
Andrzej Zalewski
Marcin Szlenk
Szymon Kijas

AN EVOLUTION PROCESS
FOR SERVICE-ORIENTED SYSTEMS

Abstract Evolution of service-oriented systems is quite a new research area, which be-
comes more and more important as engineering challenges move from enabling
service-orientation onto the maintenance and evolution of already developed
service-oriented systems. However, the development of suitable evolution proces-
ses and methodologies is still an open research problem. The evolution process
presented in this paper has been designed to address the evolution of service-
oriented systems, which are technically built out of a set of service compositions.
The presented process comprises phases and tasks compliant with ISO 20000.
The underlying model of service-oriented system consisting of business processes
and corresponding service composition models has also been presented. A tra-
ceability model and tools supporting change impact analysis have also been
provisioned for. Preliminary industrial validation indicates that the evolution
process should be easy to adapt by the industry.

Keywords service-oriented architecture, service engineering process, service composition,
software evolution

2012/11/21; 18:40 str. 1/16

Computer Science • 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.71

71



1. Introduction

The founding principles of service-oriented architectures (SOA) as extensive reuse of
existing, loosely-coupled services and easy to modify composition of business proces-
ses made out of those services, are supposed to facilitate system evolution breaking
the border line between development and maintenance. However, existing SOA deve-
lopment methodologies (for a survey see section 3) are aimed at transforming legacy
systems into service-oriented ones and offer a rather limited support for the evolution
of SOA systems. They address the issue of the evolution of services identified at earlier
stages, leaving alone the evolution of service compositions, which seem to be the core
concept offered by service-oriented architectures.

There exist currently no evolution process crafted so as to address the evolution
of SOA systems comprised of a set of service-compositions. This is the gap this paper
is supposed to address.

The rest of the paper has been organised as follows: section 2 defines precisely
the notion of service-oriented systems and the evolution of such systems used in this
paper, section 3 presents related work, section 4 describes the model of service-oriented
systems underlying the evolution process as well as the traceability approach, section
5 presents the evolution process (workflow, artefacts, impact analysis techniques),
section 6 reports on industrial interviews validating our approach, section 7 discusses
the contribution against other research in the field, and section 8 summarises the
paper and presents research outlook.

2. Basic notions

The basic assumption underlying service-oriented architectures, and probably the one,
that made SOA so popular, is the concept of developing a new functionality (i.e. new
services) by the composition of loosely coupled (thus, easy to modify), independent
and even stateless services. This was supposed to boost system modifiability, which
is often the prevailing concern for business stakeholders nowadays. Hence, service
composition should become the main way, in which new functionality is developed.

In the above context, we understand service-oriented system as a set of business
processes composed out of services (independently of their internal or external origin).
The evolution of SOA system is about modifying set of business processes, e.g. adding
new processes, removing or changing existing ones.

3. Related work

The service-oriented world envisaged in section 2 is rather a world to come than
the world we actually live-in. Pure service-oriented systems, i.e. built exclusively out
of loosely-coupled, independent services, do not exist in reality. In practice, service-
oriented systems are currently built on top of already existing non-service-oriented
ones for internal integration [10]. Therefore, a lot of research effort was devoted to

2012/11/21; 18:40 str. 2/16

72 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



address the issue of migrating legacy systems to SOA. Suitable methods can be found
in e.g. [1], [2], [17], [8], [18].

The emergence of a market for third-party services and the deployment of more
systems crossing organisational boundaries, possibly making their services publicly
available, will change the above condition and make the evolution of service com-
positions a primary focus. Here, identification and development of services, so as
to wrap existing functionality and enable interaction between systems, was the key.
The evolution was understood as making changes to the services, i.e. their interfaces,
functionality, etc. (compare e.g. [1]).

