
Computer Science • 23(4) 2022 https://doi.org/10.7494/csci.2022.23.4.4588

Hichem Debbi

MODELING AND ANALYSIS OF
PROBABILISTIC REAL-TIME SYSTEMS
THROUGH INTEGRATING EVENT-B
AND PROBABILISTIC MODEL CHECKING

Abstract Event-B is a formal method that is used in the development of safety-critical

systems; however, these systems may introduce uncertainty and also need to

meet real-time requirements, which make the modeling and analysis of such

systems a challenging task. While some works exist that try to extend Event-B

with probability and over time, they fail to address both in a single framework.

Besides, these works mainly addressed extending the language itself, not inte-

grating extended Event-B with verification. In this paper, we aim to represent

both probability and time in the Event-B language, and we will show how such

a representation can be automatically translated into the probabilistic timed

automata (PTA) that are described in the language of the PRISM probabilistic

model checker. This transformation approach would allow us to analyze the

probabilistic and time-bounded probabilistic reachability properties of prob-

abilistic real-time systems through probabilistic timed CTL (PTCTL) logic.

Keywords event-B, probabilistic event-B, real-time probabilistic model checking, PTA,

PRISM

Citation Computer Science 23(4) 2022: 545–570

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

545

https://doi.org/10.7494/csci.2022.23.4.4588
https://creativecommons.org/licenses/by/4.0/

546 Hichem Debbi

1. Introduction

Event-B [1] is a proof-based formal development framework that has been successfully

used in many safety-critical systems. It is based on the abstraction-refinement princi-

ple, where the development starts with an abstract model that represents a high-level

description of a system and then transforms its abstract model into a more detailed

model through a number of refinement steps. However, systems are becoming more

and more complex nowadays; this induces uncertainty, which requires dealing with

this uncertainty (especially from a modeling perspective). Probability has been in-

vestigated in detail in other formal methods such as model checking for modeling

stochastic systems and, thus, creating reliable probabilistic semantics, which resulted

in the development of successful probabilistic model checkers such as PRISM [17] and

MRMC [21]. Contrariwise, we can observe low attention for introducing probability

into Event-B.

Extending Event-B to allow for the expression of probabilistic events is considered

to be very important and a highly demanded task. For doing this, Abrial et al. [28]

relied on probabilistic program semantics that were based on Kozen’s original form

[22], which was an adaptation of Dijkstra’s guarded command language [11]. Other

works have also tried to introduce probability into Event-B [4,14,33,34].

Similar to works that have tried to extend Event-B for probabilistic reasoning,

some other works also exist that have attempted to extend Event-B for timing con-

straints; timing constraints are very important for modeling a large class of commu-

nication protocols [20]. Some works have also tried to map such extensions to model

checking [7].

Extending Event-B models to reason on probability and time has been addressed

and applied to different case studies [4, 7, 20, 34]. Generally, probabilistic Event-B

models have been transformed into Markov models for the purpose of verification,

and timed Event-B models have been transformed into timed automata for the same

purpose. However, some real-time systems need to incorporate both aspects (proba-

bility and time). To this end, we aim to model both aspects for the purpose of a formal

evaluation of probabilistic timed properties; this can be achieved by transforming ex-

tended Event-B models into probabilistic time automata (PTA). As a result, these can

be verified by using the PRISM probabilistic model checker. This approach has been

applied on two different case studies that required the modeling of both probability

and time. To our knowledge, incorporating both probability and real-time constraints

into a single Event-B model has not been addressed before.

Transforming between different models and specification languages as well as in-

corporating different verification and specification frameworks would absolutely help

to make great advancements in the software-development process. In this regard,

many works have tried to transform Event-B models into formal verification frame-

works, which have led to the proposition of software plugins that can be added to the

Rodin platform, for instance [27, 32, 36]. Since Event-B is a constructive approach

that goes through different steps of refinement (from an abstract level to a concert

Modeling and analysis of probabilistic real-time systems... 547

one), some transformation approaches have addressed the abstract aspect of Event-B

for the aim of verification [9], while others have addressed the concrete aspect [26].

This paper contains the following contributions: we propose an approach for

extending Event-B models with both probability and time, which has not been ad-

dressed before in a single framework. This modeling approach allows for the smooth

transformation of extended Event-B models with probability and time into proba-

bilistic timed automata (PTA); thus, they can be easily verified against probabilistic

timed properties in the PRISM probabilistic model checker. We believe that em-

ploying formal verification techniques through the software-development process with

Event-B would help to verify our understanding of a system under construction and,

thus, lead to more robustness through all of the steps of development. The approach

has been applied in two case studies.

This paper is organized as follows. In Section 2, we introduce some related works.

Some preliminaries and definitions are given in Section 3 – we introduce Markov mod-

els, and we define PTA, the PRISM language, probabilistic computation tree logic

(PCTL), and probabilistic timed CTL (PTCTL) logic as well as the Event-B language.

In Section 4, we introduce our approach for transforming extended Event-B models

that are augmented with probability and time into the PRISM language (this trans-

formation is guided by two case studies). Section 5 concludes the paper and presents

some potential future work.

2. Related works

Many works have tried to introduce probabilistic assignments into Event-B.

Tarasyuk et al. [33] studied how a probabilistic assessment of the reliability of control

systems can be modeled in Event-B. The authors proposed a probabilistic choice op-

erator that allows for an assessment of these systems’ reliability. This new operator

can replace nondeterministic choice statements in event actions and, thus, allow one

to introduce probabilistic assignments. The refinement in this context was treated

quantitatively in order to demonstrate that a refined system is at least as reliable

as an abstract one. They aimed to integrate quantitative dependability assessment

attributes such as reliability into their formal system development.

In an extended work [34], the author showed that an Event-B model that was

augmented with stochastic information can be transformed into a continuous-time

Markov chain (CTMC) through a case study of a formal modeling and verification

of service-oriented systems where all events are augmented with transition rates in-

stead of discrete probabilities. Then, this CTMC was expressed in the PRISM model

checker, which enabled a quantitative evaluation of the quality of service through the

probabilistic properties that are expressed in continuous stochastic logic (CSL).

Compared to previous works that only focused on probabilistic assignments,

Aouadhi et al. [4] suggested expressing probabilities on the standard non-deterministic

choices that appear in the Event-B language. In addition to probabilistic assignments,

the choice between enabled events and event-parameter values were also considered.

548 Hichem Debbi

Depending on the choice of the system under development, they proposed either

complete probabilization (where all non-deterministic choices could be refined into

probabilistic choices at the same time) or partial probabilization (where only some

non-deterministic choices could turn into probabilistic choices). In contrast to the

previous approaches, the aim was not to transform probabilistic Event-B modes into

a Markov chain in order to verify probabilistic properties through model checking but

rather to reason directly on fully probabilistic Event-B models by using the symbolic

proof mechanism.

Hallerstede et al. [14] proposed a focus on extending Event-B to model prob-

abilistic systems with the means for the qualitative modeling of probability. They

stated that, in contrast to some modeling problems such as reliability and performance

(which require numerical values), a class of problems like those that are found in com-

munication protocols existed where exact numerical measures were not important. In

order to target such a class of problems, they proposed refining non-deterministic

assignments into qualitative probabilistic assignments.

Before addressing probabilistic information in Event-B, Hoang [18] developed

the probabilistic B-Method (pB) as an extension of the B method in order to reason

formally about probabilistic systems. This method included the new syntax and

semantics of the probabilistic abstract machine notation (pAMN). They modified the

B-Toolkit in order to support the extension from B to pB. Ndukwui et al. [29] relied

on the semantics of this method and tried to investigate the automatic translation

of probabilistic B machines into a PRISM model checker in order to investigate the

presence of probabilistic counterexamples. They supposed that pB machines could be

given as a Markov decision process (MDP) that could be expressed in PRISM (where

the main aim was to define the reward-based properties).

