that a feature-extraction technique based on DCTNet

deep learning can achieve a performance that is comparable to the best advanced

techniques.

In [37], Wang et al. proposed an end-to-end convolutional neural network to

extract the characteristics of palm veins for use in a personal identity-verification

system. The training data set was generated by labeling palm pixels by combining

some handcraft-based palm-vein image-segmentation methods. The output of the

trained U-Net represents the probability that the pixels belong to the vein pattern.

To obtain the vein network patterns, a new scheme for encoding the outputs of U-Net

was proposed. The experimental results (using a single spectral band) of the public

CASIA multispectral palm-print database indicated the effectiveness of the proposed

method (which produced an error of 0.47%).

A combination of palm-print multispectral imaging with the PCANet deep-

learning feature-extraction method was proposed in [29]. A performance evaluation

of the proposed scheme that was carried out on the PolyU and CASIA multispectral

databases showed a notable improvement over the system’s accuracy.

In [33], Huafeng Q. et al. proposed an iterative deep-belief network (DBN) in

order to extract vein features to iteratively correct those features, which are gen-

erated automatically by using a beforehand very limited knowledge. For the auto-

matic labelization of vein and background pixels, a known handcrafted vein-image-

segmentation method was used based on patches that were centered on labeled pixels

in order to build the training data set. This data set was used to train the DBN to

predict the probability that each pixel belongs to a vein-net. During the iterative

procedure, incorrect training data labels are statistically corrected by learning the

differences between vein patterns and background ones; the deep-belief network can
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correctly learn what a vein pattern is. A notable improvement was shown in the ex-

perimental results regarding hand-vein verification accuracy wqhen using two public

multispectral palm-print databases (CASIA and PolyU).

To attain high recognition accuracy with touchless palm-print samples that are

captured by utilizing several devices without the need to train class labels or utilize

pre-trained filters, an effective deep scheme called PalmNet was proposed by Angelo G.

et al. in [22]. In this scheme, a new CNN was represented for a palm print-specific

filter setting using a recently developed method by an unsupervised procedure without

class labels in the training phase based on Gabor responses and principal component

analysis (PCA). For applying Gabor filters in a CNN, extract very discriminative palm

print-specific descriptors, and adapt to heterogeneous databases, the novel PalmNet

method was used. This approach was validated using multiple palm-print databases

that were captured using different touchless acquisition procedures and heterogeneous

devices; in all cases, significant improvement was demonstrated in terms of recognition

accuracy.

In [41], deep convolutional neural networks (DCNNs) were used by following

a regular sampling of the various local regions of a palm-print image to learn complete

and discriminative convolution features. A joint constrained least-square regression

(JCLSR) framework was presented to utilize the commonality of several patches in

which a representation for every local region of the same palm-print image was per-

formed; this required having similar projected target matrices for all of the regular

local regions of the palm-print image. In palm-print recognition, the under-sampling

classification problem can be well-solved by the proposed method, where the proposed

JCLSR that was conducted on the IITD, CASIA, noisy IITD, and PolyU multispec-

tral palm-print databases outperformed classical palm print-recognition methods and

some subspace learning-based methods for palm-print recognition in the experimental

results.

In [19], El-Ghandour M. et al. proposed a new methodology for feature extrac-

tion that was a combination of Gabor features with positional Weber’s local descrip-

tor (PWLD) features that was known as Gabor-positional Weber’s law descriptor

(GPWLD). First, a Gabor filter was used with different orientations to capture the

salient rotational features that could be found in the output feature maps of a palm-

vein image. Second, a uniform division of each feature map into several blocks was

made to achieve spatiality. Then, a Weber’s law feature descriptor (WLD) histogram

was computed for each block in each feature map. Finally, these histograms were

concatenated to compose the final feature vector; then, a feature-size reduction was

applied using the PCA algorithm to be classified later with a deep neural network

(DNN) that included an optimized stacked autoencoder (SAE) with Bayesian opti-

mization and a softmax layer. The experimental results using the CASIA database

showed that the proposed method gave the best result (with an error of 0.24%).

A lightweight deep-learning network framework for palm-vein recognition based

on a deep convolutional neural network (CNN) was proposed in [15] in which the
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applied ROI positioning after palm-image input was able to resist a certain degree

of rotation and displacement, reducing the system errors that were caused by the

user during the acquisition step. In addition, an adaptive Gabor filter with enhanced

imaging features and a triplet loss function that captures sufficient palm-vein data

were proposed. The set of experiments were carried out on two multispectral palm-

print databases: CASIA (with 100 users), and the PUT database (with 50 users). The

results showed that the proposed method required fewer parameters as compared to

other methods and had a good recognition error rate of 0.0556%.

3. System framework

In this section, a general framework for constructing a biometric system is proposed

that is capable of deeply analyzing a biometric modality by using a series of filters

that are derived from DFT. The system’s design framework brings together a set of

deep-feature-extraction methods that can be used together (using the fusion principle)

or separately.

