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IMMERSIVE FEEDBACK
IN FENCING TRAINING
USING MIXED REALITY

Abstract | During sports training, providing athletes with real-time feedback that is based
on the automatic analysis of motion is both useful and challenging. In this work,
a novel system that is based on mixed reality is proposed and verified. The
system allows for immersive and real-time visual feedback in fencing training.
Novel methods have been introduced for 3D blade tracking from a single RGB
camera, creating weapon-action models by recording the actions of a coach and
evaluating the trainee’s performance against these models. Augmented reality
glasses with see-through displays are employed, and a method for coordinate
mapping between the virtual and real environments is proposed; this will allow
for the provision of real-time visual cues and feedback by overlaying virtual
trajectories on the real-world view. The system has been verified experimentally
in fencing bladework training (with the supervision of a fencing coach). The
results indicate that the proposed system allows novice fencers to perform their
exercises more precisely.
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1. Introduction

Recently, modern technologies have been applied in many sports disciplines in order
to measure the performance of athletes and provide them with useful feedback [33]. In
team sports player detection, tracking, and identification are investigated [25], along
with ball detection [21]; these provide information that is useful (mostly for a coach).
In individual sports, the real-time feedback that is provided for an athlete is most
beneficial, as it allows him/her to improve their performed actions during training.
The timing and body angle consistency of a gymnast during a pommel horse routine
were evaluated with the help of Kinect, with the results displayed on a screen [31].
Dedicated methods were presented for rapid feedback in three disciplines: rowing (by
displaying plots from an accelerometer), table tennis (by detecting and visualizing the
ball’s impact positions), and the biathlon (by measuring and visualizing the motion
of the barrel of one’s rifle just before and after a shot) [3]. These approaches provide
real-time sports analysis; however, presenting such results on a computer screen is not
very convenient for a training athlete. In this paper, we consider providing real-time
feedback in fencing by using a novel approach; namely, by employing mixed reality
(MR). MR has been successfully applied in aiding surgeons [20] and engineers [30];
therefore, we believe it can be of great value to athletes as well.

In fencing, there are two main elements: footwork (which corresponds to how
a fencer moves [19,24]), and bladework (which corresponds to performing weapon
techniques). Bladework analysis is very challenging due to the high precision of one’s
performed actions as well as the fast motion of one’s blade. Weapon action classifica-
tion was performed by using kinematic data that was acquired by a motion-capture
system [26]. The presented methods are able to recognize a number of parry and
thrust actions with high efficiency. The kinematic determinants of a weapon’s veloc-
ity during a thrusting lunge have been identified in the work of [6]. The authors of [7]
distinguished proper and improper weapon action executions by applying a neural
network to inertial signals that were segmented with dynamic time warping (DTW).

None of the studies that discuss the analysis of bladework in fencing have con-
sidered real-time applications. The goal of this work was to develop a system that
would allow us to 1) analyze weapon training in real time, 2) evaluate action per-
formance, and 3) provide real-time immersive visual cues and feedback by employing
MR. In particular, MR is used to enhance a fencer’s view with virtually generated
weapon trajectories, which aid in properly performed weapon actions during his/her
training. Previously, 2D blade tracking and bladework action analysis and evaluation
was considered in [23]. In this work, we propose a 3D tracking method and introduce
real-time MR-based visual feedback, including real-virtual coordinate mapping and
calibration methods. To the best to our knowledge, no similar approach has been
presented in the literature thus far.
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2. Background

The discussion of the fencing background that is provided in this section is based
on the works of Prof. Czajkowski [12] as well as consultations with the fencers who
cooperated in the development of the proposed system [2].

2.1. Weapon training in fencing

There are two types of weapons used in fencing — thrusting, and cutting. With the
former, only thrusts score points, while with the latter, both cuts and thrusts can
score points. Thrusting weapons require more precision, as even slight differences in
the positioning or rotation of a blade can result in a weapon action being successful
or not. For this reason, automatic training support is most beneficial for thrusting
weapons; therefore, this type of weapon is considered in this work. In sports fencing,
these include foils and epees.

There are several stages of training weapon actions. At first, novice fencers simply
try to repeat motions that are presented by a coach. Next, an action is practiced with
a partner, who provides interaction (for instance, attack-parry); then, sequences of
actions are performed in which both participants are practicing. Next, the exercises
are performed with varying timings and distances; finally, these actions are practiced
during sparring. The goal of the system that is presented in this work is to mainly
provide support for the initial stages of weapon action training, as the process of
reaching at least a medium level in weapon handling is very time-consuming and
toilsome for novice fencers.

Trajectories are an intuitive manner of understanding how a weapon action
should be performed. When novice fencers observe a weapon motion that is presented
by a coach, they try to remember the trajectory of the tip of the blade. During their
training, they try to repeat this; however, without constant supervision from a coach
(who usually needs to share his/her attention among multiple students), they lack the
necessary feedback for correcting their performances of the action. The goal of the
proposed system is to provide these students with real-time trajectory-based feedback
and enable efficient training in the absence of the coach.