For real-time constraints, Iliasov et al. [20] presented an approach for augmenting

Event-B modeling with the verification of real-time properties, which can be achieved

through extracting a process-based view from an Event-B model. Then, they intro-

duced time constraints that allowed them to create a timed automata model; this

could be used as an input for an Uppaal timed model checker [5] in order to evaluate

real-time properties.

Cansell et al. [7] also tried to express the time constraints in an Event-B model by

defining the concept of time in terms of set theory. Their work was motivated by a case

study that was investigated by Abrial et al. [2], which concerned the IEEE 1994 tree

identify protocol. They showed that a perfect modeling of such a protocol required

time constraints.

Finding a common ground between B/Event-B and model checking has been also

investigated in some works. Muller and Nakajima [36] extended the Rodin platform

in order to allow for a behavioral analysis of the Event-B descriptions of concur-

rent systems by using the SPIN model-checker [19]. They built a plugin that pro-

vided interactive construction of the abstract model, then they transformed the given

model into SPIN’s modeling language (Promela) for safety verification. In a similar

Modeling and analysis of probabilistic real-time systems... 549

work, Sena et al. [32] proposed a transformation approach from Event-B models into

NuSMV [8]. They also provided comparative results between the NuXmv model

checker [30] (an extension of NuSMV) and ProB [27].

3. Preliminaries and definitions

3.1. Markov models and Probabilistic Computation Tree Logic (PCTL)

Discrete-Time Markov Chain: a discrete-time Markov chain (DTMC) is a tuple

D = (S, sinit, P, L) such that S is a finite set of states, sinit ∈ S is the initial state, and

P : S×S → [0, 1] represents a transition probability matrix where
∑

s′∈S P (s, s
′) = 1

for all s ∈ S. L : S → 2AP is a labeling function that assigns the set L(s) of the

atomic propositions to each state s ∈ S.

A DTMC can be considered to be a probabilistic transition system that consists

of states and the transitions between them. In DTMC, infinite path σ is a sequence

of states and transitions σ = s0
t0−→ s1

t1−→ s2..., where P (si, si+1) > 0 refers to

the probability of a transition ti for all i ≥ 0. A finite path is a finite prefix of an

infinite path. We define a set of paths that starts from a state s0 by Paths(s0). The

underlying σ-algebra is formed by the cylinder sets that are induced by the finite

paths in Paths(s0). The probability of this cylinder set is as follows:

Pr({σ ∈ Paths(s0)|s0
t0−→ s1

t1−→ s2...
tn−1−−−→ sn is a prefix of σ}) =∏

0≤i<n

P (si, si+1)
(1)

The probability of finite path σ = s0s1...sn is defined as P(σ) =∏
0≤i<n P (si, si+1). The probability of the set of finite paths C is P(C) =

∑
σ∈C P(σ).

Markov Decision Process: a Markov decision process (MDP) is a tuple M =

(S, sinit, Ac, P, L), where S is a finite set of states, sinit ∈ S is the initial state, Ac

is a set of actions, P : S × Ac × S → [0, 1] is a probability transition function such

that, for each state s ∈ S and an action α ∈ Ac :
∑

s′∈S P (s, α, s
′) ∈ {0, 1}, and

L : S → 2AP is a labeling function that assigns a subset of the finite set of atomic

propositions AP to each state s ∈ S.

At each state s, the probability of moving to a successor state s′ by taking an

action α is given by P (s, α, s′). We say that an action α is enabled in state s if and

only if
∑

s′∈S P (s, α, s
′) = 1; otherwise, action α is disabled. For each state s ∈ S,

there is at least one action that is enabled. We denote the set of actions that is enabled

from a state s as Ac(s). If |Ac(s)| = 1 for each state s, then M can be considered to

be a DTMC; thus, Ac can be omitted from the tuple.

For MDPs, computing the probabilities of paths must rely on the resolution of

non-determinism (which is performed by an adversary A). An adversary resolves the

non-determinism by taking one of the enabled actions α ∈ Ac(s) in each state, thus

550 Hichem Debbi

resulting in a DTMC for which the probabilities of the paths is measurable. Since

resolving the nondeterminism in an MDP results in a DTMC, the semantics of the

PCTL properties over MDPs are similar to DTMCs.

Probabilistic Computation Tree Logic: probabilistic computation tree logic

(PCTL) [15] has appeared as an extension of CTL for the specification of systems

that exhibit stochastic behavior. We use PCTL to define the quantitative properties

of DTMCs. PCTL state formulas are formed according to the following grammar:

ϕ ::= true|a|¬ϕ|ϕ1 ∧ ϕ2|P∼p(ψ) (2)

where a ∈ AP is an atomic proposition, ψ is a path formula, P is a probabil-

ity threshold operator, ∼∈ {<,≤, >,≥} is a comparison operator, and p is a proba-

bility threshold. Path formulas ψ are formed according to the following grammar:

ψ ::= ϕ1Uϕ2|ϕ1Wϕ2|ϕ1U≤nϕ2|ϕ1W≤nϕ2 (3)

where ϕ1 and ϕ2 are state formulas, and n ∈ N. As in CTL, the temporal oper-

ators (U for strong untils, and W for weak [unless] untils and their bounded vari-

ants) are required to be immediately preceded by operator P. The PCTL formula is

a state formula where path formulas only occur inside operator P. Operator P can

be seen as a quantification operator for both the ∀ (universal quantification) and ∃
(existential quantification) operators, since the properties represent the quantitative

requirements.

The semantics of a PCTL formula over a state s (or a path σ) in a DTMC model

D = (S, sinit, P, L) can be defined by a satisfaction relationship that is denoted as

|=. The satisfaction of P∼p(ψ) on DTMC depends on the probability mass of a set

of paths that satisfies ψ. This set is considered to be a countable union of cylinder

sets so that its measurability is ensured.

The semantics of the PCTL state formulas for DTMC are defined as follows:

s |= true⇔ true

s |= a⇔ a ∈ L(s)

s |= ¬ϕ⇔ s ̸|= ϕ

s |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 ∧ s |= ϕ2
s |= P∼p(ψ) ⇔ P({σ ∈ Paths(s)|σ |= ψ}) ∼ p.

Given a path σ = s0
t0−→ s1

t1−→ s2... in D and an integer j ≥ 0 (where σ[j] = sj), the

semantics of the PCTL path formulas for DTMC are defined as follows:

σ |= ϕ1Uϕ2 ⇔ ∃j ≥ 0.σ [j] |= ϕ2 ∧ (∀0 ≤ k < j.σ [k] |= ϕ1)

σ |= ϕ1Wϕ2 ⇔ σ |= ϕ1Uϕ2 ∨ (∀k ≥ 0.σ [k] |= ϕ1)

σ |= ϕ1U
≤nϕ2 ⇔ ∃0 ≤ j ≤ n.σ [j] |= ϕ2 ∧ (∀0 ≤ k < j.σ [k] |= ϕ1)

σ |= ϕ1W
≤nϕ2 ⇔ σ |= ϕ1U

≤nϕ2 ∨ (∀0 ≤ k ≤ n.σ [k] |= ϕ1).

3.2. Clocks and zones

We denote the domain of time (non-negative reals) as R+ and the set of natural

numbers as N. Let X be a finite set of variables called “clocks” that take values

Modeling and analysis of probabilistic real-time systems... 551

from R+. We denote the clock-valuation function that assigns a value v ∈ RX
+ as

v(x), where RX
+ represents the set of all of the clock valuations of X. For any v ∈ RX

+

and t ∈ R+, v + t denotes the clock valuation that is defined as (v + t)(x) = v(x) + t

for all x ∈ X.

Constraints: A constraint overX is an expression of the form xi ∼ c or xi−xj ∼
c, where x ∈ X, 1 ≤ i ̸= j ≤ n, ∼∈ {<,≤}, and c ∈ N.