The research record on the maintenance and evolution of service-oriented systems
is rather sparse. It concerns mainly selected evolution issues, like change traceabili-
ty [15], change propagation [5], [13], versioning [7], impact analysis [4], and model
driven-approaches to service composition, e.g., [12]. The research challenges in this
field have been investigated in papers [10], [9], [6]. We found no work on evolution
processes for service-oriented systems as the development of such processes and me-
thodologies was indicated as one of the challenges. Nevertheless, maintenance has
been included in a post-deployment phase in [3] as well as it has been provisioned
for in the methodology presented in [11]. Evolution of services has been accounted
for in the fractal process of SOMA methodology with the concept of successive itera-
tions. In [12], authors propose to use change management mechanisms to control the
evolution of service compositions. Therefore, the development of evolution processes
and methodologies tailored for service-oriented systems understood as a set of service
compositions is still an open research problem.

4. Model of service-oriented system

Our understanding of the concept of service-oriented system is reflected by a system
model, which underlies our evolution process and methodology. We assume that the
key artefacts that document service-oriented systems are business process models
expressed in BPMN. These can be categorised into two groups:

• business processes (BP) show the business processes of the organization in abs-
traction from how they are implemented in the IT systems as compositions of
services;
• service compositions (SC) show the implementation of business processes as

a composition of services with different scenarios of their invocations.

The terms business process model (BP model) and service composition model (SC
model) will be used later, respectively. Business processes play the role of requirements
specification, which are fulfilled by the appropriate service compositions.

Let us note that both kinds of models are BPMN diagrams that can show the
same process or its fragments at different semantic levels. This is a typical example of
a refinement relationship between models [14], where service composition model refines
the business process model. This relationship can also concern models belonging to

2012/11/21; 18:40 str. 3/16

An evolution process for service-oriented systems 73



the same group, i.e. two BP models or two SC models, where the refined model shows
modified version of the same process or more details of its part. The example structure
of this relationship is depicted in Fig. 1. Information about refinement dependencies
is treated here as an integral element of model documentation.

Figure 1. A refinement relationship between BPMN models.

The complete structure of SOA models are following a layered structure compri-
sing of the following consecutive layers:
• business motivation goals, needs, etc;
• business process models (expressed in BPMN);
• services composition (expressed in BPMN);
• models of services (expressed with models promoted by such approaches as SOMA

[1], SOMF [2], used to develop and evolve services alone);
• low level, detailed technical models (typically UML) and executable code.

Evolution is a business-driven process, in which a system is changed in response
to continually emerging or changing business needs. An evolution step is a transforma-
tion between two consecutive versions of SOA models. This transformation is achieved
by propagating changes through the layered model (i.e. transforming those models).
It means that business needs are reflected by the changes to the business processes,
these in turn enforce changes to services composition orchestration, and choreogra-
phy. Changes to services composition may require changes to services models and so
forth (changes to service definition and underlying software can be done using e.g.
service-oriented development methods as SOMA [1]; however a detailed analysis of
this issue is beyond the scope of this paper). The evolution is captured using the mo-
del presented in Fig. 2. The concept of architectural decisions [16] have been applied
as a vehicle to represent transformations of SOA system models. Evolution consists of

2012/11/21; 18:40 str. 4/16

74 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



“Evolution Step”, which consist of a set of “Evolution decisions” reflecting the related
business needs. Evolution decisions comprise two distinct sets of decisions represen-
ting changes to the models: “business process decisions” and “service composition
decisions”. The former ones represent changes made to business processes in reac-
tion to business needs (business motivation), while the latter ones changes to service
composition made to accommodate service composition to changes made to business
processes. There are naturally many ways in which emerging or changed business ne-
eds can influence business processes and the same applies to the influence of changes
of business processes on services composition. This is a kind of creative engineering
task, which cannot be neither fully formalised nor automated.

Figure 2. Structure of SOA evolution model.

2012/11/21; 18:40 str. 5/16

An evolution process for service-oriented systems 75



We propose to facilitate this process by:

• the vocabulary of business process transformations; the latter can be used to
perform and represent any change to business process models;
• the identification of possible changes to service processes composition resulting

from respective changes to business process models;
• the use of architectural decisions to support a coarse-grained traceability from

business needs down to service orchestration changes, while change details can
be preserved as a superposition of a number of transformations predefined in
transformation vocabulary (they can even be identified with the approach and
tools presented in [5]);
• documenting, when needed, the logic underlying a certain change as a rationale

of architectural decisions.