2.2. Object tracking

Classical methods for tracking objects in videos include the detection of spatio-
temporal interest points (e.g., SIFT [22] and SURF [4]), histograms of oriented gra-
dients (HOG) [13], or describing a motion with an optical flow [5]. Recently, deep-
learning approaches have become popular [9]. In sports, specific problems can be
addressed, such as player tracking in teams sports [29] or ball tracking (e.g., in volley-
ball [8]). However, tracking a weapon in fencing is significantly different. Such a blade
is thin, it moves very fast, and it is made of steel (which is reflective); these factors
make it very difficult to track. Moreover, the 3D tracking of position and rotation are
needed for employing mixed reality and providing proper visual feedback for fencers.
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Depth estimation is typically achieved with depth sensors [32]; however, our initial
experiments with the Kinect depth sensor showed that it is not suitable for tracking
a thin blade. Methods for 3D tracking from a single RGB camera have been proposed
in the literature for body-pose [27] and hand-pose estimation [28]. Even though these
are based on body and hand models, they are not applicable for fast-moving blades.
Therefore, we propose a novel method in this work that employs active markers to
track the 3D positions and rotations of a blade from a single RGB camera.

2.3. Augmented and mixed reality

Augmented reality (AR) enriches the perception of the real world with virtually added
information. A popular approach for employing AR is to display virtual objects on
the camera feed from the real world; e.g., on a smartphone [35]. A significantly more
immersive experience is provided when using AR glasses with see-through displays;
these allow for the overlaying of virtual objects not in a camera feed but directly in
the user’s field of view. AR glasses can be employed to display 3D objects that fit
spatially into the real world, thereby creating a mixed reality. The distinguishing
feature of MR is that one can see virtual objects as if they were part of his/her
surrounding environment and possibly interact with them in some manner [18]. In
this work, AR glasses are employed to display the trajectories of weapon actions in
front of a training fencer. Coordinate mapping is performed between the virtual and
real worlds; therefore, a trajectory is drawn along the tip of the blade during the
weapon’s movement, providing an accurate visualization of the motion. Similarly,
virtually added trajectories of model weapon actions constitute visual cues on how to
perform bladework exercises. A comparison of the trajectories of the performed and
model actions allows for evaluation and feedback; therefore, the MR view is employed
to aid the fencing training. It is worth noting that, while hand gestures and touch or
haptic devices [10,34] are typically used in MR, such interactions are performed with
the sports weapon in this case. An important challenge in this work was to perform
tracking, analysis, and MR visualization in real time.

3. Methods

3.1. Architecture

Due to the utilization of AR glasses with real-virtual coordinate mapping, it is possible
to create the following training routine. First, a coach performs multiple repetitions
of an action that are recorded and used to build a model trajectory. Then, the model
trajectory is displayed in front of the training fencer with the AR glasses, who follows
the displayed trajectory with the tip of the blade. The evaluation of the action is
performed based on the differences between the model and the current trajectories.
In order to obtain the trajectories of the weapon actions, a reliable tracking of the
blade is required. The AR glasses are equipped with a built-in camera, which provides
a first-person perspective view. Due to the fast motion of the thin blade and the
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low quality of the video stream, LED markers are used (as these can be detected
relatively easily).

The architecture of the proposed system is based on employing the following
devices: a double-LED marker (placed near the tip of the blade), AR glasses (for
a training fencer), and a laptop (which is wirelessly connected to the glasses); see
Figure 1. The camera in the AR glasses is used for detecting the marker in real time;
this enables the tracking of the trajectories of the practiced weapon actions. The
laptop provides a graphical user control interface (GUI) during the calibration and
model-recording procedures. Employing a laptop facilitated our experiments with the
prototype system that was implemented in this work; however, it would be possible
for the system to operate without a laptop. This would require the implementation of
the control interface on the glasses themselves or on a mobile device. An additional
benefit of using a laptop is that it allows one to preview the tracked trajectories on
the screen, therefore providing feedback for a coach as well.

—
T

Laptop " 7, ARglasses
(control interface) T "7 with built-in camera

Double-LED
‘ 2% i marker

Figure 1. Architecture of proposed system

3.2. Blade tracking

Based on consultations with fencing experts, three parameters describe the motion of
a weapon’s actions: the trajectory of the tip of the blade, the trajectory of the base
of the blade, and the rotation of the blade. The first is most relevant for offensive ac-
tions in terms of evading an opponent’s blade and hitting an intended target area. The
second and third are most relevant for defensive actions, where the proper positioning
and rotation of a blade are required so that one’s parry actions are effective. In this
work, only two of these parameters are tracked during a fencers’ training; this is due
to the limitation of the employed devices. Although the built-in camera in the AR
glasses has a wide-angle lens, its view is not sufficient for reliably tracking the base of
a blade — during weapon training, the base of the blade is often outside the camera’s
view area. Therefore, only the tip of the blade and the rotation are tracked. While
this is a considerable limitation, the visual cues and feedback that are provided by the
proposed system are still useful for bladework-training support. Also, this limitation
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results directly from the capabilities of the used device and not from the proposed
method itself. If the camera lens had a wider angle, it would be possible to implement
the tracking of an additional marker and the visualization of another trajectory.