A clock valuation v satisfies a constraint xi − xj ∼ c iff v(xi)− v(xj) ∼ c.

Zones: A zone of X (written as ζ) is a convex subset of the valuation space

RX
+ described by a conjunction of the constraints. A ζ zone represents the set of

valuations that satisfy the conjunction of the n.(n+1) constraints, which is given by

the following: ∧
1≤i ̸=j≤n

xi − xj ∼ i, jci,j (4)

The set of zones (clock constraints) of X (denoted as Z(X)) is defined by the

following syntax:
ζ ::= x ≤ d | c ≤ x | x+ c ≤ y + d | ¬ζ | ζ ∧ ζ (5)

where x, y ∈ X, and c, d ∈ N. We say that a clock valuation v satisfies a zone ζ

(denoted as v ▷ ζ) if and only if ζ resolves to true after substituting each clock x with

v(x). Other constraints can be easily derived; for example, ζ1 ∧ ζ2 = ¬(¬ζ1 ∨ ¬ζ2),
x > 1 ≡ ¬(x ≤ 2), and equality can be written as a conjunction of constraints (for

example, x = 2 ≡ (x ≥ 2 ∧ x < 3)).

For the ζ, ζ ′ ∈ Z(X) zones and subset of clocks χ ⊆ X, we obtain the classical

operations on the zones [16,24] as follows:

↙ ζ ′ζ
def
= {v|∃t ≥ 0.(v + t) ▷ ζ ∧ ∀t′ ≤ t.(v + t′ ▷ ζ ∨ ζ ′)}

[χ := 0]ζ
def
= {v|v[χ := 0] ▷ ζ}

ζ[χ := 0]
def
= {v[χ := 0]|v ▷ ζ}

3.3. Probabilistic Timed Automata (PTA)

While the formalism of clocks and zones is the same for classical timed automata [3],

PTAs are extended with discrete probability distributions over the edges.

Probabilistic Timed Automata: a probabilistic timed automaton (PTA) is

a tuple (Loc, l0, X, inv,A, prob, L) where: Loc is a finite set of locations with l0 as

the initial location. X is a finite set of clocks. inv : Loc −→ Z(X) maps an invariant

condition to each location. A is a finite set of actions, prob ⊆ Loc×Z(X)×Dist(Loc×
2X) is the probabilistic edge relationship, and L : Loc −→ AP is a labeling function.

A state of PTA is a pair (l, v) ∈ L×RX such that v ▷ inv(l). An edge of PTA is

(l, g, a, p, l′, Y), where l’ is the destination location, Y is the set of clocks to be reset,

(l, g, a, p) is a probabilistic edge of PTA where l is source location, g is a guard, a is

an action, and p is the destination distribution. In l0, all of the clocks are initialized

to zero.

552 Hichem Debbi

For any state (l, v), there is a non-deterministic choice between making a discrete

transition and letting the time pass; the transition is enabled if v ▷ g and the proba-

bility of moving to destination location l′ that results in resetting the Y set of clocks

equals p(l′, Y). Letting the time pass in current location l is provided by invariant

condition inv(l), which is continuously satisfied as time elapses. Actually, a PTA can

be considered to be an infinite-state MDP with the expression of time delays.

3.4. Probabilistic Timed CTL (PTCTL)

Probabilistic timed computation tree logic (PTCTL) [23] has appeared as an extension

of CTL for the specification of probabilistic timed systems. This is derived from PCTL

[15] (which is used to specify the properties of DTMCs and MDPs) and TCTL [16]

(which is used for the specification of timed automata). We use PTCTL for defining

the quantitative and timing properties of PTAs. Like TCTL, we use a set of clock

variables for expressing the timing properties; this set is denoted as Z disjoint from

X, where ξ : Z → R is a formula clock valuation that assigns values to such clocks.

PTCTL state formulas are formed according to the following grammar:

ϕ ::= true|a|ζ|z.ϕ|ϕ1 ∧ ϕ2|¬ϕ|P∼p(φ) (6)

where a ∈ AP is an atomic proposition, ζ is a zone over X ∪Z, z.ϕ is reset quantifier,

φ is a path formula, P is a probability threshold operator, ∼∈ {<,≤, >,≥} is a com-

parison operator, and p is a probability threshold. The φ path formulas are formed

according to the following grammar:

φ ::= ϕ1Uϕ2|ϕ1U≤nϕ2 (7)

where ϕ1 and ϕ2 are state formulas, and n ∈ N. The temporal until operator U

and its bounded variant are required to be immediately preceded by operator P. The

PTCTL formula is a state formula where path formulas only occur inside operator P.

Operator P can be seen as a quantification operator for both of the ∀ (universal quan-

tification) and ∃ (existential quantification) operators, since the properties represent

the quantitative requirements.

Before introducing the semantics of the PTCTL formula over PTA, we must

first define the divergent adversaries. A divergent adversary must fulfill the following

condition: for each state s = (l, v), the probability of divergent paths under A is

1; i.e., PrAs {ω ∈ PathsA(s)|ω is divergant} = 1. A path ω is divergent if, for any

t ∈ R+, there exists j ∈ N such that Dω(j) > t, where Dω(n) denotes the duration

up to a state sn.

Let (l, v) be a state and ξ be a formula clock valuation. We can now express the

full semantics of PTCTL over PTA:

(l, v), ξ |= a⇔ a ∈ L(l, v)

(l, v), ξ |= ζ ⇔ v, ξ ▷ ζ

(l, v), ξ |= z.ϕ⇔ (l, v), ξ[z := 0] |= ϕ

Modeling and analysis of probabilistic real-time systems... 553

(l, v), ξ |= ϕ1 ∧ ϕ2 ⇔ (l, v), ξ |= ϕ1 and (l, v), ξ |= ϕ2
(l, v), ξ |= ¬ϕ⇔ (l, v), ξ |= ϕ is flase

(l, v), ξ |= P∼p(φ) ⇔ PrA(l,v){ ω ∈ PathsA(l, v)|ω, ξ |= φ} ∼ p for all adversaries

With PTCTL, we can express properties such as, with a probability of at least

0.98, the packet is eventually delivered within five time units, which is expressed by

using PTCTL as follows: P≥0.98[(trueUPacketDelivered ∧ (z = 5)].

3.5. PRISM language

A model in PRISM consists of one module or several modules that interact with each

other. The modules are specified using the PRISM language as a set of guarded

commands. A module consists of variables that express the local state of this module.

The behavior of a module is given by a set of guarded commands of the following form:

[< action >] < guard >−→< updates >.

< action > can be used as a synchronous action between different modules. In

the case of no synchronization, label < action > should not be named. < guard >

is a predicate over the variables of the system, and updates describe the probabilistic

transitions that the module can make if the guard is true. These updates represent

the new values of the variables of this module and are defined as follows:

< prob >:< atomicupdate > +.....+ < prob >:< atomicupdate >.

The state of the entire model is determined by the local states of all of the

modules. Updates of two or more modules can be performed together through action

synchronization. In addition to local variables, we have global variables that can be

used along all of the modules for specifying guards, for instance; we can also use them

for defining formulas, or they can be used in specifying properties. When representing

CTMCs, < prob > will refer to transition rates instead of discrete probabilities.

Formally, a PRISM program is defined as a tuple (V,M,C,A), where V =

Vlocal ∪ Vglobal is a finite set of local and global variables, M = (M1,M2, ...Mn) is

a finite set of modules, C is a set of commands, and A = Asyn ∪Aasyn is a finite

set of synchronizing and non-synchronizing actions (where synchronizing actions help

obtain the parallel composition of modules [M1||M2...]).