5. The evolution process for service-oriented systems

The evolution process presented here comprises of:

• The modification process (section 5.1) the order of phases and tasks, in which
changes are assessed, approved, made and reviewed. As many changes are usually
processed at the same time, many instances of the development process can be
running at the same time;
• The artefacts (section 5.3), which are the products of phases and tasks;
• The methods for change impact analysis (section 5.4);
• The mechanisms supporting the detection of overlapping changes being processed

at the same time (section 5.5).

Typically, the definition of a development process comprises the first two of the abo-
ve components. However, as evolution is a permanent condition for service-oriented
systems, the artefacts describing system design can be changed many times during
system lifecycle. Changes introduced simultaneously may overlap, i.e. the same arte-
fact may be modified by more than one instance of the modification process at the
same time. These conditions have to be addressed appropriately.

5.1. The modification process

System evolution consists of a series of steps. Each of these steps is accomplished with
the modification process, which new instance is initiated for every submitted Request
for Change document (RFC). These general properties and phases of the modification
process have been presented in Fig. 3.

The modification process consists of four phases compliant with the requirements
for change management process defined in ISO 20000:2005 standard:

1. Change assessment submitted change is assess in terms of its impact (on quality
attributes, SLA, other processes, etc.), urgency, cost, benefits and risks.

2012/11/21; 18:40 str. 6/16

76 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



Figure 3. Overall Structure of the Evolution Process.

2. Change approval on the basis of information gathered during the Change asses-
sment phase, considering business priorities and other business factor decision
makers decide whether to proceed with change. The phase includes also schedu-
ling the approved changes and resolution of change overlaps.

3. Change development and deployment this is a configurable part of the Modifi-
cation process; different processes can be applied for Change development agile:
Feature Driven Development, Scrum, XP or non-agile: waterfall, RUP. The cho-
ice will depend on the established development practices and experience of the
development team.

4. Change review this is also an optional phase, which presence is required by ISO
20000, however, it should be defined if the organisation undertakes the change
review activities. The detailed workflow of the Modification process has been pre-
sented in Fig. 4. It shows tasks and associated artefacts. The most complicated
seems to be the “Change assessment” phase. It starts from the “Preliminary as-
sessment”, in which changes described in Request for Change (RFC) are assessed
on the basis of expert knowledge of business and system analysts in terms of im-
pact on functionality, quality (including Service Level Agreements), effort needed
to complete the changes and risks connected with the change process. The re-
sults of such an assessment are examined (“Preliminary Assessment Approval”),
whether they contain an amount of information sufficient for the approval at
the stage of “Change Approval and Scheduling”. If more detailed information on
change impact is needed “Change Prototyping” is performed. The change proto-
type comprises models of changed business processes and service compositions,
developed to the extent appropriate for the “Detailed Assessment”. It does not
have to be complete with regard to the designed change, fully verified nor tested.
The rest of the process structure seems to be self-explanatory.

2012/11/21; 18:40 str. 7/16

An evolution process for service-oriented systems 77



Figure 4. Detailed workflow of the evolution process for service-oriented systems.

Table 1 shows, which roles are engaged in tasks comprising the modification
process. They are compliant with the roles defined in the Rational Unified Process.

Table 1
Mapping of tasks and roles.

Tas k Role(s) engaged

Preliminary
Assessment

Business Architect, System Analyst

Preliminary
Assessment
Approval

Business Architect, System Analyst

Change Prototyping Business Architect, System Analyst, Business Designer

Detailed Assessment Business Architect, System Analyst

Change Approval
& Scheduling

Change Control Manager, Stakeholders (business)

Development Development team, comprising for example: Business Architect, Sys-
tem Analyst, Business Designer, Software Architect, Designer, Im-
plementer, Integrator, Test Manager, Test Analyst, Tester

Deployment Deployment Manager, Integrator

Change Review Business Architect, System Analyst

2012/11/21; 18:40 str. 8/16

78 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



5.2. Configuring the modification process

The “Development” task of “Change Development and Deployment” phase as well
as “Change review” are designed as extension points, where most suitable methods
can be applied. Hence, the modification process can be customized so as to reflect
experience, knowledge and skills of the development team.

