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Abstract Localization is to provide all sensor nodes with their geographical positions.

A mobile anchor-based localization in wireless sensor networks uses a mobile

anchor equipped with GPS, which travels along a predetermined path. At each

specified beacon point, it broadcasts its current known position to help other

sensor nodes with unknown locations estimate their positions. This paper an-

alyzes the determination of beacon points based on a square grid. We propose

an improved path planning model named Union-curve. Our proposed model in-

corporates all beacon points of five previously developed paths, namely, SCAN,

HILBERT, S-type, Z-curve, and Σ-Scan on the commonly used square grid de-

composition of area. Unknown sensor nodes estimate their positions using two

techniques, APT and WCWCL-RSSI. Simulation results show that the pro-

posed model has higher accuracy, with a big difference in error rate compared

to the other models. In addition, this model guarantees maximum coverage

with less path resolution value.
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1. Introduction

Sensors are inexpensive devices with built-in sensing, processing, radio communica-

tion functionality, and power components [33]. They transfer measured physical or

environmental conditions such as temperature, sound, vibration, pressure, or even

luminosity into an output signal that can be processed or displayed [37]. Many of

them are deployed in a geographic area, called the region of interest (ROI), to create

a wireless sensors network (WSN) that facilitates remote monitoring and control of

the physical environment with greater precision. After deploying the sensor nodes,

WSNs operate autonomously and are entirely transparent to the user. Besides, they

can be self-configured and self-managed without human intervention. WSNs can

have a wide variety of applications classified according to the nature of use in six cat-

egories: environment, military, industrial, flora and fauna, health, and urban [14,25].

The data collected by the sensors are routed through multi-hop communica-

tions [33]. Therefore, the identification of the information source and computing

the location of the event plays a primordial role in many WSN operations such as

routing and data broadcasting schemes [27]. However, in some cases, due to danger-

ous or vast environments, it is difficult to locate the sensors manually, causing the

problem of localization in WSNs. Using hardware solutions by installing a Global

Positioning System (GPS) module for localization is expensive, especially for large-

scale installation, despite the decrease in the cost of GPS receivers. Furthermore, the

power consumption of GPS devices decreases the lifespan of sensor networks. Thus,

several localization algorithms have been developed in the last decade to deal with

this problem. The first WSN localization algorithms are based on a common idea

of using a set of statically deployed nodes called landmarks (also known as anchors

or Beacons) with known coordinates (nodes are equipped with GPS, for example)

to transmit their coordinates to the other unknown sensors, to help them localize

themselves [5, 9, 23,24,36,45,47].

Another promising idea has become possible, especially given the recent ad-

vances in mobile robot technology, in which all landmarks are replaced with a sin-

gle mobile anchor node or a set of mobile anchor nodes. These mobile anchors are

equipped with GPS units and move around the entire ROI to provide unknown sensor

nodes with their locations [16, 40]. A comprehensive review of the recent literature

describing mobile anchor node-assisted localization algorithms in WSNs was provided

in [18]. In the area of research, the primary challenge is to identify an optimal path

model for mobile anchors for locating unknown sensors in a WSN. As it is pointed

out in [22, 48], the problem of path planning for mobile anchor nodes based WSNs

localization is to design an efficient movement trajectory respecting three proprieties:

(i) the trajectory should pass closely to as many potential node positions as possible to

localize as many unknown nodes as possible, (ii) to obtain a unique estimation of the

position of unknown nodes, the trajectory should be designed in such a way that all

possible unknown nodes are fully covered by at least three noncollinear anchor points,
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and (iii) the trajectory should be as short as possible to save energy consumption of

mobile anchors and localization time.

Furthermore, the movement of the mobile anchor must be well planned to max-

imize the positions of the beacons which can give high localization precision [7].

In this context, most recent proposed models have only used three regular geometric

shapes, namely, triangle, square, and hexagon to tessellate a two-dimensional plane

as the basis for constructing routing paths [6]. Examples of such research include

square grid decomposition [7,27,43,50], triangle grid decomposition [15,17,20,21,31]

and the ones based on hexagonal grid decomposition can be found in [6, 8, 11, 22].