A PTA in PRISM is represented by one module or a parallel composition of

different modules that can be synchronized. A PTA is considered to be a probabilistic

automaton with real-valued clocks or a timed automaton with discrete probabilistic

choices. For the cases of discrete transitions, these are enabled based on the value of

clock x.

Figure 1 presents an example of PTA, and Figure 2 presents its description in the

PRISM language. As we can see, we have a set of states where some states must satisfy

a set of clock invariants such as s = 0 and s = 1. When an action’s guard is satisfied,

it enables a transition that could include only a clock variable like action retransmit

554 Hichem Debbi

(x ≥ 3), or it can also include other variables like action send with a guard on variable

tries. At every state, we can have nondeterministic and probabilistic choices.

S=0
X<=2

S=1
X<=5

S=3
true

S=2
true

quit
tries>N

send
x>=1 &

tries<=N

retransmit x>=3

0.1

0.9

x:=0,
tries:=tries+1

tries:=0

X:=0

Figure 1. PTA

pta

const int N;

module t r an smi t t e r

s : [0 . . 3] i n i t 0 ;

t r i e s : [0 . .N+1] i n i t 0 ;

x : clock;

invariant

(s = 0 ⇒ x ≤ 2)&(s = 1 ⇒ x ≤ 5)

&(s = 2 ⇒ true)&(s = 3 ⇒ true)

endinvariant

[send] s=0 & t r i e s≤ N & x≥ 1 −−>0.9: (s
′
=3) +

0 . 1 : (s
′
=1)&(tries

′
=t r i e s +1) & (x

′
=0) ;

[retransmmit] s=1 & x ≥ 3 −−> (s
′
=0) & (x

′
=0) ;

[qu i t] s=0 & t r i e s > N −−> (s
′

=2) ;

endmodule �
Figure 2. PTA in PRISM language

Its corresponding model in PRISM defines three variables: s, which denotes the

possible values of the states starting in the initial state with s = 0, natural variable

tries, which could have a maximum value of N + 1, and clock x. Then, we define

the possible invariants on the states. Finally, we define the guarded commands that

describe the behavior of the system.

Modeling and analysis of probabilistic real-time systems... 555

3.6. Event-B

Event-B is a formal method that we use for system modeling and analysis [1]. This is

based on the refinement principle, which allows systems to be modeled and analyzed

through different levels of abstraction, and it uses mathematical proofs as a means of

consistency verification between refinement levels.

An Event-B model is specified by the notion of an abstract state machine. An ab-

stract state machine defines the states of the model based on a collection of variables

and defines the operations on these states, which gives rise to the behavior of the

system based on a set of events. In Event-B, the variables are strongly typed by

introducing invariants. These invariants actually represent the important properties

that should be preserved during system execution.

Now, concerning the behavior of the system, it is defined by a set of events of

the following form:

evnt = where G then A end,

where G refers to the guard, and A refers to the set of actions that can be executed

when G holds. The actions determine how the machine’s variables evolve through

symbol (:=). Each action of an event could introduce deterministic as well as non-

deterministic assignments. Roughly speaking, a machine in Event-B can be seen as

a transition system where the values of the variables encode the states and the events

enable the transitions.

Formally, an Event-B model is a tuple (S, V, C, I, σ, E, Init, A), where S defines

the sets, V is a set of variables, C is a set of constants, I is a set of invariant properties

over S, V , and C, σ is a state space that is defined by all of the possible values of V ,

E is a non-empty set of events that includes initialization event Init (which denotes

the initial state), and A defines the set of axioms that is used to express the typing

invariants, for instance.

4. Mapping Event-B to PRISM

In this section, we will show how extended Event-B models with probability and

time can be transformed into PTA, which is described in the PRISM language of the

PRISM probabilistic model checker. Conventional model checking has been success-

fully applied to Event-B models thanks to the ProB model checker [27], which allows

for the automatic animation of many B specifications and can be used to check a spec-

ification given in linear temporal logic (LTL); it can even generate counterexamples

when the specification fails. However, probabilistic timed model checking for Event-B

models has never been addressed before, since Event-B models lack the notions of

probability and time. Due to the importance of these notions, however, many works

have tried to incorporate probability and time in Event-B modeling (but in a separate

way, unfortunately).

In this section, we will show how we can incorporate both probability and time

into Event-B models by enabling a smooth mapping to PTA that is expressed in the

556 Hichem Debbi

PRISM language. We should recall that PTA deals with nondeterminism, probability,

and time clocks; therefore, we must deal with these main issues in addition to other

existing elements such as variables, events, and invariants. The transformation from

Event-B models to PRISM will be guided by two case studies: the IEEE 1394 root

contention protocol (called FireWire [10]), and the CSMA/CD (carrier-sense multiple

access with collision detection) protocol [12,25].

FireWire root contention protocol is an election protocol that can be found in

different networks. After a bus reset, two or more contending nodes try to elect

a leader that will act as a manager. All nodes are considered equals; thus, all nodes

communicate through the message, “be my parent.” It might happen that two nodes

contend the leadership; therefore, multiple rounds of elections are anticipated. So,

a node is supposed to flip a coin; depending on the result, a node may either decide

to wait for a short amount of time (“fast”) or a long time (“slow”). Then, the node

checks whether another node has deferred; if so, then it declares itself to be the

leader. If it happens that both of the coin flips of the two nodes have the same

results, then another round of the protocol is still needed. The PTA that corresponds

to the abstract representation of the protocol is depicted in Figure 3.

Figure 3. PTA of FireWire [25]

While the main building block in Event-B modeling is an abstract machine (i.e.,

a system is described by a set of abstract machines), the main building block in

PRISM is a module (i.e., a system is described by a set of modules). Therefore, it is

evident that we should map each abstract machine in Event-B into a PRISM module.

In the following section, we will show the rest of the transformation conditions that

should be met.

Modeling and analysis of probabilistic real-time systems... 557

States, clocks, and invariants

We should recall that a state in PTA is determined by pair (l, v), where l is a location,

and v is an invariant that must be satisfied in l.

For states in Event-B, we use Sets with invariants to encode the states. We

will show that this representation in Event-B is very similar to the representation in

PRISM. Before doing so, we also need to express clocks variables in Event-B, since

they are needed in order to express the state invariants. In contrast to existing works

that have tried to incorporate time into Event-B models through proposing a complex

timing pattern [7], we can use a simple notation here by merely introducing clocks as

real variables. To discriminate clock variables from other variables, we use a keyword

clock that is added to the variable (i.e., clock x), which refers to a clock x. For each

clock, we define an invariant that states its type (which must be defined in R+).

By introducing clocks, we can now define invariants on those locations that form

the possible states of the system. The mapping between the PRISM model and the

Event-B of the FireWire protocol is introduced in Figures 4, 5, 6, and 7, respectively.