3.1. Outline of proposed approach

This section develops a general overview of feature extraction using the principle of

convolutional deep analysis that focuses on the image of a biometric modality as an

example. Overall, the components of the proposed method are (1) the analysis step,

(2) the pooling step, and (3) the observation vector (feature) step. The analysis

step consists of filtering an input image according to several stages by using prede-

fined convolution filters. The role of the second step is to reduce the data size by

quantization and encoding processes. The last step is to extract a feature vector from

the formed images and convert it to a flat vector (flattening). The outline of the

proposed approach is illustrated in Figure 1.

Figure 1. Synopsis of proposed approach outline
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1) Analysis step: This is the most important step where an image is passed to a fil-

tering operation by using a group of filters at several stages. This method uses two

sets of filters that are extracted with DFT (WDCT
ij , WDST

ij ). Depending on the set

that is used, a different vector may be produced. The filter set that is extracted by

DCT (WDCT
ij ) produces vector FDCTNet, while the filter set that is extracted by DST

(WDST
ij ) produces vector FDSTNet. The combination of the filtered images by these

two sets can generate two other vectors. Indeed, the combination by the phase gives

vector FPH
DFTNet, while the combination by the module gives vector FMD

DFTNet.

2) Pooling step: The objective of this step is to reduce the data size while preserving

its discrimination. Here, the thresholding principle is used to convert filtered images

into binary images, which are then combined by an encoding process. It should be

noted that, in our proposed scheme, threshold set (τi) can be optimized in the training

phase of the feature-extraction method in order to maximize the recognition rate (for

a further explanation, see below).

3) Observation vector step: The feature vector is finally produced in the last step.

This step receives a set of descriptors as input; to extract feature vector (Vi), a hand-

crafted feature extraction method is applied to each input. Then, all of the resulting

1D vectors (Vi|ℓi=1) are concatenated into a single flattened feature vector. In our

method, an efficient method is used to extract the feature of each descriptor (called

a histogram of oriented gradients [HOG]); this is applied on the basis of a block

analysis in order to be more efficient.

In fact, the proposed method is based on DCTNet, which uses untrained fil-

ters that are produced directly from DCT basis functions [25]. The system that is

based on these filters is a simple deep-learning system; its simplicity lies in the fact

that the weights of the filters are not adjusted during the training (learning) phase

(i.e., the feature-extraction method is independent of the classifier and can produce

learning-free deep features – see Fig. 2).

Figure 2. Learning-free deep feature-based classification system

Learning-free deep features often give a low classification rate and can only be

improved by changing the structure of the feature-extraction method (e.g., the number

of convolution stages, the number and sizes of filters, etc.). In order to adapt the
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feature-extraction method with the classifier, an optimization method must therefore

be used in order to select the best parameters that can produce learned deep features

(see Fig. 3).

Figure 3. Learned deep feature-based classification system

In the proposed method, the filter weights are not adjusted; we instead optimize

the binarization thresholds (τi) to produce discriminant vectors that are capable of

improving the recognition rate. In addition, the parameters of the extraction method

that are applied to the descriptors (in our case, the HOG parameters – including the

bin histogram and window) can also be optimized.

3.2. Proposed feature-extraction method

Despite the many ways to implement handcrafted feature-extraction methods, these

have unfortunately reached their accuracy limits when representing these features.

Recently, relevant research has been devoted to extracting deep features using so-

called deep feature-extraction methods. In these methods, an image can be repre-

sented with multilevel features from which we can extract features that cannot be

obtained by handcrafted methods. So, these methods are generally based on convolu-

tion filters at several stages (layers). Several convolutional deep-network architectures

have been proposed for biometric recognition; however, most conventional architec-

tures require extensive training data, resulting in long training times in order to attain

acceptable results. Indeed, these requirements do not support the use of these meth-

ods in a vast range of applications. Also, these methods suffer from limited memory

capacity and slow CPU usage, which inevitably leads to finding simple, fast, and easy

deep-learning techniques that can be exploited in most devices that are currently

available. As an alternative to these methods, researchers have thus introduced ar-

chitectures that are based on learning-free filters like the DCTNet architecture. In

addition to the set of filters that are formed by DCT (WDCT
ij ), our scheme also uses

a set of filters that are formed by DST (WDST
ij ). So, we will first explain how these

filter sets are formed.
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3.2.1. Theoretical prerequisites

This section presents the preliminary requirements (essential background) that are

used in the proposed feature-extraction method.

a) Discrete Fourier transform: In the signal and image-processing field, the discrete

Fourier transform [32] is a known process for allowing the switching from a signal

spatial representation to a spectral one. The DFT of an image decorrelates the pixels

of an image, while the information is concentrated in low-frequency coefficients. This

transformation contains two parts: the real, and the imaginary (which are represented

by the cosine [DCT] and the sine [DST], respectively). Moreover, we can use these

two parts to extract information about the amplitude of a signal and its phase. The

1D-DCT and 1D-DST transformation matrices for a square input of a size of B × B

are given by the following:

φΨ
ij =


1√
B

1 = 0, 0 ≤ j ≤ B − 1

1 ≤ i ≤ B − 1,√
2
BΨ

(
π (2j + 1) i

2B

)
0 ≤ j ≤ B − 1

(1)

where Ψ denotes cos(·) or sin(·), and the 2D-DCT is only a product of a vertical base

and a horizontal base of the 1D-DCT. Also, a matrix of a size of B × B is generated

by utilizing Equation (1), which is used to create the bases of a DCT (or DST) of

a size of ρ× ρ (ρ = B ·B):

φ =


a11 a12 · · · a1B
a21 a22 · · · a2B
...

