
Computer Science • 23(4) 2022 https://doi.org/10.7494/csci.2022.23.4.4642

 Lukasz Opio la
Kamil Jarosz
 Lukasz Dutka
Renata G. S lota
Jacek Kitowski

GROUP MEMBERSHIP MANAGEMENT
FRAMEWORK
FOR DECENTRALIZED COLLABORATIVE
SYSTEMS

Abstract Scientific and commercial endeavors could benefit from cross-organizational,

decentralized collaboration, which becomes the key to innovation. This work

addresses one of its challenges, namely efficient access control to assets for dis-

tributed data processing among autonomous data centers. We propose a group

membership management framework dedicated for realizing access control in

decentralized environments. Its novelty lies in a synergy of two concepts: a de-

centralized knowledge base and an incremental indexing scheme, both assuming

a P2P architecture, where each peer retains autonomy and has full control over

the choice of peers it cooperates with. The extent of exchanged information

is reduced to the minimum required for user collaboration and assumes lim-

ited trust between peers. The indexing scheme is optimized for read-intensive

scenarios by offering fast queries – look-ups in precomputed indices. The in-

dex precomputation increases the complexity of update operations, but their

performance is arguably sufficient for large organizations, as shown by con-

ducted tests. We believe that our framework is a major contribution towards

decentralized, cross-organizational collaboration.

Keywords group membership management, decentralized system, decentralized

collaboration, coordination middleware

Citation Computer Science 23(4) 2022: 521–544

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

521

https://doi.org/10.7494/csci.2022.23.4.4642
https://creativecommons.org/licenses/by/4.0/

522 Lukasz Opio la et al.

1. Introduction

Computer-supported collaboration is constantly evolving, trying to utilize the pow-

erful computing infrastructures that are becoming more and more accessible. One

of the major ongoing challenges is the ability to combine the capabilities of multi-

ple data centers and the expertise of cooperating specialists in order to boost the

scientific process. Different institutions and federations constantly strive to make ad-

vancements in this area and eventually they face the problem of group membership

management – arranging users into cooperating groups that reflect the organizational

structure and its granularity (e.g. teams, units, departments). Apart from bring-

ing work colleagues together, group structures are often used to control access to

organizations’ data assets, which are fundamental to collaborative data processing.

Data assets (called assets through the rest of the paper), are understood as arbi-

trary, persistent digital information accessible for users to process and collaborate on

with others. There is a wide range of solutions that allow organizations to effectively

manage user memberships in groups and their access to assets, for example Microsoft

Azure Active Directory [20], Internet2’s Grouper [11] or various LDAP [16] protocol

implementations.

Despite the major potential of modern computing infrastructures, conducting re-

search in the scope of a single organization becomes insufficient. In times of ever grow-

ing globalization, innovations require engaging in spontaneous, cross-organizational

and interdisciplinary collaboration. To some extent, it can be facilitated using the

ideas of Virtual Organizations (VOs) [30] and Ad-hoc user collaboration [18]. The

former proposes that geographically dispersed users, groups and organizations create

virtual working groups to tackle common challenges, using dedicated software. The

latter defines a dynamic working environment where users can engage in short-term

and task-specific collaboration that is arranged on demand. These concepts greatly

improve the collaborative potential within complex organizations, but they require

agreements between participating parties and joint administration. For that reason,

they are mostly viable within federated environments, such as Grids.

At the same time, the need for global collaboration spanning over autonomous

institutions is growing [12], along with international research programs and grant

funding frameworks. To satisfy this demand, we envision of a truly borderless collab-

orative environment that would embrace the ideas of VOs and Ad-Hoc user collabo-

ration. To make them applicable on a global scale, we propose to back them up with

a platform that enables decentralized management of user identities, group member-

ships and access to assets among autonomous organizations. Such platform could

serve as a technological backbone for setting up spontaneous collaborative processes

and controlled resource sharing without the prerequisite of establishing a federation.

One of the challenges of the postulated platform is decentralized group member-

ship management, which is addressed in this paper. The essence is to allow manage-

ment of groups, memberships and access to assets among independent organizations,

given large and dynamic structures of groups and assets. In typical setups, groups

Group membership management framework for decentralized collaborative systems 523

are arranged into nested tree structures. Assets may constitute a flat collection of in-

dependent data sets, but they may also have some interconnecting relations, relevant

for determining access to them. These possibly deep structures must be analyzed

continuously to enforce access control, which in turn should not hinder the perfor-

mance of data access. Moreover, relations between users, groups and assets cross

the boundaries of organizations, but there is no centralized knowledge and no trust

between peers. Nevertheless, it is required that they securely cooperate with each

other and jointly realize group membership management in order to enable global,

decentralized collaboration. To the best of our knowledge, there are yet no solutions

offering such possibilities.

The inspiration for this research was taken from the Onedata system, which

strives to provide a decentralized data management platform for global collabora-

tion [33].

Our contribution

This paper proposes a novel framework – a basic structure for decentralized collabo-

rative systems that securely handles managing group membership data. It is based

on two main concepts; a) decentralized knowledge base for storing and exchanging

information about entities and relations; b) incremental indexing scheme optimized

for read-intensive scenarios. The framework allows determining memberships and

privileges in nested hierarchies, where evolving relations may cross organizational

boundaries. It is targeted at systems using IBAC (Identity Based Access Control),

based on client’s identity and privileges. This model aligns with scenarios where group

structures and user memberships play an important role, e.g. distributed storage in

organizations. The main purpose of the framework is to manage access control to

assets that are distributed among storage systems of autonomous organizations and

thus facilitate collaborative data processing.

This paper is structured as follows. In Section 2, we propose a research problem

representation that uses a graph of memberships between entities (users, groups and

assets) and break it down into incremental scopes to pinpoint the main difficulties.

In Section 3, we present our novel framework for decentralized group membership

management. In Section 4, we evaluate the performance and scalability of a prototype

implementation of the presented concept. To that end, we simulate large membership

graphs and run test procedures that generate changes in the graph, while measuring

the significant parameters. We discuss the results and the viability of the solution in

decentralized collaborative scenarios.

2. Group membership model

In this section, we show our interpretation of the decentralized group membership

management problem using a graph model. It is divided into three incremental steps

for better depiction of its intertwined aspects.

524 Lukasz Opio la et al.

2.1. Graph representation of memberships

Organizational structures are essentially a composition of users, groups and assets

with interconnecting relations. They can be modeled using directed graphs. Nodes

represent entities: users, groups and assets. To achieve unified modeling, all relations

are reduced to memberships, represented by edges directed from a child (member)

entity to a parent (containing) entity. A child entity can be a user or a group (groups

can be nested). A parent entity can be a group or an asset. Membership relation

between a child entity and a group indicates that the child is a member of the group.

Membership relation between a child entity and an asset indicates that the child

has access to the data stored within the asset. Entities and membership relations

constitute an entity graph. An example that reflects above definitions is shown in

Figure 1.