The main contributions of this work are the design, implementation and evalu-

ation of a path planning method for mobile anchor-based on square grid decompo-

sition called Union-curve. The latter contains all beacon points of five trajectories,

HILBERT, SCAN, S-type, Σ-Scan, and Z-curve, which maximize the number of bea-

con points. Among the advantages of Union-curve are offering good quality packets

with a strong signal since it passes as closely to unknown node positions. It also

provides coverage of the entire region of interest with a small resolution value as well

as decreases energy consumption by minimizing the number of corners. Simulation

results showed that the proposed model has higher accuracy with a lower error rate.

The rest of this paper is organized as follows. Section 2 presents the existing

literature reviews proposed for localization in WSNs. Section 3 gives the background

of the localization techniques used through the paper. Section 4 presents the proposed

approach and describes the underlying model. Simulation environment and system

parameters are provided in Section 5. Section 6 is devoted to simulation results and

performance analysis. Finally, Section 7 concludes the work and proposes directions

for future work.

2. Related works

The process of mobile anchor-based localization is based on two essential parts: path

planning of the mobile anchor node and the localization algorithms.

2.1. Mobile anchor path planning

The choice of an optimal path of the mobile anchor is a complex problem. The

authors of the paper [48] are the first authors who raised the problem of finding

a good path planning and discussed it, but without offering any specific solution.

In [18], path planning is classified into static and dynamic path planning. Since in

this paper we are concerned with static paths, we provide the following a brief account

on some distinguished static paths such as SCAN [27], HILBERT [27], Z-curve [43],

Σ-Scan [50], and S-type [7].

In the SCAN path, the mobile anchor travels along the y- axis and the SCAN

path degree is defined as the distance between two successive segments parallel to

the y-axis. On the other hand, a level-n HILBERT space-filling curve is generated by

dividing the ROI into 4n squares of which the centers are connected with 4n segments.
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The resolution of the HILBERT curve (also known as the HILBERT path degree)

corresponds to the length of each line segment. SCAN offers the best performance

with a fine path degree, but with a coarse path degree, while HILBERT is the best

choice sine it solves the problem of collinearity posed by SCAN, but with an increase

in the number of corners.

Another example of a space-filling curve is the Z-curve where a level-n Z-curve

divides the ROI into 4n squares and connects the centers of squares and the center of

each basic curve via Z-shape. The square side length is the Z-curve path degree. This

algorithm solves the collinearity problems, but it increases the number of corners. In

parallel, the Z-curve decreases the path length and reduces the localization time.

In [49], an algorithm with two mobile anchors instead of a single mobile anchor was

proposed using the Z-curve trajectory.

The Σ-Scan curve is a cross between SCAN and Z-curve that benefits from both

of their advantages. It has three kinds of units, namely Double-Unit, Square-Unit,

and Triple-Unit. The latter can constitute an arbitrary rectangle to give the best

exploitation of ROI compared to Hilbert and Z-curve, but it is relatively complex in

its implementation. The unit side length represents the Σ-Scan path degree.

In S-type, the unknown nodes can receive four beacon messages in each sub-

square area. Here, the mobile anchor displacement distance between two broadcast

points represents the S-type path degree. This approach compared the trilateration

with two generalized geometrical localization algorithms.

It is worth noting that after choosing the right path, one needs to set the most

exact path parameters such as path degree, path movement, and path length in order

to achieve the more accurate results [4].

2.2. Localization algorithms

The localization algorithms are classified into two categories: range-based and range-

free localization algorithms [19]. The range-based localization algorithms use range

information (geometry measurements) such as angle or distance between unknown

sensor nodes to be located and mobile anchors. The distance is measured using ma-

terial properties of communication signals such as Received Signal Strength Indicator

(RSSI) [32], Time Difference of Arrival (TDoA) [46], and Angle of Arrival (AoA) [41].

Among the techniques used for calculating the location of unknown sensor nodes

are trilateration [38], multilateration [35], and triangulation [29]. In this context,

a more recent indoor localization algorithm called weighted three minimum distances

method [13] was proposed to deal with the poor accuracy of distances estimated

from RSSI. The latter are based on both multilateration and averaged RSSI values.