The relatively low quality of the video stream that is provided by the built-in
camera makes the tracking of the weapon blade difficult. The fast motions result
in blurry images, particularly under poor lighting conditions (which are typical for
training halls); this is due to the relatively long exposure times that are required by
the light-sensitive matrix in order to capture a video frame. For this reason, state-
-of-the-art object-tracking algorithms are not applicable in this case. Instead, LED
markers are mounted on the blade, and the camera is set to low exposure; this results
in the captured images (other than the light sources) being dark. Therefore, the LED
markers are easily detectable by finding the brightest pixels in the image (as long as
there are no other light sources in the camera’s view). Additionally, the images are
less blurry because the exposure times are shorter.

Using a double-LED marker enables depth and rotation tracking. The marker
that is mounted at the tip of the blade has two LEDs (approx. 5 cm from each other)
that are placed perpendicularly to the blade (see Fig. 2). Based on the relative
positions of the LEDs in a captured image, it is possible to estimate both depth and
rotation. The marker itself is very simple and low-cost, as it contains two LEDs that
are soldered to a CR2032 battery case (see Fig. 2).

4

Figure 2. Double-LED marker (left) mounted on tip of blade (middle);
entire weapon view (right)

The detection of the LEDs in the captured images is performed in two steps.
First, the image is converted to grayscale, and a threshold operation that creates
a binary image is applied in which all of the pixels above the threshold are white and
all of the others are black (see Fig. 3). The threshold is selected automatically during
a short calibration procedure — the user places the marker in the camera’s view, and
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the lowest and highest thresholds are found for which the number of detected LEDs is
correct. The final threshold is set closer to the lower threshold in order to capture the
marker during fast motions (when the LEDs are blurry). Alternatively, the threshold
can be set manually in a dedicated display mode where all of the pixels that are above
the threshold are shown.

O@

Figure 3. Marker detection: camera is set to low exposition setting (left);
thresholding operation is applied (middle);
LED positions (keypoints) are detected after clustering (right)

The second step of the LED detection consists of a clustering. Once a binary
image is created, clusters of white pixels are found; these correspond to the markers.
The algorithm runs through all of the pixels in the image, and it marks each found
white pixel as a new cluster and performs a region-growing operation [1]. When more
than two clusters are found, only the largest two are considered; the additional small
clusters that correspond to separate pixels that are not connected to the main two
clusters are then discarded. When fewer than two clusters are found, the frame is
discarded. The proposed tracking method is solely based on detection; therefore, any
spatio-temporal dependencies between consecutive frames are not considered. This
approach is sufficient when no other light sources are present in the camera’s field of
view (which was the case in the experiments).

The centers of the detected clusters are referred to as keypoints; each corresponds
to a single LED (see Fig. 3). The 2D position of the tip of the blade is calculated as
the middle point between the two keypoints. The depth and rotation are calculated
based on the relative positions of the keypoints. The closer the tip of the blade is to
the camera, the greater the pixel distance is between the keypoints (see Fig. 4). By
performing a one-time calibration, it is possible to map the pixel distance between
the keypoints to the actual distance between the marker and the camera. In a limited
depth range, the relationship is approximately linear. The rotation is given by the
angle between the line that connects the two keypoints and the horizontal axis of
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the camera (see Fig. 4). Due to the view angle of the camera, this is not exactly the
same as the rotation that is measured relative to the ground; however, since both
the model learning and training evaluation depend on the rotation that is measured
with this method, the perceived rotation is more relevant than the rotation relative
to the ground is.

Distance: 39 px
Rotation: -20 deg

Distance: 28 px
Rotation: 5 deg

Figure 4. Depth and rotation estimation based on detection of relative positions of
two LEDs; pixel distance between LEDs corresponds to depth —
smaller distance (left) indicates that tip of blade is further away

It is worth noting that other methods for determining the depth and rotation were
also considered. Newer models of AR glasses include depth sensors, which would be
an obvious choice for depth estimation. However, the initial experiments with the
Kinect depth sensor showed that the detection of the thin light-reflective blade was
very poor, as it was not visible on the depth map in most frames. The rotation could
be tracked by attaching an inertial sensor to the base of the weapon; however, this
would make the system both more complex to use and more expensive. Also, inertial
sensors do not provide distance information; therefore, employing such sensor would
not be sufficient to eliminate the need for a double-LED marker.

3.3. Action models

Due to the fast motion of the blade and a camera acquisition rate that is equal to
30 Hz, detecting the double-LED marker provides only a sparse sampling of the blade
tip’s trajectory (see Fig. 5 [left]). The distances between the consecutive points depend
on the changes in the speed of the performed action, and the overall length of the
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trajectory depends on the time of execution. For both visualization and evaluation
purposes, dense trajectories with a common length are required; therefore, cubic
spline interpolation [14] is applied, which provides densely sampled trajectories with
constant arbitrarily chosen numbers of points (see Fig. 5 [right]).

Figure 5. Tracking of tip of blade: detected marker positions (left);
interpolated trajectory (right)

The use of interpolated trajectories allows us to calculate a model trajectory for
the action and employ a point-by-point comparison with the trajectories that are
recorded during the bladework training; however, a common starting point is also
required. For this reason, building a model of the action begins with defining the
starting point. The fencer simply places the tip of the blade in the desired position
and saves the starting point by using the control interface. During both the model-
learning and training evaluations, each repetition of an action begins with moving the
tip of the blade to the starting point that is displayed in the AR glasses.