The membership relation is transitive. In nested structures, groups and assets can

have indirect members, e.g. a user directly belonging to a group that directly belongs

to another group. Such memberships are called effective. With this representation,

access control to assets can be realized by determining if the client is an effective

member of the asset.

user 1 group B
asset V

user 4

user 2

user 3

group A
group C

group D

asset W

asset X

asset Y asset Z

O
RG

AN
IZ

AT
IO

N
A

O
RG

AN
IZ

AT
IO

N
B

O
RG

AN
IZ

AT
IO

N
C

privs: X-XX-

privs: XXX--

LEGEND:
 is member of

Figure 1. Exemplary entity graph with edges representing memberships and corresponding

privileges (selectively annotated)

Determining an effective membership is equivalent to a query that tries to find

a path between two nodes, which is essentially a reachability problem. If there exists

at least one such path, then the starting node (effective child) is an effective member of

the target node (effective parent). There can be more than one effective membership

Group membership management framework for decentralized collaborative systems 525

path – e.g. in Figure 1, user 4 is an effective member of asset Z and there are three

different membership paths between them.

2.2. Membership privileges

Further, the graph representation from the previous section is extended to reflect the

needs of collaborative systems, which require modeling privileges along with member-

ships for finer access control. They are represented using edge attributes.

Consequently, apart from determining an effective membership, it is required

to find the privileges of the effective child towards the effective parent. Such query

answers the access control question: “does entity X have privileges to do action Y in

the scope of asset Z?” The proposed representation dictates that effective privileges be

a union of privileges of all direct members of the parent to which the child effectively

belongs. Figure 1 presents an example where characters “X” and “-” represent the

possession or lack of an arbitrary privilege, respectively. Here, user 4 belongs to asset

Y directly (with privileges XXX--) and through group D, inheriting its privileges in

the asset (XX-X-). Hence, the effective privileges of user 4 in asset Y are XXXX-.

With such problem definition, to find the effective privileges one must find all

effective paths connecting the query nodes, as well as gather and process the privileges

during edge traversal, keeping in mind that nesting of groups and assets can be

arbitrary.

2.3. Entity graph decentralization

The above-mentioned problems are addressed in the context of decentralized environ-

ments, where users, groups and assets originate from different organizations (cf. Fig-

ure 1). The organizations remain in a peer-to-peer relation with each other, without

a central point or superior coordination.

Membership relations may or may not cross the boundaries of an organization.

The information about entities, their relations and privileges is sensitive and cannot be

made public – it should be available only to the authorized actors (e.g. entity owners,

privileged members, organizations of origin). This effectively limits the knowledge of

an organization to a certain subset; each peer knows a different subgraph and remains

unaware of the extent of the global graph. Hence, the decentralization significantly

complicates matters of both determining effective memberships and privileges as well

as storing the graph structure itself. Assuming there might be thousands of peers in

the system, the cost of the graph traversal rises even higher.

3. Group membership management framework

The proposed framework is essentially a synergy of our two novel contributions:

decentralized knowledge base spanning over the databases of peers and incremen-

tal membership indexing scheme. These concepts are discussed through the rest of

this section.

526 Lukasz Opio la et al.

This work focuses on group membership management, which should be com-

plemented by other mechanisms for a comprehensive access control implementation.

They fall outside of the scope of this paper, while it is assumed that they are already

in place:

• The peers (organizations) can globally discover and identify each other, as well

as all entities – knowing a global identifier of an entity, each peer must be able to

find out its origin. This can be achieved using a decentralized ledger or a DNS +

HTTPS based approach, where peer domains are transmitted along with client

authorization, as shown in [21].

• There is an infrastructure that verifies user identities (authentication), as the

aim of this framework is to manage memberships and streamline access control to

assets for authenticated clients (authorization). Typically, peers may use OpenID

Connect or SAML for that purpose.

• The framework manages solely the high-level information about assets and mem-

berships. Peers maintain their own storage for the physical assets and no require-

ments are imposed in that matter. In fact, peers are expected to have existing

storage systems and asset collections when joining the peer network. The infor-

mation about users and memberships managed by the framework is then used to

control access to the physical assets (cf. Figure 2).

3.1. Decentralized knowledge base

DECENTRALIZED KNOWLEDGE BASE
user 1 user 2group A group Basset Y asset Z

ENTITY DATA ENTITY DATA ENTITY DATA

PHYSICAL ASSETS

PEER A PEER B PEER C
PHYSICAL ASSETSPHYSICAL ASSETS

Figure 2. Knowledge base spanning over separate peer databases stores

high-level information about entities. Physical assets are stored independently

The purpose of the knowledge base is storing and exchanging information about en-

tities in a decentralized scope, where the global information is effectively split into

separate fragments. We find it crucial that each peer (organization) retains full con-

trol and possession of their database, thus we eliminated decentralized data stores,

such as blockchain ledgers or DHTs. Our approach assumes that each entity has its

peer of origin, which locally stores its information and membership data. The peer

has authoritative control over the entity and handles all modifications of the entity or

its relations. Peers share only the information required for collaboration with other

peers, using secure end-to-end channels. Based on the entity graph and information

about origin of different entities, a peer can decide to disclose certain information

Group membership management framework for decentralized collaborative systems 527

to another peer. For example, Peer B can request information about group A from

Peer A, because one of its users belongs to the group – cf. Figure 2. In this approach,

the database storing the entity data itself is not decentralized, but a decentralized

knowledge base is introduced – a data exchange layer on top of the peer databases

that uses secure end-to-end channels for accessing remote entity data. This informa-

tion is used by the peers to make access control decisions regarding the assets located

on their storage systems.

struct DirectIndex :

neighbors: map from NodeId to Privileges

end

struct EffectiveIndex :

effectiveNeighbors: map from NodeId to EffectiveIndexValue

end

struct EffectiveIndexValue :

effectivePrivileges: Privileges

intermediaries: set of NodeId

end

Figure 3. Structures of direct and effective indices

Entity data includes several basic attributes, such as name, creation time and

configuration, along with entity’s relations, which are essential for membership man-

agement. It can be stored using arbitrary database technology, as long as it complies

with the following guidelines. Node relations (connected edges) are persisted in an

index – a key-value store that supports queries in constant or logarithmic time (it

may be based on a hash table or a B+ tree, for example).

There are two types of indices, corresponding to relation types – direct and

effective. Their structures are shown in Figure 3. In a direct index, the key denotes

the node’s direct neighbor ID and the value encodes the privileges assigned to the

relation. In an effective index, the key denotes the node’s effective neighbor ID and

the value encodes precalculated effective privileges and intermediaries. Intermediary

for an effective relation is a direct neighbor of a node through which an effective

relation path goes, and each effective neighbor can have any number of intermediaries.

If there is a direct relation with the effective neighbor, the neighbor itself is added as

an intermediary. A representation of node indices with exemplary content is shown in

the following subsection. Each node (entity) has at most four indices: direct children,

direct parents, effective children, effective parents. Privileges are stored only in child

indices; in parent indices this value is ignored. Hence, to find direct/effective privileges

of a user in a group, one must consult the group’s direct/effective children index and

look up the entry for the user.

528 Lukasz Opio la et al.

3.2. Incremental indexing scheme

The indexing scheme defines how to process the information stored in the knowledge

base to answer queries about effective memberships and privileges in the entity graph.

It is optimized for fast queries at the cost of graph update performance, due to read-

intensive characteristics of the target systems. We argue that in typical collaborative

scenarios, relations change occasionally (e.g. a user is moved to another group), but

the membership information is queried constantly – during every access to an asset.

Minimizing the query times is especially important for this solution to be applicable

in systems dedicated for data processing, where the overheads of access control must

be as low as possible.