In contrast to the range-based localization algorithms, the range-free localization

algorithms do not require distance or angle for localization but use only connectivity

information between unknown sensors and beacons [43]. In general, range-based lo-

calization algorithms have higher positioning accuracy and complexity than range-free

localization algorithms [13]. In [19], range-free localization approaches are grouped
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into four distinct categories: connectivity localization algorithms [23,36], centroid lo-

calization algorithms [3, 12], energy attenuation localization algorithms [42, 52], and

region overlap localization algorithms [28,30,51].

The widespread adoption of wireless sensor network technologies in various fields

has led to continuous research to improve localization techniques and achieves bet-

ter localization performance. Recent studies have focused on the use of various ar-

tificial intelligence (AI) approaches to handle localization issues in WSNs. In [1],

a solution for the dynamic formation of the mobile anchor path based on the flow

direction algorithm metaheuristic approach was presented. Besides, the localization

of unknown sensor nodes can be modeled as an optimization problem. In [10], an im-

proved multiple-disturbance strategy grey wolf optimization algorithm was presented

to estimate the locations of unknown sensor nodes in order to improve localization ac-

curacy. A review and analysis of the literature on existing research trends of coverage,

deployment and localization challenges using AI techniques for WSN enhancement

can be found in [39].

3. Background on localization techniques

In this paper, we choose two different localization techniques for calculating unknown

sensor locations, namely, Accuracy-Priority Trilateration (APT) technique [38] and

the weighted centroid localization algorithm based on RSSI (WCWCL-RSSI) [12].

APT is a range-based localization algorithm, whereas WCWCL-RSSI is a range-free

localization algorithm.

3.1. Accuracy-Priority Trilateration (APT)

Trilateration [38] is a mathematical method of determining the node’s relative position

in relation to three known position anchors. For this, it is necessary to determine

precisely the distances between an unknown node and three anchors. In this work,

we adopt the RSSI-based trilateration localization scheme where the distances are

calculated using RSSI.

APT localizes unknown sensor nodes relying on three nearest received messages

from the mobile beacon. This technique uses the three strongest RSSI values, which

offers the possibility of estimating the location with higher accuracy. In [43, 50],

APT technique gives very good results compared to the Time-Priority Trilateration

(TPT) technique, which derives the position of the unknown sensors based on earlier

received messages, as opposed to Cosine Rule based Localization (CRL) algorithm

proposed in [44] shows superior performance compared to APT.

3.2. Weight-Compensated Weighted Centroid Localization
Based on RSSI (WCWCL-RSSI)

WCWCL-RSSI is a weighted centroid localization algorithm based on RSSI proposed

in [12], and depends on the idea of WCL [3]. In [2, 12, 26], among the centroid

localization algorithms tested, WCWCL-RSSI is the most accurate compared to WCL.
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Let ai = (xi, yi) denotes the coordinate of an anchor node i and g represents

the degree that determines the contribution of each anchor node. wi represents the

weight of anchor node ai that depends on the distance between the anchor node i and

the unknown node. The process of WCWCL-RSSI consists of three essential phases:

i) When an unknown node receives the signals from different anchor nodes of which

the size reaches from 1 to n anchor nodes (i = 1 · · ·n), that is n > 1, it records

the RSSI values and the coordinates of each anchor ai.

ii) Let wi be the weight of anchor node i, the improved weight Wni is calculated

as [12]:

Wni =
Wi · n2·Wi∑n

j=1(Wj · n2·Wj )
(1)

where:

Wi =
wi∑n
j=1 wj

=

√(
10

RSSIi
10

)g

∑n
j=1

√(
10

RSSIj
10

)g
(2)

iii) Finally, the position of the unknown node is expressed as

P =

n∑
i=1

Wni · ai (3)

Here, P = (xp, yp) represents unknown node coordinates and ai = (xi, yi) repre-

sents the location of anchor i.

4. Proposed approach

In this section, we describe the main components of our proposed model for mobile

anchor-based localization henceforth referred to as the Union-curve algorithm. It is

composed of two main steps as depicted in Figure 1.