...
. . .

...

aB1 aB2 · · · aBB

 =


V1

V2

...

VB

 ∈ RB×B (2)

For creating a different basis in the same matrix, the elements of each row are

utilized as weights for all of the rows (as is shown in the following equation):

Mk = vT1 .vj ∈ RB×B , i, j = 1, 2, · · · , B, k = 1, 2, · · · , ρ (3)

After this, each resulting matrix Mk is reorganized into a 1D vector (Vk):

Vk = FT
ρ×1(Mk) ∈ Rρ×1 (4)

where Fρ×1(·) is a function that maps matrix Mk ∈ RB×B to a vector Vk ∈ Rρ×1.

The obtained Vk|ρk=1 vectors are then concatenated into a single vector(V):

V = [V1, V2, · · · , Vρ] ∈ Rρ×ρ (5)

Now, for rearranging the elements of this vector (V ), the zig-zag (Fz) sweep technique

is utilized:

V̂ = Fz(V ) = [Ṽ1, Ṽ2, · · · , Ṽρ] ∈ Rρ×ρ (6)
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The zig-zag technique is used to reorganize V̂ by placing the important elements at the

beginning of the vector based on their importance (low frequency to high frequency)

in which the first vector (Ṽ1 – first column of V̂ ), called the DC element, represents

the mean value.

b) Filter formulation: A few years ago, Chan et al. [12] proposed a lightweight

deep-learning network called PCANet; after its unexpected success for most image-

classification tasks (and because of its very simple structure), Cong et al. [31] proposed

another structure that was similar to that of Chan et al. – this was called DCTNet.

The main difference between the two lied in the formulation of the filters. This sug-

gestion is no accident but rather the result of the close relationship between PCA

and DCT, which was proven by Chan et al. in their work. The main difference be-

tween DCT and PCA is that PCA must be defined with respect to a given data set

(PCANet filters are, therefore, formulated by a learned method), whereas DCT is

absolute and is determined only by the input size and does not need a particular

data set (DCTNet filters are, therefore, formulated by a learning-free method). The

following is the method of formulating the convolutional filters that was used by the

founders of DCTNet. Before this, it should be noted that the sine function is nothing

more than the cosine function shifted by π
2 ; for this reason, both sets of filters follow

the same formulation algorithm.

Let η be the number of filters of a size of k1 × k2 that are used at a given stage.

From the 2D-DCT vector (V̂ ), the convolution filters are chosen by using Equation 6.

Unlike in the case of a PCANet system, the DC element is not considered to be a filter

in a DCTNet or DSTNet system (and, thus, DFTNet); for a better performance, the

average of each patch is removed. The selection of the bases, therefore, starts from 2

to η + 1:

VF = V̂k(i)|η+1
i=2 ,∈ Rρ×η, ρ = k1 · k2 (7)

Finally, a set of filters is obtained as follows:

Wj = Fk1×k2 [VF (j)] ∈ Rρ×η j = 1, 2, · · ·, η (8)

where Wj denotes filter j, and Fk1×k2
is a function that maps vector VF (j)|j=1,2,··,η

∈ Rρ×1 to a matrix Wj ∈ Rk1×k2 .

3.2.2. Functional behavior

In Figure 4, we present the proposed structure of our deep feature-extraction method

(DFTNet deep learning), which consists of two stages. The approved structure could

be split into five main layers: convolutional layer (two stages), the DFT response

calculation layer ((real part (DCT), imaginary part (DST)), amplitude or phase),

binarization layer, hash layer, and the feature vector layer (block-based HOG).

For the system framework description, the input images are assumed to be of

a size of H × W , and the patch size (i.e., the size of the convolutional filter [from

DCT and DST]) for stage ℓ is as follows:

W ℓ
i = kℓ1 × kℓ2, i ∈ [1, · · · , Lℓ], ℓ ∈ [1, · · · , Sℓ] (9)
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where Lℓ denotes the number of filters in convolution layer ℓ and is the number of

convolution layers (stages). It should be noted that Kℓ
j |j=1,2 is an odd integer that

satisfies the Kℓ
j ≤ H and Kℓ

j ≤ W conditions.

Figure 4. Proposed learning-free deep features for multispectral palm print-classification

scheme (DFT[MD/PH]Net) – example of two stages with two convolution filters in each stage

a) Convolutional layer. The DFTNet deep feature-extraction method is a variant

of convolutional-based deep-learning techniques, which based on the size and the

number of filters, and at several different stages with several filters the input image

convoluted, and after passing it to the pooling layer, it outputs the feature vector.