Table 2 summarises the available configuration options. Both agile and non-
agile methods can be used to develop changes, and its choice should depend on the
development practices established within the organisation, experience and knowledge
of the development team.

Table 2
Configuration of service oriented-system evolution process.

Change
Assessment

Change
Approval

Change Development
& Deployment

Change Review

Always exists Always exists Always exists (Scrum, RUP,
Waterfall, XP, FDD, etc.)

Optionally —
Review
procedures

Table 3 indicates, how basic concepts of the development methods are expressed
in terms of the system model underlying the evolution process. Here, the scope of the
development work (planned, completed, etc.) is expressed as a set of business process
and/or service-compositions, which are subject to changes.

Table 3
Mapping the agile and non-agile concepts onto “Change Development & Deployment” phase.

List of business
processes subject to
changes

List of business
processes selected to
change in a iteration

List of business
processes modified
during the iteration
and integrated with
other changes
implemented before

Scrum Product Backlog Sprint Backlog Working increment of
the software

Extreme
Programming

User Stories Release Plan Small Release

Feature
Driven
Development

Features List and
Development Plan

Features selected to
develop in a iteration

Completed
client-valued function

RUP Set of Use Cases Set of Use Cases Set of Use Cases

2012/11/21; 18:40 str. 9/16

An evolution process for service-oriented systems 79



5.3. The artefacts

The artefacts of the evolution process have been presented and described in Table 4.

Table 4
Artefact list.

Artefact Description

RFC The change is described in business or technical terms. The document
contains also explanations of the change and indications concerning its
importance/priority.

Assessment report
[Preliminary] or [Full]

The document includes:

• change of scope:

– list of business process as subject to change,
– list of service compositions subject to change,

• impact analysis description of change impact on:

– quality (including SLAs), e.g. reliability, performance,
business continuity, etc.,;

– list of business processes affected by the changes (e.g.
requiring revision);

– overlapping changes;

• cost estimates,
• identified risks,
• attachments (other documents used for or created during the

assessment process), in case of [Full] version of the document
change prototypes are included here.

Change prototype Set of business process and service composition models containing:

• modified versions of existing business processes and service
compositions;
• models of new processes introduced
• list of removed business processes and service compositions.

The above models are drafts of the assessed changes. They have not been
fully developed, verified, tested.

Change acceptance
report

The document contains:

• notes explaining the need and rationale for the approved change,
• effort / cost estimated,
• allocation of the cost within budget (the source of change

financing);
• time schedule for change development and deployment;
• attachments including: RFC, Assessment reports and Change

prototype.

Deployment plan Deployment plan contains of installation/deployment instruction of new
release.

Release notes Report on the deployment containing list of bugs, which have been
corrected or not in the developed version.

Change review report Defined individually by the organisation.

2012/11/21; 18:40 str. 10/16

80 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



5.4. Support for change impact analysis

Business process or service compositions (both are BPMN models) can be added or
modified and their models can undergo changes or be removed to carry out the change
described in RFC. The two most general states in which a BPMN model can be:

• Up to Date (UTD) the model is up-to-date, i.e. it reflects at present all the
existing requirements that are related to the process and the process aspects
shown in this model and it is consistent with all the models it refines.
• To Be Updated (TBU) the model should be reviewed so as to decide whether

any changes or even its removal is required to respond to the new requirements
or changes in the other models the given one refines.

In the above view, the state of the model M will change to TBU state whenever:

• the requirements that are related to the process or the process aspects shown in
M changes;
• any changes are made to the models that are refined by M;
• the set of models that are refined by M changes (new refinement dependencies

for M are added or some of the existing ones are removed, e.g. due to the removal
of the model being refined).