 Definition of   
beacon points

Movement 
trajectory 

Estimate
distances  

Calculate unknown 
node location  

Mobile anchor path planning Localization algorithm

Figure 1. Union-curve algorithm

The first one is to define the mobile anchor path planning and the second one

is the localization algorithm. The following subsections will give more details about

these two steps.
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4.1. Mobile anchor path planning

In this phase, it is necessary to define a mobile anchor trajectory and when should

beacon packets be broadcasted.

4.1.1. Position of beacon points based on square grid

We assumed that a WSN has been deployed in a two-dimensional S × S area. In

the square grid decomposition, the ROI has been divided into squares as shown in

Figure 2a).

Hilbert curve SCAN curve “S” Type Z curve Σ-Scan curve

The interest area

Unknown sensors

positions of beacon points

A mobile anchor path

a)

b) c) d)

Figure 2. Decomposition of area and determination of positions of beacon points

The side length of square L is adjusted according to the communication range r

of the mobile anchor node and the ROI length S. The L value is the path degree. To

help unknown sensor nodes to locate themselves with higher accuracy, it is necessary

to find the best deployment of beacon points. Doing so, three possibilities based on

the square grid decomposition are investigated to define the position of beacon points:

• The centers of squares are chosen as the points as beacon points as illustrated in

Figure 2b). This proposition was also adopted by both SCAN and HILBERT. In

these two path plannings, the mobile anchor passes through the same broadcast

points but not in the same order as shown in Figure 2.

• The vertices of squares are defined as beacon points as shown in Figure 2c. The

S-type also follows this idea as indicated in Figure 2.
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• The centers of squares and the centroid points of each four sub-square are defined

as beacon points as shown in Figure 2d). Two path plannings adopted this

proposition, namely, Z-curve and Σ-Scan. The Σ-Scan path presented in Figure 2

uses only Square-Unit. One should note that SCAN, HILBERT, Z-curve, and

Σ-Scan passes through the same beacon points but not in the same order in the

case of the two latter path plannings.

In our proposed path planning model Union-curve, the beacon points are de-

ployed at both the centers and the vertices of squares as depicted in Figure 3. Union-

curve contains more beacon points than the other five paths (HILBERT, SCAN,

Z-curve, S-type, and Σ-Scan) as depicted in Figure 3.

Unknown sensors

The interest area positions of beacon points
A mobile anchor path

Figure 3. Union-curve

Therefore, it passes as close as possible to unknown node positions, so it offers

good quality packets with a strong signal that increases precision [48]. In each sub-

square, the unknown nodes can receive five beacon messages as shown in Figure 4,

which guarantees that all unknown nodes are fully covered.
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Unknown sensors

beacon points

Figure 4. The sub-square in Union-curve

4.1.2. Movement trajectory

Union-curve is simple, easy to implement, and covers the area by diagonal scanning.

At the initial stage, a mobile anchor node is deployed on the corner of the area.

Afterward, it travels through the entire ROI following the Union-curve trajectory

and broadcasts its current location with an interval of L when moving vertically or

horizontally, and with an interval of
√
2
2 × L when moving diagonally as shown in

Figure 3. This movement trajectory minimizes the number of corners for efficient

path planning [21]. The path length of the Union-curve is calculated by Equation (4).

lengthUnion = (4× S) + (

√
2

L
× S2) (4)

4.2. Localization algorithm

A mobile anchor-based localization algorithm is a distributed algorithm where the

computation of unknown nodes’ positions is distributed among the sensor nodes. In

these algorithms, only the communication between the mobile anchor and unknown

nodes is carried out, which consumes less energy. The network consists of a certain

number of unknown nodes deployed randomly and uniformly over a sensing field where

there are no obstacles and a single mobile anchor node. Moreover, two processes are

carried out in parallel. One process is executed by the unknown node, and another is

executed by the mobile anchor node.

4.2.1. The mobile anchor process

In the first stage, this process defines the path, configures the system parameters and

determines the positions of the beacon points. Then, the mobile anchor travels along

the ROI depending on a predefined trajectory. When it arrives at each beacon point,

it broadcasts a packet containing its position. This process terminates when the

mobile anchor reaches the end of the path. The mobile anchor process is illustrated

in Figure 5.
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A mobile anchor moves
 according to the path

Has it reached a beacon 
point?