Hence, we propose full indexing of effective memberships and privileges in a con-

tinuous process of incremental index adjustments. There are three types of operations

that can modify the graph: addition of a relation, update of privileges assigned to

a relation, and deletion of a relation. Each such modification triggers reconciliation

of the indices, but only over the subgraph affected by the change. The reconciliation

process reuses the existing indices, making minimal adjustments stemming from the

changed relation. Thus, complexity of an update operation depends on the current

graph structure and the number of nodes affected by the update. The main advantage

is that queries are fast, being a simple look-up in a precomputed index.

In the following subsections, we firstly present the general principles of the in-

dexing scheme, then we show how it is jointly realized by independent peers.

3.2.1. Event-driven reindexing

The incremental indexing scheme utilizes the aforementioned persistent indices. Upon

a relation change request, the direct relation indices are modified in a transactional

(atomic) way. For instance, when a user is added to a group, two entries are added:

1) the group is added to the user’s direct parents index and 2) the user is added to

the group’s direct children index along with the assigned privileges. The transaction

also emits asynchronous events, triggering recomputation of effective indices in the

graph. Consequently, direct indices are immediately consistent, while effective indices

are eventually consistent – they converge when all related events are processed.

Events are the basic unit of information and drive index updates by propagating

through the graph. Each event is assigned to a specific node and falls into the event

queue designated for the node. Events are handled in parallel by a pool of reindexing

processes that continuously poll the queues, but with the restriction that all events

concerning the same node must be processed sequentially to avoid race conditions

when updating indices. Event structure is presented in Figure 4 – it carries informa-

tion about a change in effective relations of an entity: either their addition, update,

or removal (i.e. “user 1 and user 2 are added as effective children via intermediary

group C”).

Group membership management framework for decentralized collaborative systems 529

struct Event :
operationType: enum { ADD, UPDATE, DELETE }
direction: enum { TOP DOWN, BOTTOM UP }
intermediary: NodeId
effectiveNeighbors: set of NodeId

end

Figure 4. Structure of an event

Event propagation is understood as creating descendant events for each direct

neighbor of the subject node. There are two possible directions of propagation:

bottom-up (from children towards parents) and top-down (from parents towards chil-

dren). Propagation is always done in the same direction as of the original event, e.g.

a bottom-up event causes descendant bottom-up events to be emitted for each direct

parent of the node (cf. Figure 6). The nodes receiving descendant events are called

successors.

Events are persisted since the moment of creation until processed, to ensure

durability of changes to the graph in case of any sudden system failures. For the same

reason, there is one persistent queue of events that are yet to be processed, internally

divided into sub-queues for specific nodes. Events may be prioritized arbitrarily, but

the framework assumes that events for the same node must be enqueued strictly in

the order of creation – which is straightforward, as updates of each node (which cause

event emission) are done in non-overlapping transactions.

When event e concerning node v is pulled from the event queue, it is processed

according to the Process-Event(v, e) procedure, shown in Figure 5. The proce-

dure operates on one of the node’s effective indices depending on the event’s direction

(cf. lines 9–15). The index is updated depending on the operation type and its previous

state for each effective neighbor referenced by the event (cf. lines 19–39). Recalcula-

tion of privileges is triggered only in case of bottom-up events that concerned an up-

date operation or caused any change in the set of intermediaries. New effective privi-

leges are a union of all direct privileges of the intermediaries (cf. lines 40–42). After the

index is reconciled, a further propagation of the event is considered (cf. lines 44–53).

Propagation is required only if the reconciliation caused any effective neighbor to be

added or deleted. In such case, descendant events are emitted for each successor of the

node. If there are no successors or no changes in effective neighbors, the propagation

ends. Finally, the event is considered processed.

Figure 6 illustrates an exemplary course of the reindexing algorithm, triggered by

adding group C as a child of group D. The transaction adds new entries to the direct

indices of the nodes (1) and emits two events propagating in opposite directions (2).

In the course of the propagation (3), group C and its children are notified about

their new effective parents, while group D and its parents are notified about their new

effective children, with the privileges inherited along the propagation path. Successive

propagation is marked with (P), while (E) denotes where it ends. The user 1 node

is an example where there are no successor nodes.

530 Lukasz Opio la et al.

1: procedure Process-Event(v, e)
2: ▷ v: node
3: ▷ e: event to process
4: ▷ Dc(v): index of direct children of v
5: ▷ Dp(v): index of direct parents of v
6: ▷ Ec(v): index of effective children of v
7: ▷ Ep(v): index of effective parents of v
8: toPropagate← {}
9: if e.direction = TOP DOWN then

10: Ω ← Ep(v)
11: successors← {u : Dc(v).neighbors[u] ̸= nil}
12: else
13: Ω ← Ec(v)
14: successors← {u : Dp(v).neighbors[u] ̸= nil}
15: end if
16: for vn ∈ e.effectiveNeighbors do
17: ω ← Ω[vn] ▷ index value for the effective neighbor
18: recalculatePrivileges← false
19: if e.operationType = ADD then
20: if ω = nil then
21: Ω[vn]← ω ← new EffectiveIndexValue
22: toPropagate← toPropagate ∪ {vn}
23: end if
24: if e.intermediary /∈ ω.intermediaries then
25: ω.intermediaries← ω.intermediaries ∪ {e.intermediary}
26: recalculatePrivileges← true
27: end if
28: else if e.operationType = DELETE then
29: if ω = nil ∨ e.intermediary /∈ ω.intermediaries then continue
30: ω.intermediaries← ω.intermediaries \ {e.intermediary}
31: if ω.intermediaries = {} then
32: Ω[vn]← nil
33: toPropagate← toPropagate ∪ {vn}
34: else
35: recalculatePrivileges← true
36: end if
37: else if e.operationType = UPDATE then
38: recalculatePrivileges← true
39: end if
40: if e.direction = BOTTOM UP ∧ recalculatePrivileges then
41: ω.effectivePrivileges←

⋃
i∈ω.intermediariesDc(v).neighbors[i]

42: end if
43: end for
44: if |toPropagate| > 0 then
45: ep ← new Event
46: ep.operationType← e.operationType
47: ep.direction← e.direction
48: ep.intermediary← v
49: ep.effectiveNeighbors← toPropagate
50: for vs ∈ successors do
51: send ep to vs
52: end for
53: end if
54: end procedure

Figure 5. Procedure Process-Event(v, e)

Group membership management framework for decentralized collaborative systems 531

user 1
group D

group C

asset Zasset Y

XXX--

LEGEND: 1 Direct relation is added.
 2 Initial events are emitted during the update transaction.
 3 Events are asynchronously processed and propagated until all the affected indices converge.
 P Further event propagation.
 E End of event propagation.