Let us note that changes to one of the models enforce all of its refined models to
be examined, but not necessarily to be changed. The above models state transitions
are depicted in Fig. 5.

Figure 5. State transitions for a model.

Requests for Change represent new or changed requirements. In the Change as-
sessment phase RFC is associated with existing BPMN models (i.e. business processes
or service compositions, that are supposed to be changed) or new models added so as
to implement the change. Therefore, the development of a new model will be in some
sense initiated by submitted RFC or RFCs. The example structure of such relation-
ships is depicted in Fig. 6. Information about links between submitted RFCs and the
existing BPMN models, together with the state transitions model for BPMN models
(presented before) give a simple tool that can be used both for the change assessment
and change implementation. The examples of its usage are shortly outlined below.

2012/11/21; 18:40 str. 11/16

An evolution process for service-oriented systems 81



Figure 6. Relationships between BPMN models and Requests for change (RFC).

A usage scenario during change assessment

Submitted RFCs are first considered by business architects and associated with
the existing business process models which makes their states change to TBU state.
Business architects also decide whether and which additional business process models
should be constructed in response to RFCs.

Submitted RFCs may not only be of a business nature but also be just technical,
relating to services and their compositions. This is why they should be then considered
by software architects in an analogical way, but this time in the context of services
composition models. As a result of these activities the information about new required
models and models that require checking and possible changes is obtained.

A usage scenario during change implementation

First, business architects construct new business process models that are required
in response to submitted RFCs, adding refinement relationships if needed. Next, they
check and potentially modify business process models that are in TBU state, starting
with the models on top of the refinement hierarchy. Because a model modification
changes the states of refined models to TBU state, this process is usually iterative
and ends when all business process models reach UTD state. Modifications of a model
also include its removal. Analogical activities are performed in such a case by the
architects.

5.5. Support of change conflict detection and resolution

As many changes can be processed at the same time, some of them can turn out
to depend on each other. Two changes depend on each other if there are business
processes and/or service compositions modified by both of them. Identification and
resolution of overlaps takes place in the “Change approval and scheduling” phase.

2012/11/21; 18:40 str. 12/16

82 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



There are two general approaches to address the issue of overlapping changes:

• to schedule overlapping changes so that one of them is performed when the other
one is completed,
• to process the dependent changes together as if they were a single change.

Let us consider an example illustrating how the “refines” relations between the
models can be employed to detect overlapping changes. Dean’s office system is desi-
gned to manage students and teachers data (e.g.: personal data repository, providing
personal data to other systems, exchanging data with other departments). The re-
lations between business process and service composition models have been shown
in Fig. 7. The change described by RFC1 concerns “Dean’s office BP model”, while
RFC2 concerns “Students data processing BP model”. It is obvious that the trees
of artefacts refining “Dean’s office BP model” and “Students data processing BP
model” contain common nodes, i.e. there are models that have to be revised in the
course of implementing both changes. The changes described in RFC1 and RFC2
overlap (require modifications to the same artefacts) and such a problem has to be
resolved.

Figure 7. An example illustrating the analysing of change overlaps.

2012/11/21; 18:40 str. 13/16

An evolution process for service-oriented systems 83



6. Process validation

The short industrial interviews have been carried out so as to validate the proposed
evolution process. After a short presentation of the process, the interviewed were
asked the following questions:

• Do you perceive the presented service-oriented system evolution methodology
easy to include within the procedures of your organisation?
• Do you find traceability solution sufficient for your needs?

We interviewed 11 companies. Eight companies found the process very easy to
include into their procedures, two found it rather easy, and one found it rather diffi-
cult. Seven companies found the traceability model fully sufficient, 3 rather sufficient
and only one insufficient. During face to face discussions the interviewed emphasised
that compliance with ISO 20000 is an important factor enabling real life industrial
application of the evolution process.