Note that, unlike PCANet, DFTNet does not include a learning phase to train the

convolution filters because it directly uses the DCT and DST bases as filters. It should

also be noted that our method (DFTNet) consists of two completely similar methods
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(DCTNet and DSTNet), which differ only in the type of filter. For practical reasons,

we are going to explain only one method – DCTNet.

• Stage 1. This stage is about creating L1 convolution filters by using a resulting

vector V̂ of the formed DCT (or DST) bases by using Equation (6) with B = kℓ1 = kℓ2:

VF = V̂ (j)|L1+1
j=2 ,∈ Rρ×L1 , ρ = k11 · k12 (10)

At this stage, the set of filters is obtained as follows:

W 1
i = Fk1

1×k1
2
[VF (i)] ∈ Rk1

1×k1
2 , i = 1, 2, · · · , L1 (11)

The output (L1 filtered images) of this stage is given by Equation 12 by filtering the

input image (I) using filters W 1
i |

L1
i=1:

I1i = I ∗W 1
i , i = 1, 2, · · · , L1 (12)

where ∗ denotes the 2D convolution process. In order to make the obtained I1i filtered

images have the same size as I (H × W ), the boundary of I is zero-padded before

convolution.

• Stage 2. As in the first stage, the same process is repeated on all the resulting

filtered images. By using Equation 6 (with B = k21 = k22), the basis of DCT (or DST)

is formed for later using the resulting vector V̂ to create the L2 convolution filters:

VF = V̂ (j)|L2+1
j=2 ,∈ Rρ×L2 , ρ = k21 · k22 (13)

In this stage, the convolution filters are given as follows:

W 2
j = Fk2

1×k2
2
[VF (j)] ∈ Rk2

1×k2
2 , i = 1, 2, · · · , L2 (14)

Then, we get the outputs of the second stage by filtering the input images (I1i |
L1
i=1)

by using the W 2
j |

L2
j=1 filters:

I2i,j = Ii ∗W 2
j , i = 1, 2, · · · , L1, j = 1, 2, · · · , L2 (15)

Finally, the output of this stage is L1 · L2 filtered images for each input image and,

thus, by obtaining L2 filtered images for each filtered image from the first stage.

b) DFT Response Layer. In fact, our system contains four subsystems (including

the original one [DCTNet]); it can be configured in this layer to work as one of

these systems: DCTNet, DSTNet, DFTMDNet, or DFTPHNet. Thus, the filtering

results of the last stage I2i,j |DCT
i=1,2,··· ,L1,j=1,2,··· ,L2

DCT (obtained from the DCT filters)

and I2i,j |DST
i=1,2,··· ,L1,j=1,2,··· ,L2

DST (obtained from the DST filters) represent the real

and imaginary parts of the DFTNet system, respectively. These two responses are

combined to produce the phase and the amplitude as follows:

DCTNet: IRe
ij = I2ij |dcti=1,2,··· ,L1,j=1,2,··· ,L2

(16)
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DSTNet: IImij = I2ij |dsti=1,2,··· ,L1,j=1,2,··· ,L2
(17)

DFTPHNet: IPh
ij = I2ij |dct-dsti=1,··· ,L1,j=1,··· ,L2

, IPh
ij = arctan(

I2dstij

I2dctij

) (18)

DFTMDNet: IMd
ij = I2ij |dct-dsti=1,··· ,L1,j=1,··· ,L2

, IMd
i,j =

√
(I2dctij )2 + (I2dstij )2 (19)

c) Binarization Layer. The process of binarization (binary quantization) transforms

the obtained real values into a binary format; then, a threshold τb to zero is applied

(Equation 20) for both the real and imaginary parts, as the response values have the

same probability of being negative or positive:

Ibij(n,m) =

{
1 if IXij(n,m) ≥ τb X ≡ {Re, Im,Md,Ph}
0 if IXij(n,m) < τb i = 1, · · · , L1, j = 1, · · · , L2

(20)

It should be noted that, as the phase (PH) sign always follows the sign of the imaginary

part (DST), a threshold that is equal to zero produces the same binarization results for

both parts. On the other hand, the components of the amplitude (MD) are positive,

so a threshold of zero gives a result in which all of the components are equal to 1

(white image). Therefore, the binarization threshold for the amplitude (MD) and

phase (PH) is determined as follows:

τb = k · ϱX, X ≡ {Md, Ph} (21)

where ϱX is the mean value of the modulus (or of the phase), and k is a predefined

factor that is varied in interval [0.05, · · ·, 1] with a step of 0.05.

d) Hash Layer. For the purpose of reducing the amount of data, this layer converts

the L2 binarized images into a single integer-valued “image.” Thus, using the next

decoding polynomial, a conversion (binary to decimal) of the binary code (encoded

on L2 bits) around each pixel is applied:

I3j = ΣL2−1
j=0 Ibij · 2j , i = 1, · · · , L1 (22)

In DCTNet (like in PCANet), the output number of this layer is the same as the filter

number that is utilized in the first stage of the convolution. So, a separate decoding

of each L2 group gives an images set that is equal to L1.

e) Feature Vector Layer. In this layer, the feature size of each image is reduced.