1

group E asset X

P

P P E

P

3
E

via gC

2
+ gC, u1, u2

+ gC, u2

+ gC, u2
3

event
(bottom-up)

event
(top-down)

+ gD, gE, aX, aY, aZ
2

+ gD, aY, aZ
3

user 2

+ gD, aY, aZ
3

+ gC, u2
3

X---X

E

P
E

via gD

via gC

via gC

via gD

via gD

via aY

Figure 6. Exemplary course of reindexing after a relation is added

The case of no changes in the effective neighbors can be observed at group E,

which already had all the effective children in its index due to the preexisting member-

ships of group C and group D. As operations on a node are done in non-overlapping

transactions and events assigned to a single node are processed sequentially in the

order of creation, it can be assumed that asset X must have already been notified

about these effective children as a result of previous graph updates. Hence, asset X

is not affected by the operation and requires no recomputation. Finally, Figure 7

depicts the state of indices of group D after all events are processed.

group D – direct children
privileges

group C XXX--
user 1 X---X

group D – eff ective children
eff . privileges intermediaries

group C XXX-- group C
user 1 XXX-X user 1, group C
user 2 XXX-- group C

group D – direct parents
privileges

group E N/A
asset Y N/A

group D – eff ective parents
eff . privileges intermediaries

group E N/A group E
asset Y N/A asset Y
asset X N/A group E
asset Z N/A asset Y

Figure 7. Indices of group D after recomputation

An additional benefit of storing intermediaries in effective indices is the possibility

to rebuild all effective paths connecting nodes A and B, by starting from node A and

recursively visiting all intermediaries of its effective neighbor B.

532 Lukasz Opio la et al.

3.2.2. Decentralization of the Indexing Scheme

The scheme dictates that the entity’s peer of origin stores all its indices and is respon-

sible for recomputing its effective indices. Peers cooperate only in matters regarding

cross-organizational relations – cf. Figure 8. Firstly, when such relation is added,

modified or deleted, the peer responsible for the parent node coordinates a distributed

transaction that succeeds when the two peers update their direct indices and gener-

ate corresponding events. Secondly, when local index recomputation emits an event

concerning a node in another peer, it is placed in a persistent outbox and waits as

long as required for the other peer to consume it. Thirdly, a peer releases local entity

details only if it has a relation with an entity from the requesting peer. It is used by

the peer to display information about a remote entity to its local users. The details

are fetched by its global entity ID, held in membership indices.

user 1

user 2

group C

asset Z

group D

asset Y

ORGANIZATION A ORGANIZATION B

OUTBOX

+ gC, u1, u2
via gD

Figure 8. Decentralization of the indexing scheme – peers cooperate

in distributed transactions and exchange events using persistent outboxes

Peers in the environment are expected to be in different operational states; some

may be offline, some may be busy and falling behind with processing of events, while

others may be idle. If peers are operational, the convergence times depend on the size

of the subgraph affected by the change and the current workload of the participating

parties. On the other hand, any long-lasting downtime or network outage respectively

delays the event propagation, which is clearly beyond the influence of the scheme.

Nevertheless, thanks to the persistent outboxes, it is guaranteed that all involved

peers will eventually acknowledge a change to the graph that has been made elsewhere.

With this approach, from the global point of view, the system is eventually consistent,

but allows peers to remain independent and thus to provide uninterrupted services

for their local communities, while realizing cross-organizational access in a best-effort

manner.

3.3. Security, privacy and trust considerations

This framework assumes no inherent trust between individual organizations in the

environment, which are determined to ensure security and privacy for their users and

assets. Despite that, it proposes a way to arrange decentralized collaboration based

on willful exchange of information in a limited and controlled manner. In regard

to security, privacy and trust, this work builds on [21], where the authors presented

Group membership management framework for decentralized collaborative systems 533

the concept of trust-driven access control between autonomous peers and shown how

trust statements can be used to facilitate secure information flow between independent

parties.

The proposed approach is applicable only if the peers recognize the need of their

users to reach out to people from other organizations and agree to share some infor-

mation with the outside world, in return receiving the same from other peers. Access

to information depends on relations between users, groups and assets, and in fact the

creation of these relations is the impulse for a pair of peers to start cooperating. For

example, when a user from a remote peer is invited to a local group, the local peer

starts to recognize the user and grants him access to the parent assets of the group –

but nothing else. At every level, the peers follow the rule of limited trust, but accept

foreign users that were entrusted by local users and invited for collaboration.

The process of inviting people to collaborate differs depending on policies in

each organization; for instance it may be overseen by administrators, or available

to some privileged users (e.g. asset owners). The extent of information exchanged

by the peers is limited to minimum required for collaboration, and only to entities

connected by a cross-organizational relation. It is communicated using secure end-to-

end channels, which means that both sides are responsible for keeping the information

private and secure. However, especially as the system is decentralized, it cannot be

assumed that all peers have good intentions. In fact, malicious parties may join

the P2P network and try to extract sensitive information. For that reason, each

organization should implement some security measures to have control over what

external parties are allowed to participate in collaboration. As organizations have very

different policies and administrative processes, the framework does not impose any

concrete requirements in this matter. To name a few possible approaches, they might

be based on trust models, use mechanisms such as auditing, whitelisting, blacklisting

or depend on some real-life agreements between organizations. In specific cases, a peer

might even choose to remain completely isolated and realize the group membership

management only for internal purposes, or cooperate with a strictly limited list of

trusted peers. In case a peer does not implement any security measures to control the

pool of participating peers, the data security lies entirely in the hands of its users.

Unauthorized data extraction may appear if the users entrust some malicious party

and invite it for collaboration, but only in the scope of groups and assets where it has

been granted access. Nevertheless, such peer with impaired security does not impact

the security of others – each peer oversees the security of entities originating from it

and applies its own security measures when determining which peers are allowed to

access the entity data.

4. Evaluation

In order to verify the viability of our framework, we implemented a prototype in Java,

called gmm-indexer, with Redis database as underlying persistence. Its native key-

value store based on a hash table was used for persisting direct/effective membership

534 Lukasz Opio la et al.

indices. We conducted performance tests measuring query times and the throughput

of update operations at different workload levels. All tests were also run for a naive

implementation, which simply stored the graph without indexing and traversed it

at every query. The aim was to estimate the gain in terms of query performance

offered by the precomputed indices and the overheads introduced by our indexing

mechanism. The prototype implementation and scripts used for tests are publicly

available in a Github repository [10].

The testing environment consisted of 4 machines, each with 4 core CPU

(2.66GHz) and 16GB of RAM. One machine was used solely to make requests to the

other three, each of which hosted one peer – simulating three independent organiza-

tions. For each test, we simulated a preexisting entity graph, generating a hierarchy of

assets, groups and users. Even though the tests were intended to serve as a proof

of concept rather than an accurate simulation, we strove to generate graphs corre-

sponding to actual structures of real organizations. Based on the numbers for one of

the biggest scientific research centres – CERN – that had 3459 employees and 12731

community members at the end of 2021 [2], we deemed the number of 5000 entities

a good representation of a large organization. The nesting level and member count of

each asset or group was randomized using a normal distribution. Generated graphs

had about 15k nodes and 19k edges spanning over three peers, which gives about 5k

entities per organization. We identified one parameter that is especially significant,

namely cross-organizational factor, indicating how many relations (edges) cross the

boundaries of a peer. At 0%, there is no cooperation between peers in recomputation

of the indices. The higher this parameter, the bigger the overheads caused by P2P

communication, required to propagate the events and process all changes made to the

graph. From a single peer’s point of view, this parameter is arguably more important

than the total number of peers in the environment, as it regulates how often the peer

has to communicate with any of the external parties.