MACHINE
FireWire

SEES
g loba l Context F i reWire

VARIABLES
c l o ck x
s ∈ s STATES

SETS
s STATES = { s t a r t s t a r t , f a s t s t a r t , s t a r t f a s t ,

s t a r t s l ow , s l ow s ta r t , f a s t f a s t , f a s t s l ow ,
s l ow f a s t , s low s low , done}

INVARIANTS

c l o ck x ∈ R+

(s=s t a r t s t a r t)⇒ (c lock x<=delay)

(s=f a s t s t a r t)⇒(c lock x<=delay)
(s=s t a r t f a s t)⇒ (c lock x<=delay)
(s=s t a r t s l ow)⇒ (c lock x<=delay)
(s=s l ow s t a r t)⇒ (c lock x<=delay)

(s=f a s t f a s t)⇒ (c lock x<=rc fa s t max)
(s=f a s t s l ow)⇒ (c lock x<=rc slow max)
(s=s low s low)⇒(c lock x<=rc slow max)
(s=s l ow f a s t)⇒ (c lock x<=rc slow max) �

Figure 4. Event-B model of FireWire – variables and invariants

558 Hichem Debbi

CONTEXT
g loba l Context F i reWire

CONSTANTS
delay
r c f a s t max
rc s low max
r c f a s t m in
rc s low min
f a s t
slow
AXIOMS
axm1 : de lay ∈ N
axm2 : r c f a s t max ∈ N
axm3 : rc s low max ∈ N
axm4 : r c f a s t m in ∈ N
axm5 : rc s low min ∈ N
axm6 : f a s t ∈ R+

axm7 : slow ∈ R+

axm8 : slow = 1− fast
axm9 : fast = 0..1 �
Figure 5. Event-B model of FireWire – context

EVENT
INITIALIZATION
s := s t a r t s t a r t
NODE A SEND :
WHERE
i s I N s t a r t s t a r t : s = s t a r t s t a r t
THEN
Ente r Node A f l i p s co in : s ⊕ | f a s t s t a r t @fast ;

s l ow s t a r t @slow
END
NODE A SEND2 FROM FAST :
WHERE
i s I N f a s t s t a r t : s = f a s t s t a r t
THEN
Ente r Node A f l i p s co in : s ⊕ | f a s t f a s t @fast ; f a s t s l ow

@slow
r e s e t c l o ck : c l o ck x :=0
END
NODE A SEND2 FROMSLOW :
WHERE
i s IN s l ow s t a r t : s = s l ow s t a r t
THEN
Ente r Node A f l i p s co in : s ⊕ | s l ow f a s t @fast ; s l ow s low

@slow
r e s e t c l o ck : c l o ck x :=0
END
... �
Figure 6. Event-B model of FireWire – actions

Modeling and analysis of probabilistic real-time systems... 559

...
Node B Send 2 FromFast :
WHERE
i s I N f a s t s t a r t : s = s t a r t f a s t
THEN
Ente r Node B f l i p s c o i n : s ⊕ | f a s t f a s t @fast ; s l ow f a s t

@slow
r e s e t c l o ck : c l o ck x :=0
END
Elect A : // send a f t e r f a s t s t a t e
WHERE
i s I n s l o w f a s t : s = s l ow f a s t
grdActionClock : c lock x>= (rc s low min − delay)
THEN
e l e c t done : s := done
r e s e t c l o ck : c l o ck x :=0
END
Elect2 A :
WHERE
i s I n f a s t f a s t : s = f a s t f a s t
grdActionClock : c lock x>= (r c f a s t m in − delay)
THEN
e l e c t done : s := done
r e s e t c l o ck : c l o ck x :=0
END
... �

Figure 6. cont.

In the Event-B model (See Figure 4), s STATES includes the possible states

where we express them in PRISM by local state variable s (See Figure 7). Then, the

invariants are introduced in PRISM in the same manner as they are in Event-B. delay,

rc fast max, and rc slow max, etc. are all constants that are defined as constants in

Event-B. In PRISM, they are defined globally in a similar way by using the const

keyword (See Figure 7).

pta
const i n t r c f a s t max = 850 ;
const i n t r c f a s t m in = 760 ;
const i n t rc s low max = 1670 ;
const i n t rc s low min = 1590 ;
// de lay caused by the wire l ength
const i n t de lay = 360 ;
// p r obab i l i t y o f f a s t and slow
const double f a s t = 0 . 5 ;
const double slow = 1− f a s t ;
module a b s t r a c t f i r e w i r e
x : clock ;
s : [0 . . 9] ; �

Figure 7. PRISM model of FireWire [31]

560 Hichem Debbi

// 0 − s t a r t s t a r t
// 1 − f a s t s t a r t
/ / . . .
// 9 − done
// c l o ck i nva r i an t
invariant
(s=0 => x<=delay) &
(s=1 => x<=delay) &
(s=2 => x<=delay) &
(s=3 => x<=delay) &
(s=4 => x<=delay) &
(s=5 => x<=rc fa s t max) &
(s=6 => x<=rc slow max) &
(s=7 => x<=rc slow max) &
(s=8 => x<=rc slow max)
endinvariant
// s t a r t s t a r t (i n i t i a l s t a t e)
[] s=0 −> f a s t : (s '=1) + slow : (s '=4) ;
[] s=0 −> f a s t : (s '=2) + slow : (s '=3) ;
// f a s t s t a r t
[] s=1 −> f a s t : (s '=5) & (x '=0) + slow : (s '=6) & (x

'=0) ;
// s t a r t f a s t
[] s=2 −> f a s t : (s '=5) & (x '=0) + slow : (s '=7) & (x

'=0) ;
// s t a r t s l ow
[] s=3 −> f a s t : (s '=6) & (x '=0) + slow : (s '=8) & (x

'=0) ;
// s l ow s t a r t
[] s=4 −> f a s t : (s '=7) & (x '=0) + slow : (s '=8) & (x

'=0) ;
// f a s t f a s t
[] s=5 & (x>=rc f a s t m in) −> (s '=0) & (x '=0) ;
[] s=5 & x>= (r c f a s t m in − delay) −> (s '=9) & (x '=0) ;
// f a s t s l ow
[] s=6 & x>= (rc s low min − delay) −> (s '=9) & (x '=0) ;
// s l ow f a s t
[] s=7 & x>= (rc s low min − delay) −> (s '=9) & (x '=0) ;
// s low s low
[] s=8 & x>=rc s low min −> (s '=0) & (x '=0) ;
[] s=8 & x>= (rc s low min − delay) −> (s '=9) & (x '=0) ;
// done
[] s=9 −> true ;
endmodule �

Figure 7. cont.

Constants, local variables, and global variables

In addition to the main variables that denote the states and clocks, we may need ad-

ditional variables (e.g., counters, probabilities values, and min/max values) to express

the ranges, for instance.

Modeling and analysis of probabilistic real-time systems... 561

In PRISM, we have two types of variables: global, and local. Local variables such

as state and clock variables belong to only one module; thus, they can only be modified

by this module. Global variables are declared to be outside all of the modules that

use the keyword global at the beginning of the model; thus, they can be modified

by all modules. In addition to global and local variables, we have constants; these

are declared in PRISM by using the keyword const. In PRISM, constants are always

declared globally.

From what has preceded, it is important to consider all of these issues for trans-

forming Event-B models into PRISM. To do so, we propose the following:

• global variables and constants must be defined in global context that can be seen

by all abstract machines;

• local variables such as states and clocks are declared locally at level of each

abstract machine.

For the FireWire protocol, the global context that is seen by the FireWire ab-

stract machine is introduced in Figure 5. It introduces the constants that the abstract

machine needs to see and use.

Events

Events in PRISM also have a representation that is similar to Event-B. A set of

updates or actions is executed once a guard is true. In addition, both PTA and Event-

B models could introduce nondeterministic actions; however, Event-B models do not

provide probabilistic actions. Therefore, we need to extend Event-B models to reason

about the probabilities that are assigned to each action when a guard holds (just as

we do in PRISM for describing PTA). To do so, we adopt a simple and yet efficient

notation that was introduced in [33]. We use the ⊕| operator to denote a probabilistic

choice between two actions: one with probability @p, and the other with probability

@(1−p). For the FireWire protocol (See Figure 6), slow and fast refer to probabilities

p and 1− p, respectively. Figure 6 shows the definition of the events of Nodes A and

B that correspond to the guarded commands in PRISM (where we can observe the

increased similarities between them). Due to the length of the entire model, only

a subset of the events has been introduced in Figure 6.

Decomposition and parallel composition through synchronization

While we map most of the important elements of Event-B to PRISM, we still need

to consider one more issue regarding PRISM, which is the parallel composition of

different components through action synchronization.