In order to facilitate the use of the system, the action repetitions are detected
automatically. A finite-state machine (FSM) is employed (see Fig. 6). The initial
state is detection in which the tip of the blade is detected; however, the trajectories
are not recorded. Once the tip of the blade is moved to the displayed starting point,
the state changes to in position and a timer is set that changes the state to ready after
one second. Then, the system waits for the blade movement to start; this triggers the
transition to the recording state. Each state is indicated to the user by changing
the color of the virtual starting point marker.

While an action is performed, a simplified trajectory is displayed in the AR
glasses by connecting the detected points with straight lines. When the fencer stops
moving his/her blade, the interpolated trajectory is displayed instead. The next rep-
etition of the action begins when the tip of the blade is moved again to the starting
point. The tip of the blade is considered to start moving when the average displace-
ment of the detected points in the previous 20 frames is above a predefined threshold
(which was chosen experimentally), taking into account that the tip of the blade is
not perfectly still even when the weapon is not moved voluntarily.
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Figure 6. Finite state machine used to automatically detect action repetitions

L

i

There are two modes of using the proposed system: model learning, and training
evaluation. The first one is dedicated to building action models that are based on
the input that has been provided by fencing coaches. A coach selects a starting point
and then performs multiple repetitions of the chosen action. The mean trajectory is
calculated point-wise based on all repetitions. Given that N is the number of recorded
trajectories (action repetitions), L is the length of an interpolated trajectory, and p;
is the i-th point of the k-th trajectory, the m; points of the mean trajectory are
computed as follows:

N
. Zk:l pi)k
Viel, ..., Lm; == —— (1)
N
The s; standard deviations are also computed at each point based on the Eu-
clidean distance between the points in the mean trajectory and each recorded repeti-
tion of the action:

N g — )2
VZ € 1,...7L’$7; = \/Zk—l(p},\]; ml) (2)

In the training-evaluation mode, the recorded model of action is loaded, and
the mean trajectory is displayed; then, the fencer tries to repeat the action. Both
the current and model trajectories are visible; therefore, instant visual feedback is
provided. Once a repetition of the practiced action is completed, the trajectories
are compared numerically. For each point of the current interpolated trajectory,
its distance to the corresponding point in the model trajectory is calculated. The
accuracy in each point is proportional to the ratio between the calculated distance
from the model point and the standard deviation for this point (which is also stored
in the model). The edge values are at 100% when the distance is lower than the
standard deviation and at 0% when the distance is greater than twice the standard
deviation. Given that ¢; is the i-th point in the current trajectory, the a; accuracy of
this point is computed as follows:

m; — C;

Viel,...,Lya; =100 — ((min(maz( ,1),2) — 1) -100) (3)

Si
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The accuracy for the entire trajectory is computed as the mean from all points.
Both 2D and 3D distances were considered for the point-wise trajectory comparison;
since the depth in the AR glasses was not perceived by the users well enough, 2D Eu-
clidean distances in the zy plane were eventually employed. The rotation is evaluated
in a similar manner. For the purpose of visualization, the rotation is also color-coded.

3.4. Mixed reality

In the proposed system, visual cues and feedback are provided to training fencers by
employing AR glasses. An Epson Moverio BT-300 device was used in this work [16];
it included lightweight AR glasses connected by a wire to a small Android-based
processing unit, which is also used for the control (see Fig. 7). The glasses have
a see-through display for each eye — a user can see both the surrounding environment
and the displayed content. The black color in the generated image is transparent in
the glasses; therefore, a seamless mixture of real and virtual views is possible. The
glasses operate at a 1280 x 720 resolution, have a refresh rate of 30 Hz, and provide
a 23-degree field of view. A five-megapixel camera is built into the glasses (on the
right side). The processing unit has a 1.44 GHz quad-core Intel Atom processor, 2 GB
of RAM, and 16 GB of internal memory. It is also equipped with a touchpad and
several control keys that act as the user interface.

Figure 7. Epson Moverio BT-300 AR device, including control and processing unit (left);
AR glasses with see-through displays (right)

The glasses can display different images for each eye, therefore simulating a 3D
perception of the generated objects. Among other things, human depth perception
is determined on the basis of stereo vision [15]. Since our eyes perceive objects from
slightly different points, each eye receives slightly different images; the depth of any
perceived object is estimated based on the disparity between the right and left images.
This mechanism can be used to generate 3D virtual scenes by displaying an image of
a scene that is generated from a shifted viewpoint for each eye [11]. In the proposed
system, this concept was implemented with the OpenGL ES [17] by repositioning the
virtual camera when generating distinct images for the right and left eyes. While other
techniques for introducing depth perception exist, stereo vision is the most effective
for relatively close distances (up to 2 m) [15].

The main difficulty of creating a mixed real-virtual view with the AR glasses is
to generate virtual objects in their proper positions relative to the real environment.
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In order to do this, a translation between the real-world and virtual-world coordinate
systems must be provided. In the proposed system, the virtually generated trajecto-
ries are supposed to follow the double-LED marker that is placed at the tip of the
weapon’s blade; therefore, the system needs to calculate the 3D position of each point
in the virtual trajectory based on the marker position that is provided by the camera
in such a manner that they would both appear to the fencer to be in the same location
in the mixed real-virtual view (see Fig. 8). In order to make this possible, a dedicated
calibration procedure is proposed.