Table 1
Performance test results – query times for gmm-indexer and naive implementation

Query times [ms]
Query type / Cross-organization factor

is member is mem. non-ex. eff. privileges eff. members

impl. metric 0% 10% 0% 10% 0% 10% 0% 10%

naive avg 4.7 5.5 11.1 12.7 7.7 7.2 34.0 47.3

naive max 91.2 82.2 152.7 110.4 75.4 98.2 370.2 340.2

gmm-indexer avg 1.3 1.3 0.9 0.9 1.4 1.3 2.2 2.1

gmm-indexer max 5.4 48.9 38.6 35.4 40.9 14.1 52.7 50.2

After preparing the initial graph, we generated a set of queries based on the

actual graph structure and started the client that continuously sent requests to all

peers and measured relevant parameters over longer time periods, to collect represen-

tative averaged measurements. The test results are shown in Table 1, which presents

Group membership management framework for decentralized collaborative systems 535

a comparison of query times depending on the query type and cross-organizational

factor (0% or 10%). The following types of queries were performed:

• Query is member – a query checking if an entity is a member of another entity.

These queries were generated for existing memberships, i.e. the query result was

always positive. In this case, the naive algorithm could yield an answer after

traversing only some of the membership paths.

• Query is mem. non-ex. – like above, but queries were generated for non-existing

memberships, i.e. the query result was always negative. This case is harder for

the naive implementation as it requires traversal of all membership paths before

reaching the final decision.

• Query eff. privileges – a query that returns computed effective privileges of a child

entity towards a parent entity for an existing membership. Causes the naive

algorithm to traverse all membership paths.

• Query eff. members – a query that returns computed effective members of an

entity. Causes the naive algorithm to traverse all membership paths. The tra-

versed subgraph is typically larger that in case of previous query types, because

the traversal is done towards children rather than parents, which causes more

branching.

Thanks to the precomputed indices, we achieved about 3–25× faster average

query times, which were very similar for all test cases and oscillated around 1–2 mil-

liseconds. The table also includes the maximum query time that was observed during

each test case. For gmm-indexer, they depict maximum spikes in latency during com-

munication with the underlying database, but for the naive implementation, they can

be attributed to the cases when a long graph traversal was required.

For update throughput tests, the client maintained a constant workload expressed

in operations per second. We measured how many operations were finished by each

peer in a time period – for the naive implementation, an operation was considered

finished when the graph structure was updated, and for gmm-indexer, when all related

events have been processed. The results for different workload levels are presented in

Figure 9.

Figure 9. Performance test results – operation throughput per peer

536 Lukasz Opio la et al.

For each cross-organizational factor, gmm-indexer performed about 3× worse

than the naive implementation, which depicts the cost of reindexing that was contin-

uously performed in the background. Starting at about 230 requests/sec/peer, the

gmm-indexer implementation was no more able to handle all incoming requests on

the fly and they started to pile up. On the other hand, the naive implementation

was able to process about 650 requests/sec/peer until the test machine resources be-

gan to deplete. Looking at different data series for gmm-indexer, it can be inferred

that the cost of graph updates generally grows with the cross-organizational factor.

Nevertheless, the graph had to be regenerated for each test case due to the changing

cross-organizational factor, so the results give only a rough comparison. Table 2 shows

average and maximum measured operation times in different test cases. The average

times for gmm-indexer were usually lower than 15 milliseconds under medium load,

but rose to about 20 seconds under heavy load. Maximum propagation times depict

the extreme cases when an operation caused a recomputation of a large chunk of the

graph. This means that, in rare cases and under heavy load, a user might have to

wait several minutes until their operation (e.g. joining a group) is processed.

Table 2
Performance test results – update times for gmm-indexer and naive implementation

Update times [s] Workload: operations / sec / peer

impl. / cross-org. f. metric 33 67 100 133 167 200 233 267 300 333

naive / N/A avg 0.008 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.007 0.008

naive / N/A max 0.133 0.213 0.102 0.111 0.217 0.114 0.148 0.103 0.081 0.219

gmm-indexer / 0% avg 0.016 0.014 0.013 0.014 0.015 0.029 2.445 12.06 16.47 19.67

gmm-indexer / 0% max 0.494 0.458 0.349 0.306 0.311 1.711 67.77 182.5 175.8 179.2

gmm-indexer / 5% avg 0.016 0.014 0.013 0.014 0.016 0.052 3.479 15.40 21.13 21.18

gmm-indexer / 5% max 0.421 0.374 0.254 0.339 0.488 2.724 71.21 179.1 193.9 186.5

gmm-indexer / 10% avg 0.015 0.014 0.013 0.013 0.015 0.031 2.565 12.22 19.37 20.71

gmm-indexer / 10% max 0.427 0.327 0.284 0.221 0.304 1.338 58.50 144.2 175.8 187.1

gmm-indexer / 20% avg 0.016 0.014 0.013 0.014 0.016 1.341 9.394 15.34 15.63 18.08

gmm-indexer / 20% max 0.496 0.390 0.305 0.433 0.327 50.75 178.4 205.3 204.1 208.0

4.1. Discussion

In our update performance tests, we simulated exaggerated conditions and large orga-

nizations. If we assume that an entity generates 1 operation per day (i.e. once a day

user’s membership in groups or assets change), the expected total workload at 5k

entities is about 0.06 operations per second. This means that our framework, despite

the reindexing overheads, requires only a fraction of the available throughput to han-

dle organizations with thousands of users, where relations are changing with intensity

adequate to long-lasting scientific projects. What is more, our tests used a single

commodity machine per organization, which leaves room for horizontal scaling.

In our simulations, each organization offered update throughput well beyond

required, even at 20% of cross-organizational factor. Consequently, from the global

point of view, we argue that the framework is able to handle millions of users working

in thousands of organizations. Thanks to the precomputed indices, we were able to

Group membership management framework for decentralized collaborative systems 537

achieve low query times, making our solution a good candidate for realizing access

control in distributed data processing environments. It is worth noting that in our

prototype, the indices were stored in an third-party database. Introducing an in-

memory caching layer for the indices could further reduce the query times.

The current trends in decentralized applications are dominated by the blockchain

technology, as it naturally solves the problem of achieving agreement amongst inde-

pendent parties. However, we deemed that its shortcomings such as inherent lack

of data privacy, limited transaction throughput and dependence on well-established

peer network make it less suitable for this research problem. Hence, we decided to

make a case for a custom tailored solution, which has considerable merits that are

not straightforward to achieve using a blockchain ledger:

• Scalability – the global knowledge is split into subsets, each maintained by an

autonomous peer, where only the information about relations crossing organiza-

tional boundaries are shared between peers. This means that the total size of

the peer network has low impact on each separate peer. We believe it is a nat-

ural implication of our sparse network architecture, nevertheless we are working

towards simulating large networks and performing scalability tests with millions

of entities to back up this claim.

• High isolation and autonomy of peers – there is no interconnected, global network

or ledger in which all peers have to participate, rather than that they create sparse

connections wherever cooperation is instantiated. A typical peer will discover

only a small portion of all peers and entities in the global scope during its lifecycle.

• Limited, privacy retaining data flow – exchange of information is possible only

concerning cooperating entities in the context of a cross-organizational relation

and is sanctioned by mutual trust of corresponding users, groups and organi-

zations. The data is transmitted over secure end-to-end channels between the

peers, rather than published in the scope of the global network.

• Manageability – our framework builds a layer upon existing infrastructures, mak-

ing integration and maintenance more manageable.

5. Related work

The framework presented in this work is a high-level concept that touches the topics

of group membership management, decentralized collaboration and access control, as

well as determining graph reachability.