For each image among the L1 images, the histogram is then calculated to form the

feature vector, and all of the obtained histograms are concatenated. Unlike PCANet

and the original DCTNet, our proposed method (DFTNet) uses an oriented gradient

histogram (HOG) [1]. Now, to get the feature vector of each input image, we fist

divide each I3j |L
1

i=1 image into Nb blocks(B) as follows:

Nb =

⌊
H − b1

o
+ 1

⌋
·
⌊
W − b2

o
+ 1

⌋
(23)
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where o denotes the horizontal/vertical overlap between two adjacent blocks, b1 × b2
is the analysis block size, and ⌊·⌋ is the integer part of the value. Then, a set of ϕi

blocks for each (I3j |
L1
i=1) image is obtained and defined as follows:

ϕi = {Bi
1, B

i
2, . . . , B

i
Nb

} ∈ R(b1×b2)×Nb , Bj
i |

Nb
j=1 ∈ Rb1×b2 , i = 1, · · · , L1 (24)

where Bj
i denotes the jth block of image I3i . Then, a HOG histogram for each block

(Bj
i ) is calculated. To form the final feature vector for the examined image, all of the

resulting vectors from the L1 images are concatenated.

In the HOG technique, the input image is analyzed by window (Whog) in which

each window is divided into non-overlapping cells. For each pixel of each cell, the ori-

entation is then calculated to form the histogram, and the magnitude of the gradient

is calculated and used as the voting weight. Finally, a concatenation of the set of

histograms of the cells is done in each window to form the HOG descriptor. So, each

block feature is extracted using the HOG technique as follows:

Hi
j = Fhog(B

i
j) ∈ Rλ×1, j = 1, 2, · · · , Nb, i = 1, 2, · · · , L1 (25)

where Fhog denotes the HOG feature-extraction process, and λ is the block histogram

length. Note that the (λ) value is a function of the number of both the HOG windows

(ηω) and the histogram bins (ηb). For each image ((I3j |
L1
i=1)), all of the HOG vectors

(features extracted) from all of the blocks are then concatenated into a single vector

(ϑi):

ϑi =
[
Hi

1, H
i
2, . . . ,H

i
Nb

]
∈ R(Nbλ)×1, i = 1, 2, · · · , L1 (26)

Finally, the feature vector of the input image is obtained as follows:

VT = [ϑ1, ϑ2, . . . , ϑL1
] ∈ R(NbλL1)×1 (27)

It is important to note that, depending on the block size (b1 × b2) and the overlap

rate (o), the length and precision of the (VT ) vector of each input image are changed.

4. Experimental results

In this section, a detailed performance evaluation of the proposed method is presented.

In our experiments, CASIA’s multispectral palm-print database [10] of 100 people

was used to test the proposed method in a biometric-identification system. In this

database, 12 images for each person were acquired using a low-resolution contactless

sensor as grayscale format and collected in two separate sessions with a gap of more

than a month (with captures of 6 images in each session). The data set was divided

into two galleries; a random selection of three samples for each person was applied

and assigned for the enrollment phase (training), and the rest of the samples were

used for recognition phase (test). A matching score of 45,450 was obtained when

using all of the test images divided into two experimental classes; the genuine ones

with a score of 900, and the impostors with 44,550 scores.
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Several experiments were carried out in this work that can be divided into two

main parts. In the first part, the efficiency of the four proposed systems (DCTNet,

DSTNet, DFTMDNet, and DFTPHNet) was evaluated by selecting their optimal pa-

rameters in order to choose the best system among them; the second part compared

the efficiency of the best system to systems that were based on traditional (hand-

crafted) and learned (learned hand-crafted) feature-extraction methods.

4.1. System performance

The objective of this part was to test the proposed biometric systems. It was also

divided into two sub-parts: the first one selected the optimal parameters for each

system by dealing with the preliminary experiments, while the second focused on

selecting the best proposed system.

4.1.1. Preliminary experiments

In biometrics, good choices of features play a major role in obtaining an exact result

for a person-recognition system, as it conditions the performance of any recognition

methodology. For the best performance evaluation of an identification system, it is

essential to select the appropriate parameters that can give the best results. Math-

ematically, a direct formula for finding out the optimal parameters that provide the

best performance does not exist. In this work, the experimental tests were carried

out by varying the different parameters, including the number of filters in each stage

(Li|2i=1) and the size of the filters in each stage (ki|2i=1) in a predefined set of values in

order to control the precision of the extracted feature vectors by selecting the combi-

nation that optimizes an objective function (empirical tests). First of all, it should be

noted that our tests were carried out on an open-set biometric identification system

based on the “WHITE” palm print spectral band. In addition, the system was devel-

oped and implemented using Matlab 2009 on a Windows 7 platform and an embedded

PC with a 2.2 GHz Intel Pentium processor and a DRAM of 2 GB.

The performance of the proposed biometric system was evaluated according to

the four applied feature-extraction methods (DCTNet, DSTNet, DFTMDNet, and

DFTPHNet) by varying one parameter each time. Under the first stage (ℓ = 1), the

parameters were chosen from a predefined set of values (2, 4, 6, 8, and 10) for the num-

ber of filters (L1) and (9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17) for the sizes of

the L1 convolution filters (k1×k2). For the DFTPHNet and DFTMDNet systems, the

binarization threshold parameter (κ) was preselected to 0.5. It should be noted that

our systems used the SVM classifier due to its well-demonstrated effectiveness in many

classification applications [30].