The end of the       
         path? 

broadcasts a packet 
containing its position

The end of the movement

Yes

Yes

No

No

Figure 5. The mobile anchor process

4.2.2. The unknown node process

In each beacon point, if the unknown sensor nodes are positioned in the coverage area

of the mobile anchor, they receive a beacon packet and then calculate their positions

using one of the localization techniques such as APT or WCWCL-RSSI.

Nb packets>=3?

Yes

No

Wait for a packet

Position estimation 
with  trilateration

Receives a packet

Sort the packets list

Estimate distance 
with RSSI

Three
first no-collinear 

packets?

No

No

Yes

Localization done

Figure 6. The unknown node process with APT method

The unknown node process with APT, presented in Figure 6, can be summarized

in two steps. First, the unknown sensor node estimates the distance using RSSI once



Square grid path planning for mobile anchor-based localization. . . 523

it receives a packet. Then, the unknown node keeps only the three no-collinear packets

with the smallest distances and calculates its position using trilateration. The APT

localization technique uses only the smallest distances and performs the collinearity

test to accept a packet which consequently minimizes the collinearity problem.

The unknown node process with WCWCL-RSSI is presented in Figure 7. Each

unknown node receives more than three different localization packets to calculate its

position using WCWCL-RSSI. To test and improve the performance of WCWCL-RSSI

method, we have implemented two tests.

1. The unknown node calculates its position based on the first 10 messages received

and ignores the others.

2. The unknown node sorts the received packets according to the strongest signal

and then calculates its position using the WCWCL-RSSI algorithm using a differ-

ent number of ranked messages: first three, first four, and first five, respectively.

Receive at 
 least three packets?

Localization done

Yes

No

Wait for a packet

Position estimation 
with  WCWCL

Figure 7. The unknown node process with WCWCL-RSSI method

5. Simulation environment and parameters

Our proposed model was implemented using Python 3 programming language. A se-

ries of simulations have been conducted in order to analyze and evaluate its perfor-

mance and the generated results were averaged over 50 run times.

For the wireless Channel model, we used realistic measured results reported

in [34], The RSSI was measured using 2.4 GHz ZigBee wireless protocol based on

XBee series 2 modules. The log-normal shadowing model was established for an

outdoor environment. The simulation parameters are shown in Table 1.
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Table 1
Simulation parameters

Parameters Symbol Value

Network size S 96 m × 96 m

Number of unknown nodes N 100

Number of mobile anchors M 1

Mobile anchor communication range r 12, 24

Resolution R = r/L 3/4, 1, 5/4, 3/2, 7/4, 2, 9/4, 10/4

Path loss exponent γ 2

Standard deviation (dB) σ 1.326

Reference distance (m) d0 1

Path loss at a distance d0 (dBm) PL0 32

Transmitter power (dBm) PT 2

Distance under test (m) d 1–100

Number of simulation runs SR 50

6. Performance evaluation and simulation results

To analyze and evaluate the effectiveness of the proposed Union-curve model, five

critical analysis metrics are used: average localization error, standard deviation of

the localization error, localization ratio, energy consumption, and number of beacon

points. These analysis metrics depend on two parameters namely the mobile anchor

communication range (r) and the path degree (L). Thus, the path resolution (R) is

expressed as the ratio of r to L, that is, R = r/L.

6.1. Average localization error

The average localization error can be considered as the fundamental factor for evaluat-

ing the performance of any localization algorithms in WSNs. This value is calculated

using Equation (5).

Le =

∑n
i=1 Error(i)

n
(5)

where

Error(i) =
√
(xei − xi)2 + (yei − yi)2 (6)

In these equations, (xei, yei) and (xi, yi) represent the estimated and the real

coordinates of the node i respectively, whereas Le and n indicate the average local-

ization error and the number of successfully localized nodes respectively. Remember

that n ≤ N where N is the number of all unknown nodes.