Figure 8. Expected mixed real-virtual view; virtually generated trajectory should match
motion of blade tip in real-world view

The 3D position of the marker (corresponding to the tip of the blade) that is
seen by the camera is defined by the z and y coordinates of the middle point be-
tween the two keypoints that are detected in the image as well as the pixel distance
between them (which corresponds to the depth) (see Section 3.2). The virtual object
coordinates are given to the OpenGL ES visualization engine in an arbitrarily defined
coordinate system. Based on the position of the virtual camera, the engine calculates
the projection of the object in the images that are displayed for the right and left
eyes. In order to create the mapping between the two coordinate systems, the user
manually matches the real and virtual objects at several points in space during the
calibration procedure. The collected data is used to calculate the coordinate-mapping
parameters. For each calibration point, an object (a small triangle) is displayed in
the AR glasses, and the user is asked to move the tip of the blade to this position and
then click a button on the control interface; this saves the calibration data for this
point (which includes both virtual and real coordinates).
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In order to calculate all of the required parameters, ten points in space are used
in the calibration process. In perspective vision, the field of view for close objects is
smaller than it is for distant objects; therefore, the translation of the coordinates from
the real to the virtual world on the zy plane depends on the z distance of the real
object (so, the calibration starts with the depth). The virtual marker is displayed in
the middle of the screen at a close distance (for the first calibration point) and at a far
distance (for the second calibration point). These distances roughly correspond to the
typical distance of the tip of the blade before and after an arm extension (which are
approx. 130 and 170 cm, respectively). Two calibration points allow the user to find
the parameters for the linear equation that describes the relationship between the vir-
tual and real depth coordinates. Given that z,. represents the depth in the real-world
coordinate system for the close distance, z, is the depth in the real-world coordinate
system for the far distance, z,. is the depth in the virtual-world coordinate system
for the close distance, and 2,y is the depth in the virtual-world coordinate system for
the far distance, the a, and b, parameters are computed from a pair of equations:

Zye = Az * Zre + by (4)
Zof =z 2Zrf + by (5)

The general equation for computing virtual depth z, based on real depth z, is
as follows:
Zy =Gy - 2p + b (6)

Next, four calibration points are gathered for the close distance, and another
four are gathered for the far distance. The four points are in the middle of each of
the left, right, top, and bottom edges of the displayed area (see Fig. 9). Therefore,
four sets of parameters for the linear equations are calculated that correspond to the
horizontal and vertical coordinates at the close and far distances: (age, bye), (@ye, byc),
(azy, bggf)7 and (ayf7 byf). Given that ,c, Yre, Trf, and y,y represent the  and y
real-world coordinates at the close and far distances and zyc, Yve, Tof, and y, 5 are
the x and y virtual-world coordinates at the close and far distances, the resulting
equations are as follows:

Tye = Qge * Tre + bac; (7)
Yve = Qye * Yre + byc; (8)
Typ = Agg - Trf + boy; 9)
Yor = Gyf - Yrf +bys- (10)

Equations 7, 8, 9, and 10 allow us to compute the x and y virtual coordinates at
only the close or far distances (see Fig. 9). General equations for computing the z,
and y, coordinates at any distance can be expressed as follows:
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Ty = Qg - Ty + by; (11)
Yp = Ay * Ypr + bya (12)

where

(13)

( ) (14)

ay = aye - (1—w) + ays - w; (15)
( ) (16)

( ) (17)

Once the calibration procedure is finished, the virtual depth is calculated with
the depth equation (Eq. 6). The parameters for the horizontal and vertical equations
(Egs. 14, 15, 16, and 17) are then determined based on the depth weight (Eq. 13).
Finally, the virtual  and y coordinates are computed (Egs. 11 and 12).

far distance (approx. 170 cm)

virtual
markers
user .-’

Figure 9. Calibration points are gathered at two distances (close and far) by displaying
virtual markers at ten different positions that user must match to physical weapon

With the obtained coordination mapping that was calculated during the calibra-
tion procedure, it is possible to display a virtually generated trajectory that follows
the tip of a blade. During their training, fencers will see the model trajectory of the
practiced action (which constitutes a visual cue to how to perform it correctly) as well
as the current trajectory of their execution of the action (which provides real-time im-
mersive feedback). Once a fencer finishes an action, the system compares the current
trajectory with the model (see Section 3.3) and displays numerical evaluation scores
for both the trajectory and the rotation. The rotation is additionally color-coded
using a green-to-red transition.
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4. Experimental results

4.1. Blade tracking

In order to verify the proposed blade-tracking method, short recordings of bladework
were acquired at three different locations: a university laboratory, and two different
training halls. The recordings (each lasting approx. 10 seconds) included typical
weapon actions that were performed with a weapon that was equipped with the
double-LED marker and were captured with the camera that was built into the AR
glasses (with a resolution of 640 x 480). At each location, no other light sources nor
reflections were present. In all of the video frames, the positions of the LEDs were
manually labeled in order to provide the ground truth. The threshold for automatic
detection was set automatically with the proposed calibration procedure (see Sec-
tion 3.2). The position of the tip of the blade, the pixel distance between the LEDs,
and the rotation were computed for both the manually labeled and automatically de-
tected LED positions. The average differences between the automatic detection and
the ground truth (including the standard deviation) are presented in Table 1. The
detection rate is presented as well; this was computed as the percentage of frames in
which both LEDs were detected correctly. An LED is considered to be detected cor-
rectly when the difference between the automatically found position and the ground
truth is less than half the distance between the two LEDs in the ground truth.