5.1. Group membership management

Group membership management is an inherent part of many identity management

systems and an indispensable tool for any organization. There are numerous open

source projects (e.g. Internet2’s Grouper [11]) and commercial products (e.g. Mi-

crosoft Azure AD [20]) that support group membership management in centrally man-

aged environments. They often support nested group structures and provide tools for

538 Lukasz Opio la et al.

determining effective membership (also called transitive membership in Azure AD).

However, there is not much research done in the area of decentralized systems, and it is

mostly related to Web 2.0 concepts and groups in decentralized social networking [35].

For instance, in [25] the authors propose a distributed group management framework

using Friend-of-a-Friend vocabulary. It is independent of existing platforms, without

a central point and can be used for restricting access to web resources.

5.2. Decentralized collaboration and data access control

The idea of decentralized collaboration and decentralized data access has been present

for years in the scientific community and can be perceived in several different contexts,

but regardless of its area of application and goals, it usually must be accompanied by

some kind of access control.

Firstly, there are general purpose access control frameworks that can be used

to control access to resources in a decentralized environment. This area is undergo-

ing intensive research lately, especially after emergence of the blockchain technology

and its refinements such as smart contracts. They can be used to codify access con-

trol policies, as shown in [5] that embraces Attribute Based Access Control (ABAC)

model. Another work [19] proposes using a private ledger to store file locations (IPFS

is used for data storage) and digital fingerprints, while using a public ledger to store

ABAC attributes. Among non-blockchain propositions, there is for example a con-

cept of multi-tier user authentication for cloud storage that employs multiple Key

Distribution Centers and cryptography backed up by steganography for data security

– only legitimate clients can decrypt the stored data [27].

Secondly, there are attempts at creating frameworks that facilitate scientific col-

laboration between independent institutions. Again, some researchers took the ap-

proach of using a blockchain ledger as the backbone for decentralized networking.

For example, in [17], the authors propose a new approach to arranging collaboration

in virtual organizations by using an enriched version of Git VCS that stores commit

hashes using smart contracts and IPFS data storage, in order to securely manage

authorship, system access privileges and licensing policies in a decentralized envi-

ronment. Other ideas include for instance the Teamwork system [7] that stores the

content at users’ devices and provides a P2P overlay network for content distribution

with enhanced privacy. The MIDEP [15] protocol offers public identity management

for decentralized collaborative architectures that puts bigger focus on security and

resistance to malicious attacks, without assuming any central point. Another related

research field is Virtual Organizations where access control must be suited to dy-

namic coalitions. This problem is addressed for example in [13], where the authors

propose a fully decentralized framework embracing role-based access control with cus-

tom policies verifiable using threshold BLS signature schema. Another contribution

worth noting is [4], proposing a data-driven coordination middleware for dynamic

collaboration of autonomous peers. This work leverages ABAC and similarly to ours,

bases security (to some extent) upon trust assumptions. It supports fine-grained

Group membership management framework for decentralized collaborative systems 539

policies that are used to authorize data access, service invocations, dynamic behavior

changes and policy updates.

Thirdly, collaboration and access control in ubiquitous and ad-hoc environments

is another closely related field of research. With the omnipresence of mobile and

IoT devices, there is a need of secure coordination between peers in quickly changing

environments without a central point in order to utilize their collective computational

potential. Some of the works include for instance a framework for decentralization and

management of collaborative applications based on trust models [22], a decentralized

access control model for IoT with Decentralized ID (DID) [14] and an access control

system implementing sociological trust concepts to evaluate interaction partners [1].

Finally, there are works that address the general idea of collaboration between

independent peers and have a lot in common with our research problem, despite hav-

ing different aim than collaborative data processing. In [3], the authors present an

architecture called SOMEWHERE2 for decentralized, collaborative consequence finding,

where each peer in the network is not aware of the global theory used for reasoning,

but only knows its local theory and the variables shared with its neighbors. Another

interesting effort was made in [29], proposing a blockchain based approach for cheat

detection in multiplayer games on the edge. This solution defines a completely decen-

tralized architecture for edge devices, entailing an innovative consensus mechanism

based on verifiable delay functions.

The discussed solutions address significant challenges of decentralized collabo-

ration and data access control, but not the problem of cross-organizational group

membership management.

5.3. Graph reachability

Determining reachability is a well studied topic with many insights into query opti-

mizations, possible heuristics for approximation, as well as partial or full reachability

precomputation. Some representative examples include ideas to maintain a transitive

closure while the graph is constantly changing. For example, in [9] the authors pro-

posed two dynamic algorithms that constantly recompute the transitive closure and

can be applied for real-world graphs. Roditty and Zwick applied further refinements

and added their original ideas to obtain a decremental algorithm for maintaining the

transitive closure with a total expected time of O(mn), among several other algorithms

for optimized reachability queries [23]. The same authors later published another fully

dynamic reachability algorithm with an almost linear update time [24]. Another ex-

ample is FERRARI [26] – a scalable index structure for the reachability problem that

adaptively compresses the transitive closure during construction of the graph, yielding

fast query times with reduced index size. These solutions could be used to address the

group membership management problem, but they all assume centralized knowledge

about the graph. There have been attempts at privacy-preserving reachability algo-

rithms coping with distributed graphs, but they have major limitations. For instance,

in [6] the authors show how to perform reachability queries on a distributed graph

540 Lukasz Opio la et al.

and private sets of edges. However, the research assumes a two-party system and

guarantees security in a semi-honest model, ensuring that only required information

is shared between parties.

5.4. Summary

There has been a lot of research done concerning the abovementioned areas, but seem-

ingly there is none that directly addresses our research problem, i.e. collaboration-

oriented decentralized group membership management based on membership graphs.

Table 3
Summary of related works in relation to paper’s research problems

Group memb.
management

Decentralized
collaboration

Decentralized
access control

Graph
reachability

Internet2 Grouper [11] x – – x

Microsoft Azure AD [20] x – – x

dg-FOAF [25] x – x –

Blockchain based access
control [5, 19]

– – x –

Dec. access control with
multi-tier authentication [27]

– – x –

Dec. Blockchain-based
platform for collaboration [17]

– x x –

Teamwork [7] – x – –

MIDEP [15] – x – –

VO-Sec [13] – x x –

Dec. access control model for
dynamic collaboration [4]

– x x –

Decentralized access control
for IoT [1,14]

– x x –

Framework for mngmt. of
dec. collaborative
applications [22]

– x – –

SOMEWHERE2 [3] – x – –

Dec. authoritative
multiplayer architecture [29]

– x – –

Maintaining transitive closure
incrementally [9, 23,24,26]

– – – x

Secure reachability query on
private shared graphs [6]

– – – x

A summary of the discussed related works in relation to the research topics

addressed in this paper is presented in Table 3. We take inspiration from different

approaches to realizing decentralized collaboration, group management and solving

the graph reachability problem using fast, precomputed indices in order to create

a novel solution.

Group membership management framework for decentralized collaborative systems 541

6. Conclusions and future work

In this paper, we present a novel framework for decentralized group membership

management. With its ability to manage information about dynamically changing

memberships without a central point, as well as determine effective memberships and

privileges using fast look-ups, we believe that our framework is an important step

towards global, decentralized collaboration. It can be used to realize access control to

assets in environments consisting of multiple data centers and facilitate distributed

data processing among unfederated organizations, introducing low overheads and thus

low impact on data access performance.