In an open-set biometric identification system, an identification rate (genuine

acceptance rate – GAR) is calculated for each feature-extraction method in order

to examine the impact of these parameters on the system’s performance. The test

results of the proposed system in a single convolutional stage are shown in Figure 5

and can be illustrated in the following points: i) all possible combinations of L1 and
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(k1 × k2) can show very acceptable performance with an open-set identification rate

GAR that is greater than 99.20%; ii) the curves show how the number of filters and

the identification rate are proportional (best case with ten filters) and how a large

filter can improve the system’s performance; and iii) the best system performance can

be achieved using the DFTMDNet method.

a) b)

c) d)

Figure 5. Biometric system performance with single stage: (a) Biometric system based on

DCTNet; (b) Biometric system based on DSTNet; (c) Biometric system based on DFTPHNet;

(d) Biometric system based on DFTMDNet

According to Figure 5, it is clear that ten convolution filters provided better

results in terms of GAR. In this case, the system could reach an error-identification

rate (equal error rate – EER) that was equal to 0.2767% at a threshold To of 0.6396,

0.3391% at To = 0.6296, and 0.3034% at To = 0.6283 by using filter sizes of 13 × 13,

17 × 17, and 17 × 17 for the DCTNet-, DSTNet-, and DFTPHNet-based systems,

respectively, with improvements of 27.20, 40.58, and 33.45%. Using the DFTMDNet

method with filter size of 15 × 15, the system attained an EER of 0.2015% at To =

0.7068. Although acceptable results can be obtained with one convolutional stage,
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recognition errors could happen. Fortunately, our system can be configured in multi-

ple stages, which can reduce this and improve the system’s efficiency. For this reason,

a re-examination of the systems that have been proposed under two stages of con-

volution was done in order to improve their performance. Therefore, the same test

methodology as in the previous part was carried out with all of the proposed systems

using four convolution filters of a size of 15 × 15 in the first stage. The test results

of the efficiency of this configuration in the open-set identification mode for all of the

biometric systems are presented in Figure 6.

a) b)

c) d)

Figure 6. Biometric system performance using two stages: (a) Biometric system based on

DCTNet; (b) Biometric system based on DSTNet; (c) Biometric system based on DFTPHNet;

(d) Biometric system based on DFTMDNet

Also, two important remarks could be underlined from these tests: the use of

two stages of convolution improves the proposed biometric system’s performance,

and when the number of convolution stages is high, the better the small filters are

(which will give better results) – especially if the sizes of the filters in the first convo-
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lution stages are large. Through Figure 6, we notice that performance improvements

of 26.25, 22.12, and 10.95% were achieved for those systems that were based on

DSTNet, DFTPHNet, and DFTMDNet, respectively. On the other hand, a perfor-

mance degradation of 57.27% was obtained for the DCTNet case. In addition, the

best performance was obtained when the using DFTMDNet method, which gave a best

result of EER (0.179%) at a threshold of To = 0.7003. In general, these enhancements

were very acceptable, and their importance increased with the growth of the database.

Other good configurations can also be obtained with EERs of 0.250% at To = 0.6138

and To = 0.6170 in the case of DSTNet and DFTPHNet, respectively, and an EER

of 0.357 at To = 0.5966 when using the DCTNet method. From these results, we

chose to implement the DFTMDNet method to evaluate the proposed identification

system in both open-set and closed-set modes by first choosing the best binarization

threshold (κ) from the [0.05 . . . 1.00] interval.

4.1.2. Biometric system performance

For a performance evaluation of the proposed biometric system that was based on

DFTMDNet, the system was tested with two convolutional stages to be classified later

by using the KNN and SVM classifiers. In our tests, an appropriate contrast for

image-feature representation could be obtained by using a wide range of binariza-

tion threshold (κ) choices (κ ∈[0.05. . . 1]) with a step of 0.05, which gave 20 cases.

Consequently, we can choose the suitable number with texture analysis in a specific

application. To show the impact of the threshold binarization on the biometric sys-

tem’s performance, the best open-set identification test results in terms of EER are

shown in Table 2.