Figure 8 depicts graphically a comparison in the average localization error for

different resolution values between our model and the five other static path planning

algorithms, namely Σ-Scan, Z-curve, SCAN, HILBERT, and S-type based on APT

as a localization method. It is observed that the proposed Union-curve model has
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the highest accuracy with the lowest average error rate, followed by S-type, Σ-Scan,

Z-curve, SCAN, and HILBERT. Moreover, when the resolution value exceeds 1.25, it

becomes clear that there is a large difference in the error rate of about 0.26 between

the Union-curve and S-type which comes second in terms of efficiency.

The results also show that each of the following pairs of curves (Σ-Scan, Z-curve)

and (SCAN, HILBERT) have the same performance since the related mobile anchor

passes through the same beacon points but in a different order. In addition to that,

APT method focuses only on the smallest distances but not on the order in which

messages are received.
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Figure 8. Comparison of average localization error rate based on APT method

As shown in Figure 8, all the curves stabilize separately after a certain resolution

value, which means that at this value all the unknown nodes will receive the three

messages that correspond to the three smallest distances. Thus, any increase in it

will not affect the error rate and the results will remain unchanged since all messages

that will be received by these unknown nodes are those sent by remote beacon points

and are therefore not taken into account.

Furthermore, Union-curve achieves rapid convergence among them and remains

stable on the same error rate of 0.3 after getting a resolution value equal to or

greater than 1.0.

Figure 9a shows the average error ratio results obtained by these compared algo-

rithms for different resolution values when applying the WCWCL-RSSI method with

ten messages. As shown in the figure, Union-curves and S-type are the two best-

performing path models each with the lowest error rate in 4 cases out of 8. Thus,

they can achieve comparable performance in terms of average error rate. For the

results in Figure 9b, we have fixed the resolution value to 1.5 and varied the number

of messages from 3 to 5, increasing it by one each time. Remember that WCWCL-

RSSI algorithm bases its decisions on a certain number of received messages with the

most significant RSSI values. Clearly, our model tends to derive the lower average
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error rate with a more accurate estimated location, especially when the number of

messages equals 4. Similar to APT method, the curve of Σ-Scan coincides with those

of Z-curve, and the curve of SCAN coincides with those of HILBERT since both pairs

have the same beacon broadcast points.
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Figure 9. Average localization error with WCWCL-RSSI method

6.2. Standard deviation of the localization error

The second analysis metric is the standard deviation of the average localization er-

ror. A low standard deviation indicates that most of the localization error values of

unknown nodes are close to the average localization error. The standard deviation

of the localization error rate stderror is calculated according to Equation (7).

stderror =

√√√√ 1

n

n∑
i=1

(Error(i)− Le)2 (7)

where n, error(i), and Le are the number of localized nodes, the localization error for

unknown node i and the average localization error respectively. The results obtained

by applying the APT method are shown in Figure 10. The Union-curve has the

lowest standard deviation values for this metric among all path models followed by

S-type. This shows that the amount of dispersion around the average localization is

less compared to the others. Moreover, note that when the path resolution increases,

the standard deviation values increase until the localization ratio becomes 100% and

hence reaches its stabilization point.

The standard deviation of the localization error values for each approach based

on the WCWCL-RSSI method with resolution value as a parameter is shown in Fig-

ure 11a. Results show that there is a direct proportionality between the standard

deviation of the localization error and the path resolution. This implies that an

increase in the precision value leads to an increase in the standard deviation of the lo-

calization error rate for all six paths but to a lesser extent for Union-curve and S-type.
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The standard deviation of the localization error values for each approach based on

the WCWCL-RSSI method with a number of messages as a parameter is shown in

Figure 11b. Results reveal that Union-curve and S-type show the best performance

compared to the other paths. In addition, our proposed path competes with the S-type

curve path with a relatively small enhancement when the number of messages is 3 or 4.
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Figure 10. Standard deviation of the localization error with APT method
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Figure 11. Standard deviation of the localization error with WCWCL-RSSI method

6.3. Localization ratio

Another crucial performance metric is the localization ratio (coverage) which gives the

proportion of sensor nodes that can be localized to total nodes. The goal of each path

is to have a high number of localized nodes with a small value of the path resolution.