To deal with the parallel composition of different modules through action syn-

chronization in Event-B, we employ the decomposition technique from [6]. Butler pro-

posed a decomposition technique that allows for the partitioning of a single machine

into several sub-machines; this has its origins in the synchronous parallel composition

of processes that are found in process algebra. Using process algebra operator ||,
the parallel composition of two machines A and B (denoted A||B) can be achieved.

562 Hichem Debbi

The A and B machines can then interact via synchronizing shared events; i.e., those

events that share the same names in both machines. Actually, this representation

is the same that is adopted in PRISM to allow for the parallel composition of the

modules. Therefore, we adopt this representation in Event-B to allow for a smooth

transformation from Event-B to PRISM.

While the previous case study of FireWire consisted of one component, we will

now address a case study that consists of different machines or modules. This case

study concerns the CSMA/CD (carrier-sense multiple access with collision detection)

protocol [12, 25]. Through this case study, we will show how we can deal with the

issue of synchronization.

CSMA/CD is a protocol for carrier transmission access in Ethernet networks

that avoids collisions (minimizing the simultaneous use of a channel) when a network

interface card (NIC) tries to send its packet. The protocol is modeled as a PTA

in PRISM and consists of the following main components or modules: at least two

senders (namely, Station 1 and Station 2), and the bus (or the medium). The protocol

functionality is as follows: if a station has data to send, it first listens to the medium:

if the medium is free, the station sends the data; otherwise (the bus is busy), it repeats

the process after a random amount of time. If there is a collision, the station attempts

to re-transmit the packet where the scheduling of the re-transmission is determined

by a truncated binary exponential backoff process. The description of the PTA that

is related to CSMA/CD can be found in [25], and the complete model in the PRISM

language is available in the PRISM benchmark suite [31].

CONTEXT
global Context CSMA

CONSTANTS
k
s l o t
sigma
lambda
AXIOMS
axm1 : k ∈ N
axm2 : s l o t ∈ N
axm3 : sigma ∈ N
axm4 : lambda ∈ N
axm5 : slot = 2 ∗ sigma
axm6 : p ∈ R+

axm7 : p = 0..1 �

a)

MACHINE
Stat ion1
SEES
global Context CSMA
VARIABLES
c l o ck x1
cd
s1 ∈ stat STATES
SETS
stat STATES = { i n i t i a l ,

transmit , c o l l i d e , wait ,
done}

INVARIANTS
c l o ck x1∈ R+

cd ∈ 1 . . k
(s1=i n i t i a l)−→(x=0)
(s1=transmit)−→(x≤ lambda)
(s1=c o l l i d e)−→(x=0)
(s1=wait) −→ (c l o ck x1 ≤ pow

(2 , cd1) ∗ s l o t) �

b)

Figure 8. Context, variables, and invariants of CSMA: a) station1 machine of CSMA –

variables and invariants; b) event-B model of CSMA – context

As shown before, each abstract machine will refer to a module in PRISM in our

mapping; therefore, we will define different sets of states in Event-B at the level of

Modeling and analysis of probabilistic real-time systems... 563

each abstract machine in addition to the clock variables. For CSMA/CD, we have two

main components: the station, and the bus. As we see in Figures 8b and 9, we declare

two sets (named stat states and bus states, respectively) at each abstract machine.

In addition, we define the clock variable for each machine locally as well as their

corresponding invariants. Similar to the FireWire protocol, the global constants that

must be seen by both machines are defined in one shared context (See Figure 8a).

MACHINE
Bus
SEES
global Context CSMA
VARIABLES
c l o ck y
b ∈ bus STATES
SETS
bus STATES = { i n i t i a l , transmit , c o l l i d e }
INVARIANTS
c l o ck y ∈ R+

(b=c o l l i d e)−→ (y ≤ sigma) �
Figure 9. Bus machine of CSMA – variables and invariants

For the events, we can see in Figures 10 and 11 that synchronizing shared events

have the same names (Bus S1 Wait, Bus S1 cd, etc.). However, a machine could still

define non-shared events such as Station Retransmit in Station 1.

EVENT
INITIALIZATION :
s1 := i n i t i a l cd :=0
Bus Send S1 :
WHERE
i s I n I n i t i a l : s1=i n i t i a l
THEN
Enter Transmit : s1 := transmit
END
Send S1 AfterTransmit :
WHERE
i s In Wai t S : s1=wait
guard c lock S : c l o ck x1=pow(2 , cd1) ∗ s l o t))
THEN
Enter Transmit S : s1 := transmit
Res e t c l o ck S : cx1 :=0
END
Bus S1 Initial :
WHERE
i s I n I n i t i a l S : s1=i n i t i a l
THEN
Ente r Co l l i d e S : s1 := c o l l i d e
Res e t c l o ck S : c l o ck x1 :=0
count cd : cd1 :=min (K, cd1+1)
END �

Figure 10. Events of Station 1 – CSMA

564 Hichem Debbi

Bus S1 Wait :
WHERE
i s In Wai t S : s1=wait
guard c lock S : c l o ck x1=pow(2 , cd1) ∗ s l o t)
THEN
Ente r Co l l i d e S : s1 := c o l l i d e
Res e t c l o ck S : c l o ck x1 :=0
count cd : cd1 :=min (K, cd1+1)
END
Bus S1 cd :
WHERE
i s In Transmi t S : s1=transmit
THEN
Ente r Co l l i d e S : s1 := c o l l i d e
Res e t c l o ck S : c l o ck x1 :=0
count cd : cd1 :=min (K, cd1+1)
END
Bus S1 end1 :
WHERE
i s In Transmi t S : s1=transmit
guard c lock S : c l o ck x1=lambda
THEN
s u c c e s s s e n t : s1 :=done
Res e t c l o ck S : c l o ck x1 :=0
END
Station Retransmit :
WHERE
i s I n C o l l i d e S : s1=transmit
c o l l d e t e c t e d : cd1=1
THEN
s t a t i on1 f l i p s co in : s ⊕| s1=3 ∧ (c l o ck x1=0∗ s l o t) @p; s1=3 ∧ (

c l o ck x1=1∗ s l o t) @1−p
END �

Figure 10. cont.

EVENT
INITIALIZATION
b:= i n i t i a l
Bus Send S1 :
WHERE
i s I n I n i t i a l : b=i n i t i a l
THEN
Enter Transmit : b1:= transmit
END
Send S1 AfterTransmit :
WHERE
i s In Transmit M : b=transmit
guard clock M : c lock y<sigma
THEN
Enter Col l ide M : b:= c o l l i d e
Reset c lock M : c l o ck y :=0
END
Bus S1 Initial :
WHERE
i s In Transmit M : b=transmit
guard clock M : c lock y>=sigma
THEN
skip M : b:= transmit
END �

Figure 11. Events of bus – CSMA

Modeling and analysis of probabilistic real-time systems... 565

Bus S1 Wait :
WHERE
i s In Transmit M : b=transmit
THEN
skip M : b=1
END
Bus S1 cd :
WHERE
i s I n Co l l i d e M : b=2
guard clock M : c lock y<=sigma
THEN
Enter Transmit M : b:= transmit
END
Bus S1 end1 :
WHERE
i s In Transmit M : b=transmit
THEN
i s I n I n i t i a l M : b:= i n i t i a l
Reset c lock M : c l o ck y :=0
END �

Figure 11. cont.

Since all stations share the same behavior, the description of one station is suffi-

cient. It is worth noting that, when we have multiple stations (which is the real case),

we can deal with this issue in PRISM through renaming; this allows us to duplicate

the modules.

As we see from the both case studies, our mapping approach of Event-B models

into PTA in PRISM can work for both cases regardless of whether the system consists

of a single component or different components. Through these two case studies, we

can also see that Event-B and PRISM already share various semantics (especially with

the expression of events) for both non-synchronizing and synchronizing events. Such

a similarity would allow for a smooth automatic translation from Event-B to PRISM.