Table 1
Blade-tracking results computed for recordings from three different locations: detection
rate indicates percentage of number of frames for which both LEDs were correctly found.
For tip position, distance between LEDs and rotation, average differences
between automatic detection, and ground truth are given (including standard deviation)

Parameter Location 1 Location 2 Location 3 Average
(Univer. lab.) | (Train. Hall A) | (Train. Hall B)
No. of frames 307 214 294 272
Detection [%)] 100 100 97.96 99.32
Tip [px] 1.07 £ 0.29 1.22 + 0.45 1.21 + 0.51 1.17 + 0.42
Distance [px] 0.45 £ 0.27 0.62 £ 0.31 0.85 £+ 2.39 0.64 £ 0.99
Rotation [deg] 0.84 £ 0.76 1.03 £ 0.93 0.90 £ 1.19 0.92 £ 0.96

The average error in finding the tip of the blade was slightly greater than 1 pixel in
all of the recordings. The distance between the LEDs was estimated to have an average
error of a little more than half a pixel. For reference, the image size was 640 x 480,
and the pixel distance between the LEDs was typically between 20 to 30 pixels. The
average rotation value error was less than 1 degree. The results indicate that the
proposed detection method provided high accuracy; there were only a few frames in
which the LEDs were not located correctly due to the very fast motion (this resulted
in very blurry images). Typically, weapon actions are not performed at maximum
speeds during training; therefore, this issue will rarely occur.
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The proposed method for the depth estimation (which is based on the pixel
distance between the LEDs in a captured image) was verified in the following manner.
The AR glasses were set to focus on a measuring tape that was placed on the floor, and
the weapon with the double-LED marker was moved along the tape at 10-cm intervals
(see Fig. 10). The pixel distances between the LEDs in the captured images were
computed automatically using the proposed detection method. Figure 11 presents the
LEDs’ relative pixel distances plotted against their actual distances from the camera.
In the measured range (which was 50 to 170 cm), the dependency was non-linear due
to the wide-angle lens in the camera of the AR glasses (see Fig. 11a). However, the
tip of a blade is typically between 130 and 170 cm during bladework training; for
such a small range, the dependency can be approximated with a linear function (see
Fig. 11b). This indicates, that the proposed depth-estimation method is appropriate
for the considered scenario.

Figure 10. Setup for depth-estimation experiments

The proof-of-concept implementation of the proposed system is able to operate
in real time. With the camera resolution set to 640 x 480, the average processing
time for a single frame is 36 ms; this provides nearly smooth operation. With the
camera resolution set to 320 x 240, the average processing time for a single frame
is 13 ms; this results in completely smooth operation. It is worth noting that, even
with the lower resolution, the user perception of the accuracy of the blade tracking is
similar to that of the higher resolution.
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Figure 11. Relative pixel distance of detected LEDs plotted against their actual distances
from camera: full measured range (a); typical range for bladework training (b)

4.2. Action models

The purpose of the action models is to provide visual cues as well as to allow for
a numerical evaluation of bladework training. The goal of this numerical evaluation is
to award high scores when the performed trajectory is similar to the model trajectory
(and low scores otherwise). The ground truth for the similarity is difficult to define;
in bladework training, it comes down to human perception. Since the system is
supposed to provide feedback close to that of a coach, the result of the evaluation of the
trajectories should be consistent with the coach’s evaluation. Therefore, a dedicated
tool was implemented in order to verify the proposed method for the action evaluation;
this allows for simulating actions by drawing them with a mouse on a computer screen.
The sixth-to-fourth-parry motion (see Fig. 12) was chosen for this evaluation, as it
is one of the most commonly used weapon actions and can be performed without
forward motion (therefore, the trajectory can be evaluated in 2D). The model for the
action was created based on 30 repetitions of drawing it with a mouse. The mean
trajectory is presented in red in Figure 13, with the standard deviation indicated by
the circles drawn around the selected points. Several correct and incorrect actions
were drawn and compared to the model trajectory (as presented in Figure 13). Based
on this experiment, it was concluded that the automatic estimation of the trajectory
similarity corresponds to human assessment.

The FSM for the automatic detection of the start and stop of an action repetition
was evaluated based on the users’ opinions. Although the users required a few action
repetitions to get used to it, the final conclusion was that it was rather convenient and
easy to use and allows users to train without any additional control interface. Based
on the experiments with the fencers, one other feature was added to the system:;
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namely, a model editor (which allows for choosing which of the recorded repetitions
should be included in the final model).