The proposed framework is built upon two concepts: a decentralized knowledge

base and an incremental indexing scheme. The knowledge base allows storing and

exchanging entity data and relations without a central point, assuming a sparse peer

network that splits the global knowledge into subsets with limited overlap, which

is advantageous in the context of scalability. It uses secure channels between peers

that retain full autonomy, where the flow of information is subject to relations in

the graph and must be sanctioned by both peers. The proposed incremental indexing

scheme optimizes queries for effective memberships and privileges as much as possible,

at the cost of graph update performance, based on an assumption that queries are

orders of magnitude more frequent. As a proof of concept, we present a synthetic

benchmark to compare a prototype implementation of our proposition with a naive

implementation, simulating an environment with 3 peers and graphs with 15k entities.

The performance test results show that our prototype yields 3-25x faster query times,

while the update throughput is about 3x lower. Nevertheless, we argue that in typical

scenarios, only a fraction of the framework’s update throughput will be used.

For future work, we plan to perform tests on a larger scale to empirically explore

the capacity and scalability of our framework. We are working on some refinements

and optimizations, among which is introducing an in-memory caching layer for the

precomputed effective membership indices, to further reduce the query times – which

is not straightforward as the knowledge base convergence during updates should not

be impaired. Finally, we intend to implement the proposed framework in the One-

data system, which we hope to be a major milestone in truly decentralized scientific

collaboration between independent organizations.

Acknowledgments

This scientific work was published in part by an international project co-

financed by The National Centre for Research and Development under the pro-

gram entitled “ERA-NET CO-FUND ICT-AGRI-FOOD”, contract No. ICTAGRI-

FOOD/I/FINDR/02/2022. KJ, RGS and JK are grateful for support from the sub-

vention of Polish Ministry of Education and Science assigned to AGH University of

Science and Technology.

542 Lukasz Opio la et al.

References

[1] Adams W., Davis N.: Toward a decentralized trust-based access control system

for dynamic collaboration. In: Proceedings from the Sixth Annual IEEE SMC

Information Assurance Workshop, pp. 317–324, 2005. doi: 10.1109/IAW.2005.

1495969.

[2] CERN Personnel Statistics 2021. https://cds.cern.ch/record/2809746/files/CERN-

HR-STAFF-STAT-2021-RESTR.pdf.

[3] Chatalic P., de Amorim Fonseca A.: A Multi-Layered Architecture for Collab-

orative and Decentralized Consequence Finding, Computing and Informatics,

vol. 34(1), pp. 210–232, 2015.

[4] Craß S., Joskowicz G., Kühn E.: A Decentralized Access Control Model for Dy-

namic Collaboration of Autonomous Peers. In: B. Thuraisingham, X. Wang,

V. Yegneswaran (eds.), Security and Privacy in Communication Networks. Se-

cureComm 2015, Lecture Notes of the Institute for Computer Sciences, Social In-

formatics and Telecommunications Engineering, vol. 164, pp. 519–537, Springer,

Cham, 2015. doi: 10.1007/978-3-319-28865-9 28.

[5] Di Francesco Maesa D., Mori P., Ricci L.: Blockchain Based Access Control

Services. In: 2018 IEEE International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),

pp. 1379–1386, 2018. doi: 10.1109/Cybermatics 2018.2018.00237.

[6] Do H., Ng W.K.: Secure reachability query on private shared graphs. In: IEEE

Ninth International Conference on Intelligent Sensors, Sensor Networks and In-

formation Processing (ISSNIP), pp. 1–6, 2014.

[7] Draghici A., Burloiu C.A., Deaconescu R., Karlsson M., Müller D.: Teamwork:

A Decentralized, Secure and Portable Team Management System. In: 12th Inter-

national Symposium on Parallel and Distributed Computing, pp. 182–189, 2013.

[8] Foster I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

In: R. Sakellariou, J. Gurd, L. Freeman, J. Keane (eds.), Euro-Par 2001 Parallel

Processing, Lecture Notes in Computer Science, vol. 2150, pp. 1–4, Springer,

Berlin–Heidelberg, 2001. doi: 10.1007/3-540-44681-8 1.

[9] Frigioni D., Miller T., Nanni U., Zaroliagis C.: An Experimental Study of Dy-

namic Algorithms for Transitive Closure, ACM Journal of Experimental Algo-

rithmics, vol. 6, p. 9–50, 2001. doi: 10.1145/945394.945403.

[10] Public Github repository with the gmm-indexer prototype and scripts.

https://github.com/kjarosh/agh-gmmf-prototype.

[11] Internet2’s Grouper. https://incommon.org/software/grouper.

[12] Jemielniak D., Przegalinska A.: Collaborative society, MIT Press, 2020.

[13] Jin H., Qiang W., Shi X., Zou D.: VO-Sec: An Access Control Framework

for Dynamic Virtual Organization. In: C. Boyd, J.M. González Nieto (eds.),

Information Security and Privacy, Lecture Notes in Computer Science, vol. 3574,

pp. 370–381, Springer, Berlin–Heidelberg, 2005. doi: 10.1007/11506157 31.

https://doi.org/10.1109/IAW.2005.1495969
https://doi.org/10.1109/IAW.2005.1495969
https://doi.org/10.1109/IAW.2005.1495969
https://doi.org/10.1109/IAW.2005.1495969
https://doi.org/10.1007/978-3-319-28865-9_28
https://doi.org/10.1007/978-3-319-28865-9_28
https://doi.org/10.1007/978-3-319-28865-9_28
https://doi.org/10.1109/Cybermatics_2018.2018.00237
https://doi.org/10.1109/Cybermatics_2018.2018.00237
https://doi.org/10.1109/Cybermatics_2018.2018.00237
https://doi.org/10.1007/3-540-44681-8_1
https://doi.org/10.1007/3-540-44681-8_1
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/945394.945403
https://doi.org/10.1007/11506157_31
https://doi.org/10.1007/11506157_31
https://doi.org/10.1007/11506157_31

Group membership management framework for decentralized collaborative systems 543

[14] Jung E.: A Decentralized Access Control Model for IoT with DID. In: H. Kim,

K.J. Kim (eds.), IT Convergence and Security, Lecture Notes in Electrical

Engineering, vol. 712, pp. 141–148, Springer, Singapore, 2021. doi: 10.1007/

978-981-15-9354-3 14.

[15] Khan R., Hasan R.: MIDEP: Multiparty Identity Establishment Protocol for

Decentralized Collaborative Services. In: IEEE International Conference on Ser-

vices Computing, pp. 546–553, 2015.

[16] Lightweight Directory Access Protocol (LDAP). https://ldap.com.

[17] Lenko V., Kunanets N., Pasichnyk V., Shcherbyna Y.M.: Decentralized

Blockchain-based platform for collaboration in virtual scientific communities,

ECONTECHMOD, vol. 8(1), pp. 21–26, 2019.

[18] Lorch M., Kafura D.: Supporting Secure Ad-hoc User Collaboration in Grid

Environments. In: Grid Computing – GRID 2002, Lecture Notes in Computer

Science, vol. 2536, pp. 181–193, Springer, Berlin–Heidelberg, 2002. doi: 10.1007/

3-540-36133-2 16.

[19] Men R.: Research on access control method of Digital Archives based on

blockchain, Journal of Physics: Conference Series, vol. 1550, 2020. doi: 10.1088/

1742-6596/1550/6/062021.