Property analysis

After transforming the Event-B models into PRISM models, we can use the PRISM

model checker to verify and analyze different probabilistic reachability and time-

bounded probabilistic reachability properties. These properties can be found in the

PRISM benchmark suite [31]. Since PTA is a non-deterministic model, we use

Pmin and Pmax in PRISM to indicate the minimum and maximum probabilities,

respectively.

For the FireWire model, we choose to compute the results of the following

property:

Pmin =?[F (“done”)].

This probabilistic property tries to compute the minimum probability that, from

the initial state, a leader is elected before the time bound deadline is reached, where

“done” is a label that denotes s = 9, and deadline is a variable that is added to express

this property. The results for different deadline values are depicted in Table 1.

566 Hichem Debbi

We can also reason about simple liveness properties. For instance, property

P >= 1[F (“done”)] tries to check whether a node will eventually be made a leader

(which is satisfied).

Table 1
Probabilities of leader election – FireWire

Deadline Probability

2000 0.500

3000 0.625

4000 0.781

5000 0.851

6000 0.931

7000 0.962

For the second model of CSMA, we can state the following property:

Pmin =?[F <= T (“all delivered”)].

Given a bound T , this bounded property tries to compute the minimum prob-

ability that both stations will eventually send their packets correctly. PRISM has

a simulation framework that enables us to visualize the results of any property. The

simulation results of this property given different values of T as generated by PRISM

are depicted in Figure 12a.

a) b)

Figure 12. Analysis results: a) CSMA – minimum probability of

reaching done state given T;

b) CSMA – minimum probability of reaching done state given T

before collision with max backoff

We can also introduce another property:

Pmin =?[!“collision max backoff”U <= T“all delivered”].

Given a bound T , this property aims to compute the minimum probability that

both stations successfully send their packets correctly before a collision with max

backoff is detected; in other words, not reaching a collision with max backoff until

the “done” state is reached, where collision is identified by the event cd, and the

maximum number of collisions can be introduced. The simulation results for this

property for a maximum backoff limit of 2 and the given different values of T are

depicted in Figure 12b.

Modeling and analysis of probabilistic real-time systems... 567

5. Conclusion

In this paper, we introduced an approach for representing both probability and time

in Event-B models. Then, we presented an approach for mapping Event-B models into

PTA, which can be expressed in the PRISM language for verifying and analyzing prob-

abilistic timed properties. The transformation considers basic elements of Event-B

models such as variables and events (in addition to probability and time). While

time is expressed simply through a clock variable, probability is expressed through

an operator that introduces the probabilistic choice between different actions. We

benefit from the similarities between Event-B and the PRISM language in order to

deliver a smooth transformation; this would be very helpful for combining Event-B

and model checking, thus facilitating the development of probabilistic real-time sys-

tems. The transformation technique presented here is designed in such a way that it

can facilitate the automatic translation of Event-B models that are augmented with

probability and time into PRISM.

References

[1] Abrial J.R.: Modeling in Event-B: System and Software Engineering, Cambridge

University Press, 2010.

[2] Abrial J.R., Cansell D., Méry D.: A Mechanically Proved and Incremental De-

velopment of IEEE 1394 Tree Identify Protocol, Formal Aspects of Computing,

vol. 14, pp. 215–227, 2003.

[3] Alur R.: Timed Automata. In: N. Halbwachs, D. Peled (eds.), Computer Aided

Verification, pp. 8–22, 1999.

[4] Aouadhi M., Delahaye B., Lanoix A.: Introducing probabilistic reasoning within

Event-B, Software & Systems Modeling, vol. 18, pp. 1953–1984, 2019.

[5] Bengtsson J., Larsen K., Larsson F., Pettersson P., Yi W.: UPPAAL – a tool

suite for automatic verification of real-time systems. In: R. Alur, T.A. Henzinger,

E.D. Sontag (eds.), Hybrid Systems III. Verification and Control, Lecture Notes

in Computer Science, vol. 1066, pp. 232–243, Springer, Berlin–Heidelberg, 1996.

doi: 10.1007/BFb0020949.

[6] Butler M.: Decomposition Structures for Event-B. In: Integrated Formal Meth-

ods, pp. 20–38, Springer, Berlin–Heidelberg, 2009.

[7] Cansell D., Méry D., Rehm J.: Time Constraint Patterns for Event B Devel-

opment. In: B 2007: Formal Specification and Development in B, pp. 140–154,

Springer, Berlin–Heidelberg, 2006. doi: 10.1007/11955757 13.

[8] Cimatti A., Clarke E., Giunchiglia F., Roveri M.: NUSMV: a new symbolic model

checker, International Journal on Software Tools for Technology Transfer, vol. 2,

pp. 410–425, 2000.

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/11955757_13
https://doi.org/10.1007/11955757_13
https://doi.org/10.1007/11955757_13

568 Hichem Debbi

[9] Dalvandi M., Butler M., Rezazadeh A.: From Event-B Models to Dafny Code

Contracts. In: Fundamentals of Software Engineering. FSEN 2015, p. 308–315,

Springer-Verlag.

[10] Daws C., Kwiatkowska M., Norman G.: Automatic verification of the IEEE

1394 root contention protocol with KRONOS and PRISM, International Journal

on Software Tools for Technology Transfer volume, vol. 5, pp. 221–236, 2004.

doi: 10.1007/s10009-003-0118-5.

[11] Dijkstra E.W.: A Discipline of Programming, Prentice Hall International, Engle-

wood Cliffs, N.J., 1976.

[12] Duflot M., Fribourg L., Herault T., Lassaigne R., Magniette F., Messika S.,

Peyronnet S., Picaronny C.: Probabilistic Model Checking of the CSMA/CD

protocol using PRISM and APMC, Electronic Notes in Theoretical Computer

Science, vol. 128(6), pp. 195–214, 2004. doi: 10.1016/j.entcs.2005.04.012.

[13] Hadad A.S.A., Ma C., Ahmed A.A.O.: Formal Verification of AADL Mod-

els by Event-B, IEEE Access, vol. 8, pp. 72814–72834, 2020. doi: 10.1109/

ACCESS.2020.2987972.

[14] Hallerstede S., Hoang T.S.: Qualitative Probabilistic Modelling in Event-B. In:

J. Davies, J. Gibbons (eds.), Integrated Formal Methods. IFM 2007, Lecture Notes

in Computer Science, vol. 4591, pp. 293–312, Springer, Berlin–Heidelberg, 2007.

doi: 10.1007/978-3-540-73210-5 16.

[15] Hansson H., Jonsson B.: A logic for reasoning about time and reliability, Formal

Aspects of Computing, vol. 6(5), pp. 512–535, 1994.

[16] Henzinger T.A., Nicollin X., Sifakis J., Yovine S.: Symbolic Model Checking

for Real-Time Systems, Information and Computation, vol. 111(2), pp. 193–244,

1994. doi: 10.1006/inco.1994.1045.

[17] Hinton A., Kwiatkowska M., Norman G., Parker D.: PRISM: A tool for automatic

verification of probabilistic systems. In: H. Hermanns, J. Palsberg (eds.), Tools

and Algorithms for the Construction and Analysis of Systems. TACAS 2006,

Lecture Notes in Computer Science, vol. 3920, pp. 441–444, Springer, Berlin–

Heidelberg, 2006. doi: 10.1007/11691372 29.

[18] Hoang T.S.: The Development of a Probabilistic B-Method and a Supporting

Toolkit, Ph.D. thesis, School of Computer Science and Engineering, UNSW, 2005.

[19] Holzmann G.: The SPIN Model Checker: Primer and Reference Manual, Addison

Wesley, 2004.

[20] Iliasov A., Romanovsky A., Laibinis L., Troubitsyna E., Latvala T.: Augment-

ing Event-B modelling with real-time verification. In: 2012 First International

Workshop on Formal Methods in Software Engineering: Rigorous and Agile Ap-

proaches (FormSERA), p. 51–57, 2012. doi: 10.1109/FormSERA.2012.6229789.