1 /

Figure 12. Sixth-to-fourth parry action in fencing

1ee% 97% 91%

50% 31% 19%

Figure 13. Verification of automatic evaluation of similarity of trajectories: red lines indicate
model trajectory; red circles indicate standard deviation; blue lines indicate trajectories of
practiced actions (average percentage similarity is provided)
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4.3. Mixed reality

The purpose of employing a mixed reality was to provide real-time visual feedback for
the training of fencers by creating a mixed virtual-real view that incorporated virtually
generated trajectories that were properly aligned with the real-world weapon. The
mixed view (captured with a camera that peered through the AR glasses) is presented
in Figure 14. The experiments for evaluating the mixed reality included two stages:
the first considered the calibration procedure, while the second regarded the usefulness
of the proposed system in fencing bladework training.

Figure 14. Actual mixed real-virtual view displayed on AR glasses —
virtually generated trajectory is overlayed on real-world view

The calibration procedure for the coordinate mapping was performed by three
people. Each of these individuals was then asked to assess the accuracy of the blade
tracking when using each of the three calibrated coordinate mappings. All three peo-
ple chose the same coordinate mapping as being the most accurate; this indicated that
the calibration process was not user-specific. By repeating the calibration procedure
several times, it was revealed that the most important factor in the calibration was
the precise matching of the tip of the blade with the virtual marker. Therefore, it
may be beneficial to gather more calibration points in order to minimize the influence
of the matching errors. A manual fine-tuning of the coordinate mappings could be
useful as well.

The selected coordinate mapping was employed in the subsequent experiments.
All of the participants were asked to assess the accuracy of the tracking of the tip of
the blade (first in static positions, and then during movements). A virtual marker
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was displayed in the estimated position of the tip of the blade. For the horizontal
direction in the static positions, the virtual marker was always present between the
LEDs (mostly in the middle, but sometimes closer to one of the LEDs). In the vertical
direction, the accuracy of the tracking was similar. The depth was estimated less ac-
curately, as the object sometimes appeared slightly too close or too far away. Also, the
depth tracking was less stable, as the virtual marker oscillated slightly (even when
the blade was not moving). This was due to the slight differences in the keypoint-
-position estimation between frames, which resulted from the noise in the camera’s
video stream. In a test recording that lasted 30 seconds (in which the blade was
stationary), the variance of the estimated keypoint distance was approx. one pixel
(which corresponded to 5 cm of depth).

In regard to the trajectories that were drawn during the motion, all of the users
stated that they corresponded very well to the performed motion. The accuracy of
the depth estimation was not an issue in this case, as the small differences in the
depth were unnoticeable in the generated trajectories. The system provided smooth
operation, although a time delay occurred between the movement of the real weapon
and the following virtual object (the marker or the trajectory, depending on the mode
of operation). Detailed profiling revealed that this was caused by the camera, which
delivered the images with delays.

The next step of the evaluation was to verify whether the visual clues and feed-
back that were provided by the system resulted in performing bladework training more
accurately. At first, both defensive and offensive actions were considered for the eval-
uation; however, the initial experiments showed that the depth perception of the dis-
played trajectories was very limited (as they were flat, therefore providing little 3D
context). The stereo vision itself was not sufficient to provide relevant depth-change
perception in this case. The estimation of the depth was still important in order to
provide a proper mixed real-virtual view, but this was not used for the evaluation of
the exercises. For this reason, the trajectories were only compared in 2D and (sepa-
rately) with regard to the rotation. Therefore, the actions were limited to defensive
ones, since these did not include significant movements along the depth direction.
The defensive actions (parries) are defined by two imaginary lines that divide the
action field to upper and lower (above and below the hilt) as well as inner and outer
(inner on the front side of the fencer, and outer on his/her back side). Based on the
position of the blade in one the four areas that are defined by these lines, the parry
positions are denoted as follows: sixth (upper-outer area), fourth (upper-inner area),
eighth (lower-outer area), and seventh (lower-inner area). Parry actions are defined as
changes between parry positions; see Fig. 12 (for example, the sixth-to-fourth parry
action). For the experiments, four of the most commonly used parries were chosen:
the sixth-to-fourth, fourth-to-sixth, sixth-to-eighth, and sixth-to-seventh.

Eight people participated in the experiments — none had any prior experience in
fencing, as the goal was to verify whether the proposed system would allow novice
fencers to better perform their exercises. The procedure for the experiment was as
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follows. First, a person was introduced to the system with the simple exercise of
making a straight line action with a weapon by following the displayed model trajec-
tory. Once the person became comfortable with using the system, the actual exercises
started. For each parry action, a person was showed how this action should be per-
formed by a fencing coach. Then, the person was asked to perform the action a few
times without the proposed system to get comfortable with the exercise. At this
point, the coach was allowed to help the person. Next, the person performed repeti-
tions of the action with the proposed system set to tracking only — a starting point
was displayed, but the model trajectories and performance scores were hidden (even
thought the system tracked and scored the actions). Finally, the person performed
the exercise with the support of the system (which displayed the color-coded model
trajectory) as well as the evaluation scores for both the blade trajectory and rotation.
Each person performed a total of 30 repetitions of each exercise (15 with the support
of the system, and 15 without). This number of repetitions was selected due to the
fact that, in the initial experiments, more repetitions resulted in too much fatigue
(which could impact the results). A coach was present during the exercises — he was
not allowed to interfere at this point but was supposed to observe the differences in
the performances of the actions with and without the support of the system.