Table 2
DFTMDNet biometric system performance under different spectral sub-bands

Stage Band [nm]
KNN SVM

κ To EER κ To EER

1

WHITE 0.60 0.2505 0.250 0.60 0.7695 0.125

460 0.30 0.1935 0.125 0.40 0.6883 0.125

630 0.25 0.2895 0.250 0.30 0.6275 0.250

700 0.20 0.2662 0.410 0.45 0.7335 0.250

850 0.20 0.3084 0.875 0.25 0.6687 0.875

940 0.25 0.3033 1.000 0.20 0.6360 1.250

2

WHITE 0.30 0.2340 0.250 0.45 0.6973 0.178

460 0.30 0.2171 0.250 0.45 0.7255 0.125

630 0.30 0.2144 0.193 0.20 0.7080 0.250

700 0.15 0.1487 0.180 0.30 0.7309 0.080

850 0.15 0.2447 0.804 0.20 0.7185 0.689

940 0.20 0.2709 0.963 0.25 0.6593 0.875

From the results that are displayed in Table 2, it can be observed that the best

results were obtained by using the SVM classifier. In the case of one convolutional
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stage, a best EER of 0.125% was achieved at the thresholds of To = 0.7695 and To =

0.6883 with binarization thresholds of 0.6 and 0.4 when using the WHITE and 460-nm

spectral bands, respectively. When using two convolutional stages, a best EER of

0.080% was obtained at a threshold of To = 0.7309 with a binarization threshold

of 0.30 when using the 700-nm spectral band; this shows the efficiency of the SVM

classifier as compared to KNN in terms of identification rate and execution speed.

To be certain of our method, Table 3 shows the performance evaluation un-

der the two identification modes; in this, we notice that, when using the SVM clas-

sifier the 700-nm spectral band gave the best results in both identification modes,

with a minimum EER of 0.080 (To = 0.7309, κ = 0.3) in open-set mode as well as an

identification rate (rank-one recognition – ROR) of 99.250%, with a minimum rank

of perfect recognition (RPR) of 10 being achieved in the closed-set mode.

Table 3
DFTMDNet biometric system performance for each spectral band

in both identification (open-set/closed-set) modes

Band κ
Open-set Closed-set

Classifier Stage
To EER RPR ROR

WHITE 0.60 0.6973 0.125 13 98.375 SVM 1

460 0.40 0.6882 0.125 60 99.250 SVM 1

630 0.30 0.2144 0.193 71 98.875 KNN 2

700 0.30 0.7309 0.080 10 99.250 SVM 2

850 0.20 0.7185 0.689 45 96.625 SVM 2

940 0.25 0.6593 0.875 81 97.000 SVM 2

4.2. Comparative study

To prove the efficiency of our method, two important comparisons were made: one to

demonstrate the efficiency of deep feature-extraction methods as compared to those

that are based on classical methods, and the second to demonstrate the efficiency of

our method as compared to the recent methods that are based on deep learning. It

should be noted that the comparison was limited to open-set biometric identification

systems based only on 850-nm, 940-nm, and WHITE spectral bands, which were

sufficient to prove the efficiency of our feature-extraction method.

4.2.1. Comparison to classical methods

As our method is intended for image texture analysis, we will try to examine the effi-

ciency of the proposed deep feature-extraction method in this subpart as compared to

classical methods based on local binary pattern (LBP), including hand-crafted meth-

ods (three-patch LBP – TP-LBP) and four-patch LBP – FP-LBP) [39] and a learned

hand-crafted method (compact binary descriptor – CBD) [28]. For a fair comparison,

three important conditions must be considered. First, feature-extraction methods

should be performed with the same testing methodology. Second, all methods must



Learning-free deep features for multispectral palm-print classification 265

be performed on the same implementation platform. Third, all methods must be

implemented on the same machine. These conditions are taken later into account to

help explain the performance effectiveness. In order to adapt the CBD method to the

database that was used and to also improve the system’s performance, an additional

test of the size of the pixel neighborhood (R) and the length of the projection matrix

(BIN) was applied. The obtained test results for the three spectral bands according

to the previously mentioned points are illustrated in Table 4.

Table 4
Selection of CBD parameters under three spectral bands

Band

Windows = 15×15 (R = 7)

BIN = 19 BIN = 23 BIN = 25

To EER To EER To EER

850 0.614 1.298 0.658 1.196 0.684 1.018

940 0.705 0.485 0.655 0.678 0.674 0.750

WHITE 0.712 1.157 0.698 0.875 0.726 0.250

Band

Windows = 19×19 (R = 9)

BIN = 19 BIN = 23 BIN = 25

To EER To EER To EER

850 0.619 1.307 0.617 1.375 0.654 0.994

940 0.659 0.500 0.700 0.409 0.653 0.625

WHITE 0.688 1.000 0.736 0.921 0.711 0.875

From this table, we can clearly see that both of the CBD parameters can give

good results in all spectral bands, whereas the best identification rate EER of 0.250 at

To = 0.726 was obtained when using the WHITE spectral band in the case of R = 7

with BIN = 25. In the case of R = 9, a best case of an EER of 0.409% was obtained

at To = 0.700 with a BIN of 25 when using the 940-nm spectral band with BIN =

25 the highest EER (EER = 0.994% at To = 0.654) did not exceed 100% (850-nm

spectral band). It should be noted that, in all of these tests, the regions that were

numbered within a image of 1 to 16 and a codebook size from 25 to 500 (with a step

of 25) were also tested. The obtained results showed that 9 regions with a codebook

size of 100 was sufficient for better performance.

The second set of experiments aimed to evaluate the system performance by

comparing our proposed method with the CBD method (using the optimal parameters

that were previously selected) and the two LBP variant-based methods (TP-LBP and

FP-LBP). The test results for the three spectral bands in both identification modes

are shown in Table 5.