The localization ratio can be computed as follows:

CR =
n

N
(8)

As explained previously, the terms n and N refer to the number of localized

nodes and the number of all unknown nodes, respectively. The result of the analysis
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for all paths concerning the localization ratio is presented in Figure 12 and Figure 13

using APT and WCWCL-RSSI methods, respectively. It turns out that the two

figures are almost identical and the localization ratio of each path with respect to

the resolution value is the same when either applying APT or WCWCL-RSSI with

a very slight exception in the case of SCAN and HILBERT paths. In addition,

the resolution value greatly impacts the localization ratio and the resolution value

increases all paths producing the same results for both methods. Let R denote the

resolution value, Union-curve reaches a localization ratio of 100% (fully localized

nodes) at R = 1, whereas at R = 1.25, R = 1.5, R = 1.5, R = 1.75 and R = 1.75 for

S-type, Σ-Scan, Z-curve, SCAN, and HILBERT, receptively. Moreover, Union-curve

can achieve a more than 90% localization ratio at only R = 0.75 whereas the others

cannot even pass 40% of the localization ratio at this value.
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Figure 12. Localization ratio with APT method
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Figure 13. Localization ratio with WCWCL-RSSI method
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6.4. Energy consumption and number of beacon points

The calculation of the energy consumption is based on the average number of pro-

cessed or received messages by the unknown nodes. Figure 14 shows that if the

resolution value R increased, unknown nodes receive more messages to process.
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Figure 14. Energy consumption

In fact, Union-curve has the highest average number of received messages. To

minimize energy consumption, each unknown node takes into account during its cal-

culations only the first ten received messages and ignores the others.

Table 2
Number of beacon points

Paths Number of beacon points

SCAN(8 ∗ 8 unit squares) 64

HILBERT(order 3) 64

Z-curve(order 3) 80

Σ-Scan(4 ∗ 4 Square-Unit) 80

S-type (8 ∗ 8 unit squares) 81

Union-curve (8 ∗ 8 unit squares) 145

Union-curve with double L (4 ∗ 4 unit squares) 41

Table 2 compares the number of beacon points for the union-curve, SCAN,

HILBERT, Z-curve, Σ-Scan and S-type curve. The number of beacon points de-

pends on the size of the network S and the degree of path L (distance between each

two beacon points). Note that the number of beacon points decreases when the value

of L is increased. For example, in the case of Union-curve, when the value of L is

doubled as shown in Figure 15, the number of beacon points decreases up to 41.

The order ob of HILBERT and Z-curve is calculated by Equation (9) with 4ob

units squares. For SCAN, S-type curve and Union-curve, there are Nbs · Nbs units

squares where Nbs is computed by Equation (10). Table 2 indicates that Union-curve

has more beacon points.
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ob = log2(S/L) (9)

Nbs = S/L (10)

Figure 15. Union-curve with a double path degree L
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Figure 16. Average localization error of Union-curve with a double path degree L

A smaller broadcast interval (path degree) indicates that the mobile anchor will

broadcast its location more frequently [4], which improves localization performance

but at the expense of relatively as demonstrated by the outputs depicted in Figure 16

and Figure 17. From these figures, it is seen that the obtained results are accept-

able. However, the average and the standard deviation of the localization error are

increasing compared to that in Figure 8, 9, 10 and 11 for all the methods used. In

addition, the best results will be obtained by using either APT or WCWCL-RSSI

methods with the number of messages used being four.
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Figure 17. Standard deviation of the localization error of Union-curve

with a double path degree L

7. Conclusion

In this paper, we focus on the beacon broadcasting points regarding the square grid

decomposition of the area. We propose the Union-curve path planning model that

contains the union beacon points of five trajectories based on the square grid and

minimizes the number of corners. The WCWCL-RSSI algorithm incorporated in our

approach is tested using three different numbers of received packets with the strongest

signal: the three best-ranked packets, the four best-ranked packets and the five best-

ranked packets. The simulation results show that the proposed method achieves better

or more competitive performance regarding localization accuracy compared to other

well-known methods from literature, such as SCAN, HILBERT, Z-curve, Σ-Scan and

S-type curve. Moreover, Union-curve with The WCWCL-RSSI algorithm produces

better results when the number of received messages equals four. As future trends,

we plan to analyze other paths based on a triangular or hexagonal grid decomposition

and deal with the obstacle-resistant mobile anchors in a given ROI.
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