The results of the evaluation (regarding the trajectory and rotation scores) are
presented in Tables 2 and 3, respectively. With regard to the trajectory, a significant
improvement in the obtained scores can be observed in almost all of the cases. Only
in two cases were the scores with and without support similar; in two other cases, the
scores without the system were higher. The average improvements of the scores when
using the system was 15.00-17.37 for the first three exercises and 8.25 for the final one.
The sixth-to-seventh parry action is easier than the other ones, as it requires a simpler
motion; therefore, the participants performed this exercise better (even without the
support of the proposed system).

Table 2
Mean trajectory scores obtained by participants with (w/s) and without (wo/s) support of
proposed system; last row contains average improvements for each parry action

Person Sixth-to-fourth | Fourth-to-sixth | Sixth-to-eighth | Sixth-to-seventh
wo/s w/s wo/s w/s wo/s w/s wo/s w/s

1 10 37 10 55 16 29 32 43
2 9 30 12 28 7 19 7 14
3 13 36 10 25 16 29 11 21
4 55 56 65 45 19 42 24 32
5 15 32 11 25 28 29 25 18
6 7 34 21 56 17 56 39 60
7 21 35 15 31 21 28 35 43
8 31 40 13 29 14 26 17 25

average

improvement 17.37 17.13 15.00 8.25
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Table 3
Mean rotation scores obtained by participants with (w/s) and without (wo/s) support of
proposed system; last row contains average improvements for each parry action

Person Sixth-to-fourth | Fourth-to-sixth | Sixth-to-eighth | Sixth-to-seventh
wo/s w/s wo/s w/s wo/s w/s wo/s w/s

1 31 36 27 63 26 29 62 84
2 14 49 30 31 16 21 31 51
3 33 47 25 29 24 21 67 66
4 63 64 76 72 24 23 40 55
5 28 39 13 32 12 20 32 63
6 67 41 54 65 18 39 42 71
7 21 35 19 31 17 18 33 40
8 60 61 48 54 25 24 59 72

average

improvement 6.86 10.63 4.12 17.00

This was the reason for the lesser improvement. With regard to the rotation av-
erage, the improvements in scores per actions ranged from 4.12 to 17.00. Those scores
that were obtained with the support of the system were mostly better, although no
improvement or even worse scores were observed in several cases. Also, the improve-
ments in the rotation scores were smaller than in the case of the trajectory score.
This was most likely due to the fact that the participants were more focused on the
trajectories.

The weapon training was also evaluated by a coach. The most important obser-
vation was that, when using the system, all of the participants performed the actions
more correctly than typical novice fencers. Novice fencers tend to perform the parry
motion too widely and with significantly too much or too little rotation. The visual
cues for the rotation and movement range that were provided by the proposed system
largely prevented such errors in our experiments. However, it was also stated that
the motion of the base of the blade should be corrected with the system as well. As
discussed in Section 3.2, the motion of the base of the blade is one of the key factors in
weapon-action performance; however, this was not considered by the proposed system
due to hardware limitations (the insufficient field of view of the camera in the AR
glasses). Finally, it was suggested by the coach that, for the offensive actions, the
depth could be color-coded (similar to rotation in defensive actions). This may be
investigated in future work.

In regard to the general assessment of the proposed system, a few issues were
indicated by the participants of the experiments. First of all, the field of view in
which the virtual objects is displayed is limited and, therefore, does not allow users
to perform bladework actions in the full range of the bladework. This problem can be
addressed by merely employing different AR glasses with a larger display. It was also
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pointed out that, with the double-LED marker at the tip of a blade, it was not possible
to practice some of the weapon actions with a partner. This problem could also be
addressed by employing a better AR device that is capable of capturing the video
stream with a wider angle that would allow us to mount two LEDs on the weapon’s
guard and only a single LED at the tip of the blade. A potential issue was a lack
of compensating for head movement, which can introduce an apparent motion of the
blade. No head movement is typically present during basic stationary bladework
training, and no such problems occurred in the experiments. However, this issue
would need to be addressed if the system were to be used in more advanced training
that included footwork.

Two additional benefits of using the proposed system were observed in the ex-
periments. First, some of the participants were greatly motivated by the displayed
evaluation scores, which indicates that the system encourages the perfecting of weapon
actions. Second, the trajectory visualization on the laptop proved to be interesting
for the coach, who stated that recording the weapon actions with the fencers would
make it possible to evaluate and compare their techniques.

5. Conclusions

This goal of this work was to provide real-time visual feedback in fencing bladework
training. An innovative approach was presented by employing a mixed-reality view of
real weapon and generated trajectories. The proposed methods included the tracking
of the 3D positions and rotations of a blade, learning weapon-action models, evaluat-
ing bladework performance based on the learned models, and mapping coordinates in
the mixed reality. The proof-of-concept system was evaluated in several experiments,
which included the participation of a fencing coach and eight people with no prior
fencing experience. The proposed methods proved to be suitable for aiding bladework
training in the case of novice fencers. The system provides real-time visual feedback
without distracting the athlete with a separate screen, thereby allowing for efficient
training. The main limitations of the system were due to the employed AR device.
In future work, employing better AR glasses is expected to improve the proposed
system by extending the field of view (due to a larger display) and enhancing weapon
tracking (due to a wide-angle high-quality camera).
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