From this table, we observe that, in the open-set identification mode, the best

case for the three 850-nm, 940-nm, and WHITE spectral bands were obtained with

EER = 0.689% at To = 0.719, EER = 0.406% at To = 0.700, and EER = 0.125%
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at To = 0.697 using the DFTMDNet, CBD, and DFTMDNet methods, respectively;

the best case was achieved when using the proposed DFTMDNet methods with EER

= 0.125%. In the closed-set identification mode, the best case for the three 850-nm,

940-nm, and WHITE spectral bands were achieved with ROR = 97.000% with RPR

= 72, ROR = 98.500% with RPR = 93, and ROR = 98.375% with RPR = 13 using

the CBD, CBD, and DFTMDNet methods, respectively; the best case was achieved

when using the CBD method with ROR = 98.500%.

Table 5
Performance comparison of DFTMDNet with classical methods

Open-set Identification

Methods 850 [nm] 940 [nm] WHITE

To EER To EER To EER

FPLBP 0.257 6.798 0.296 4.750 0.245 1.625

TPLBP 0.265 3.250 0.248 2.936 0.206 1.125

CBD 0.654 0.994 0.700 0.406 0.726 0.250

Proposed 0.719 0.689 0.659 0.875 0.697 0.125

Closed-set Identification

Methods 850 [nm] 940 [nm] WHITE

ROR RPR ROR RPR ROR RPR

FPLBP 71.505 92 81.124 89 93.500 65

TPLBP 86.875 90 87.375 85 94.875 69

CBD 97.000 72 98.500 93 98.025 44

Proposed 96.625 45 97.000 81 98.375 13

By analyzing the results of this table, we can draw two points: methods that

are based on learning give better results than other methods (without learning);

also, deep learning is generally efficient when compared to other methods – espe-

cially if we use several levels of image analysis (several convolutional stages). The

obtained experimental results clearly demonstrate the learning principle efficiency in

a feature-extraction task where the effectiveness of deep learning becomes evident in

large databases, which make these kinds of systems go well with many high-security

applications.

4.2.2. Comparison with recent works

In order to show the effectiveness of our proposed method as compared to existing

methods (handcrafted/based deep learning), a comparative study with some recent

works is carried out in this part using the CASIA multispectral database, where the

main works are summarized in Table 6.

The displayed results in this table shows that the proposed method gave a good

performance (with an EER of 0.0800% and an accuracy of 99.25%) as compared to
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many other related works that have been carried out on CASIA’s multispectral palm-

print database. Based on all of the above, we believe that this work results in a new

and recent technique that allows us to obtain the best identification performance in

all bands of the CASIA palm-print database; in general, it gives an EER that is

greater than it was achieved by the others. In addition, our palm print-identification

system can be improved by modifying the feature-extraction process (for example,

by increasing the number of DFTMDNet stages to effectively remove the unnecessary

features).

Table 6
Performance comparison of DFTMDNet with state-of-the-art methods

Methods Year Acronym Classifier EER [%]

Classical

Methods

(Handcrafted)

2010 [14] SAX KNN 0.9000

2011 [27] Contour-code Hash Table 0.3000

2014 [26] RootSIFT Hierarchique matching 1.0000

Deep

Learning

Methods

2016 [13] Sparse SRC-SVM 0.2800

2016 [42] DoN KNN 0.5300

2016 [38] AlexNet Hausdroff 0.0803

2016 [34] Siamese Net SVM 1.8600

2017 [29] PCANet SVM 0.1200

2018 [20] VGG Softmax 3.7800

2019 [22] PalmNet KNN 0.7200

2021 [24] GPWLD Optimized AE + Cosine similarity 0.2400

Proposed – DFTMDNet SVM 0.0800

5. Conclusion

The goal of any pattern-recognition system is to achieve high accuracy; this mainly

depends on a good representation of pattern features. In a biometric-identification

system, the main impact of the feature-extraction step on accuracy prompted us

to consider developing a new feature-extraction method based on the convolutional

deep-learning principle. The main objective of this study was to demonstrate the

importance of deep-learning principles in multispectral palm print-identification sys-

tems. The experimental results that were obtained when using several spectral bands

from the CASIA database showed that our method provided high accuracy as com-

pared to many hand-crafted methods and some deep learning-based methods in the

literature. Moreover, the excellent performance that was obtained by using a small

number of convolutional layers (two convolutional stages) and convolutional filters

(four convolutional filters) proved the lower hardware cost. Also, these experiments

demonstrated that our method is very flexible and can be used in any biometric ap-

plication by selecting the appropriate parameters depending on the desired degree of

security. And despite the small size of the palm-print image, our feature-extraction



268 Asma Aounallah, Abdallah Meraoumia, Hakim Bendjenna

method gave high performance; this small size is undoubtedly proof of the low process-

ing time and, therefore, the possibility of using it in real-time applications. Despite

the effectiveness of the feature-extraction method in biometric systems, these systems

may unfortunately be exposed to new security and privacy risks. Therefore, our fu-

ture work should focus on improving the security of our feature-extraction method to

protect the biometric template during transmission and/or storage.
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