[20] Microsoft Azure Active Directory. https://azure.microsoft.com/en-us/services/

active-directory.

[21] Opio la L., Dutka L., S lota R.G., Kitowski J.: Trust-driven, Decentralized Data

Access Control for Open Network of Autonomous Data Providers. In: 2018 16th

Annual Conference on Privacy, Security and Trust (PST), pp. 1–10, 2018.

[22] Quinn K., Kenny A., Feeney K., Lewis D., O’Sullivan D., Wade V.: A Frame-

work for the Decentralisation and Management of Collaborative Applications in

Ubiquitous Computing Environments. In: 2006 IEEE/IFIP Network Operations

and Management Symposium NOMS 2006, pp. 1–4, 2006. doi: 10.1109/NOMS.

2006.1687677.

[23] Roditty L., Zwick U.: Improved dynamic reachability algorithms for directed

graphs. In: The 43rd Annual IEEE Symposium on Foundations of Computer

Science, 2002. Proceedings, pp. 679–688, 2002. doi: 10.1109/SFCS.2002.1181993.

[24] Roditty L., Zwick U.: A Fully Dynamic Reachability Algorithm for Directed

Graphs with an Almost Linear Update Time, SIAM Journal on Computing,

vol. 45(3), pp. 712–733, 2016. doi: 10.1137/13093618X.

[25] Schwagereit F., Scherp A., Staab S.: Representing Distributed Groups with

dgFOAF. In: The Semantic Web: Research and Applications, vol. 6089,

pp. 181–195, 2010.

[26] Seufert S., Anand A., Bedathur S., Weikum G.: FERRARI: Flexible and efficient

reachability range assignment for graph indexing. In: 2013 IEEE 29th Interna-

tional Conference on Data Engineering (ICDE), pp. 1009–1020, 2013.

[27] Shiny S., Jasper J.: Decentralized access control technique with multi-tier au-

thentication of user for cloud storage, Peer-to-Peer Networking and Applications,

pp. 1–15, 2021.

https://doi.org/10.1007/978-981-15-9354-3_14
https://doi.org/10.1007/978-981-15-9354-3_14
https://doi.org/10.1007/978-981-15-9354-3_14
https://doi.org/10.1007/3-540-36133-2_16
https://doi.org/10.1007/3-540-36133-2_16
https://doi.org/10.1007/3-540-36133-2_16
https://doi.org/10.1007/3-540-36133-2_16
https://doi.org/10.1088/1742-6596/1550/6/062021
https://doi.org/10.1088/1742-6596/1550/6/062021
https://doi.org/10.1088/1742-6596/1550/6/062021
https://doi.org/10.1088/1742-6596/1550/6/062021
https://azure.microsoft.com/en-us/services/active-directory
https://azure.microsoft.com/en-us/services/active-directory
https://azure.microsoft.com/en-us/services/active-directory
https://doi.org/10.1109/NOMS.2006.1687677
https://doi.org/10.1109/NOMS.2006.1687677
https://doi.org/10.1109/NOMS.2006.1687677
https://doi.org/10.1109/NOMS.2006.1687677
https://doi.org/10.1109/NOMS.2006.1687677
https://doi.org/10.1109/SFCS.2002.1181993
https://doi.org/10.1109/SFCS.2002.1181993
https://doi.org/10.1109/SFCS.2002.1181993
https://doi.org/10.1137/13093618X
https://doi.org/10.1137/13093618X
https://doi.org/10.1137/13093618X

544 Lukasz Opio la et al.

[28] Svirskas A., Ignatiadis I., Roberts B., Wilson M.: Virtual Organization Man-

agement Using Web Service Choreography And Software Agents. In: Network-

Centric Collaboration and Supporting Frameworks, pp. 535–542, Springer US,

Boston, MA, 2006.
[29] Tošić A., Vičič J.: A Decentralized Authoritative Multiplayer Architecture for

Games on the Edge, Computing and Informatics, vol. 40(3), pp. 522–542, 2021.
[30] Travica B.: The Design of the Virtual Organization: A Research Model. In:

AMCIS 1997 Proceedings, 1997.
[31] Viet Dung D.: Coalition Formation and Operation in Virtual Organisations,

Ph.D. thesis, University of Southampton, School of Electronics and Computer

Science, 2004. https://eprints.soton.ac.uk/260239/.
[32] Wognum N., Faber E.C.C.: Infrastructures for collaboration in virtual organisa-

tions, International Journal of Networking and Virtual Organisations, vol. 1(1),

pp. 32–54, 2002. doi: 10.1504/IJNVO.2002.001462.
[33] Wrzeszcz M., Dutka L., S lota R.G., Kitowski J.: New approach to global data

access in computational infrastructures, Future Generation Computer Systems,

vol. 125, pp. 575–589, 2021. doi: https://doi.org/10.1016/j.future.2021.06.054.
[34] Xhafa F., Poulovassilis A.: Requirements for Distributed Event-Based Awareness

in P2P Groupware Systems. In: 24th IEEE International Conference on Advanced

Information Networking and Applications Workshops, pp. 220–225, 2010.
[35] Yeung C.A., Liccardi I., Lu K., Seneviratne O., Berners-Lee T.: Decentralization:

The future of online social networking. In: W3C Workshop on the Future of Social

Networking Position Papers, pp. 2–7, 2009.

Affiliations

 Lukasz Opio la
AGH University of Science and Technology, Academic Computer Centre CYFRONET AGH,
Krakow, Poland, lopiola@agh.edu.pl

Kamil Jarosz
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Institute of Computer Science, Krakow, Poland, kjarosz@agh.edu.pl

 Lukasz Dutka
AGH University of Science and Technology, Academic Computer Centre CYFRONET AGH,
Krakow, Poland, lukasz.dutka@cyfronet.pl

Renata G. S lota
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Institute of Computer Science, Krakow, Poland, renata.slota@agh.edu.pl

Jacek Kitowski
AGH University of Science and Technology, Faculty of Computer Science, Electronics and
Telecommunications, Institute of Computer Science, Krakow, Poland,
AGH University of Science and Technology, Academic Computer Centre CYFRONET AGH,
Krakow, Poland, jacek.kitowski@agh.edu.pl

Received: 28.12.2021

Revised: 30.05.2022

Accepted: 15.06.2022

https://eprints.soton.ac.uk/260239/
https://doi.org/10.1504/IJNVO.2002.001462
https://doi.org/10.1504/IJNVO.2002.001462
https://doi.org/10.1504/IJNVO.2002.001462
https://www.sciencedirect.com/science/article/pii/S0167739X21002491
https://www.sciencedirect.com/science/article/pii/S0167739X21002491
https://doi.org/https://doi.org/10.1016/j.future.2021.06.054
lopiola@agh.edu.pl
kjarosz@agh.edu.pl
lukasz.dutka@cyfronet.pl
renata.slota@agh.edu.pl
jacek.kitowski@agh.edu.pl

	Introduction
	Group membership model
	Graph representation of memberships
	Membership privileges
	Entity graph decentralization

	Group membership management framework
	Decentralized knowledge base
	Incremental indexing scheme
	Event-driven reindexing
	Decentralization of the Indexing Scheme

	Security, privacy and trust considerations

	Evaluation
	Discussion

	Related work
	Group membership management
	Decentralized collaboration and data access control
	Graph reachability
	Summary

	Conclusions and future work