[21] Katoen J.P., Khattri M., Zapreev I.S.: A Markov reward model checker. In:

Second International Conference on the Quantitative Evaluation of Systems

(QEST’05), pp. 243–244, 2005. doi: 10.1109/QEST.2005.2.

https://doi.org/10.1007/s10009-003-0118-5
https://doi.org/10.1007/s10009-003-0118-5
https://doi.org/10.1007/s10009-003-0118-5
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1016/j.entcs.2005.04.012
https://doi.org/10.1109/ACCESS.2020.2987972
https://doi.org/10.1109/ACCESS.2020.2987972
https://doi.org/10.1109/ACCESS.2020.2987972
https://doi.org/10.1109/ACCESS.2020.2987972
https://doi.org/10.1007/978-3-540-73210-5_16
https://doi.org/10.1007/978-3-540-73210-5_16
https://doi.org/10.1006/inco.1994.1045
https://doi.org/10.1006/inco.1994.1045
https://doi.org/10.1006/inco.1994.1045
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1109/FormSERA.2012.6229789
https://doi.org/10.1109/FormSERA.2012.6229789
https://doi.org/10.1109/FormSERA.2012.6229789
https://doi.org/10.1109/QEST.2005.2
https://doi.org/10.1109/QEST.2005.2

Modeling and analysis of probabilistic real-time systems... 569

[22] Kozen D.: A probabilistic PDL, Journal of Computer and System Sciences,

vol. 30(2), pp. 162–178, 1985.

[23] Kwiatkowska M., Norman G., Segala R., Sproston J.: Automatic verification of

real-time systems with discrete probability distributions, Theoretical Computer

Science, vol. 286(1), pp. 101–150, 2002.

[24] Kwiatkowska M., Norman G., Sproston J.: Probabilistic Model Checking of Dead-

line Properties in the IEEE 1394 FireWire Root Contention Protocol, Formal

Aspects of Computing, vol. 14(3), p. 295–318, 2003.

[25] Kwiatkowska M., Norman G., Sproston J., Wang F.: Symbolic model check-

ing for probabilistic timed automata, Information and Computation, vol. 205(7),

pp. 1027–1077, 2007.

[26] Méry D., Rosemary M.: Transforming EVENT B Models into Verified C# Imple-

mentations. In: A. Lisitsa, A. Nemytykh (eds.), VPT 2013 – First International

Workshop on Verification and Program Transformation, EPIC, vol. 16, pp. 57–73,

2013. https://hal.inria.fr/hal-00862050.

[27] Michael L., Michael B.: ProB: A Model Checker for B. In: FME 2003: Formal

Methods, pp. 855–874, Springer, Berlin–Heidelberg, 2003.

[28] Morgan C., Hoang T.S., Abrial J.R.: The Challenge of Probabilistic Event B.

In: ZB 2005: Formal Specification and Development in Z and B, Lecture Notes

in Computer Science, vol. 3455, pp. 162–171, Springer, Berlin–Heidelberg, 2005.

doi: 10.1007/11415787 10.

[29] Ndukwu U., McIver A.K.: YAGA: Automated Analysis of Quantitative Safety

Specifications in Probabilistic B. In: A. Bouajjani, W.N. Chin (eds.), Automated

Technology for Verification and Analysis, Lecture Notes in Computer Science,

vol. 6252, pp. 378–386, Springer, Berlin–Heidelberg, 2010. doi: 10.1007/978-3-

642-15643-4 31.

[30] nuXmv: https://nuxmv.fbk.eu/.

[31] PRISM benchmark suite – Models. http ://www.prismmodelchecker.org/

benchmarks/models.php.

[32] Sena L., Xiangyu L., Zuxi C.: Combining Theorem Proving and Model Check-

ing in the Safety-Critical Software Development through Translating Event-B

to SMV. In: MATEC Web Conf, vol. 128, 2017. doi: 10.1051/matecconf/

201712804004.

[33] Tarasyuk A., Troubitsyna E., Laibinis L.: Towards Probabilistic Modelling in

Event-B. In: Integrated Formal Methods, Lecture Notes in Computer Science,

vol. 6396, pp. 275–289, Springer, Berlin–Heidelberg, 2010. doi: 10.1007/978-3-

642-16265-7 20.

[34] Tarasyuk A., Troubitsyna E., Laibinis L.: Formal Modelling and Verification of

Service-Oriented Systems in Probabilistic Event-B. In: Integrated Formal Meth-

ods, Lecture Notes in Computer Science, vol. 7321, pp. 237–252, Springer, Berlin–

Heidelberg, 2012. doi: 10.1007/978-3-642-30729-4 17.

https://hal.inria.fr/hal-00862050
https://hal.inria.fr/hal-00862050
https://hal.inria.fr/hal-00862050
https://doi.org/10.1007/11415787_10
https://doi.org/10.1007/11415787_10
https://doi.org/10.1007/978-3-642-15643-4_31
https://doi.org/10.1007/978-3-642-15643-4_31
https://doi.org/10.1007/978-3-642-15643-4_31
https://doi.org/10.1007/978-3-642-15643-4_31
 https://nuxmv.fbk.eu/
http://www.prismmodelchecker.org/benchmarks/models.php
http://www.prismmodelchecker.org/benchmarks/models.php
http://www.prismmodelchecker.org/benchmarks/models.php
https://doi.org/10.1051/matecconf/201712804004
https://doi.org/10.1051/matecconf/201712804004
https://doi.org/10.1051/matecconf/201712804004
https://doi.org/10.1051/matecconf/201712804004
https://doi.org/10.1051/matecconf/201712804004
https://doi.org/10.1007/978-3-642-16265-7_20
https://doi.org/10.1007/978-3-642-16265-7_20
https://doi.org/10.1007/978-3-642-16265-7_20
https://doi.org/10.1007/978-3-642-16265-7_20
https://doi.org/10.1007/978-3-642-30729-4_17
https://doi.org/10.1007/978-3-642-30729-4_17
https://doi.org/10.1007/978-3-642-30729-4_17

570 Hichem Debbi

[35] Tarasyuk A., Pereverzeva I., Troubitsyna E., Laibinis L.: Formal Development

and Quantitative Assessment of a Resilient Multi-robotic System. In: A. Gor-

benko, A. Romanovsky, V. Kharchenko (eds.), Software Engineering for Resilient

Systems, Lecture Notes in Computer Science, vol. 8166, pp. 109–124, Springer,

Berlin–Heidelberg, 2013. doi: 10.1007/978-3-642-40894-6 9.

[36] Thomas M., Shin N.: Rodin Plugin to Link Event-B and SPIN. Technical Report,

IEICE Digital Library, 2009.

Affiliations

Hichem Debbi
University of M’sila, Department of Computer Science, M’sila, Algeria,
hichem.debbi@univ-msila.dz

Received: 07.12.2021

Revised: 10.04.2022

Accepted: 15.06.2022

https://doi.org/10.1007/978-3-642-40894-6_9
https://doi.org/10.1007/978-3-642-40894-6_9
https://doi.org/10.1007/978-3-642-40894-6_9
https://www.ieice.org/publications/ken/summary.php?contribution_id=KJ00005698708&society_cd=ISS&ken_id=SS&year=2009&presen_date=2009/7/30&schedule_id=AN10013287_109(170)&lang=en&expandable=3
hichem.debbi@univ-msila.dz

	Introduction
	Related works
	Preliminaries and definitions
	Markov models and Probabilistic Computation Tree Logic (PCTL)
	Clocks and zones
	Probabilistic Timed Automata (PTA)
	Probabilistic Timed CTL (PTCTL)
	PRISM language
	Event-B

	Mapping Event-B to PRISM
	Conclusion