7. Discussion

Our research comes back to the very roots of service-oriented architecture and focuses
on service compositions. As the number of available third-party services grows, they
should become the main means of developing new or changed functionality. Such
service-oriented systems are supposed to be highly modifiable, which will facilitate
frequent business-driven changes. Hence, the evolution of service compositions will
dominate the life-cycle of such systems.

The evolution process presented in section 5 was designed so as to make it easy to
introduce it in the conditions of corporate IT and their management procedures. On
the contrary to many service-oriented methodologies (like [1], [2]), we are not trying to
impose an entirely new approach. Instead, we provide an evolution process compliant
with the popular ISO 20000:2005 standard. Because of that the target organisation
does not have to revise its system maintenance procedures as there must be a re-
ally important reason to change established, proven development and maintenance
practices.

Flexibility of the process, which allows an organisation to use any of the most
popular development process for developing service compositions is another factor
making industrial adoption easier, as an organisation can use its own development
team without enforcing any unknown methodology.

The proposed traceablity model provides for a coarse-grained tracking of model
dependencies and changes. Such a simple model should be quite easy to implement
with one of the existing version management system or its extension. If more detailed
information about changes made to the models is needed an approach and tools of
[15] can be used.

2012/11/21; 18:40 str. 14/16

84 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas



8. Conclusion

The evolution of service-oriented systems is becoming more and more important as
service-oriented systems mature and the number of third-party services grows. This ri-
ses a number of research challenges, among them is the development of methodologies
and processes.

The process proposed in this paper provides a versatile, easily adaptable scheme,
using which service-oriented system comprised of a set of service compositions can
evolve. The short industrial survey indicates that practitioners have generally found
it compliant with the practices that they have established for system change mana-
gement. Therefore, they found it quite easy to introduce in the specific conditions of
their organisations.

Further research will include:

• Extensive industrial case studies,
• Developing software tool support to accompany evolution methodology,
• Methodology for making and documenting changes made to the system in the

course of the evolution process.

Acknowledgements

The present research has been supported by a grant from the Ministry of Science and
Higher Education of the Republic of Poland under grant no. 5321/B/T02/2010/39.

References

[1] Arsanjani A., Ghosh S., Allam A., Abdollah T., Ganapathy S., Holley K.: Soma:
A method for developing service-oriented solutions. IBM Systems Journal, 47(3),
2008.

[2] Bell M.: Service-Oriented Modeling: Service Analysis and Design and Architec-
ture. Wiley Publishing, 2008.

[3] High R., Kinder S., Graham S.: IBM’s SOA Foundation: An Architectural Intro-
duction and Overview. November, 2005.

[4] Hirzalla M., Zisman A., Cleland-Huang J.: Using Traceability to Support SOA
Impact Analysis. IEEE World Congress on Services (SERVICES), Washington,
DC, USA, July 2011.

[5] Hoa K., Ghose A.: Supporting change propagation in the maintenance and evolu-
tion of service-oriented architectures. Software Engineering Conference (APSEC),
30(3), 2010.

[6] Kontogiannis K., Lewis, G.A. Smith D.: The Landscape of Service-Oriented Sys-
tems: A Research Perspective for Maintenance and Reengineering. SEI, 2007.

[7] Laskey K.: Considerations for SOA versioning. Enterprise Distributed Object
Computing Conference Workshops, 16, 2009.

2012/11/21; 18:40 str. 15/16

An evolution process for service-oriented systems 85



[8] Lewis G., Morris E., Smith D., Simanta S.: SMART: Analyzing the Reuse Po-
tential of Legacy Components in a Service-Oriented Architecture Environment.
Software Engineering Institute, Carnegie Mellon University, 2008.

[9] Lewis G., Smith D.: Service-Oriented Architecture and its Implications for So-
ftware Maintenance and Evolution. FoSM 2008, IEEE, s, October 2008.

[10] Lewis G., Smith D., Kontogiannis K.: A Research Agenda for Service-Oriented
Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems,
TECHNICAL NOTE. March 2010.

[11] Mittal K.: Build Your SOA Part 1: Maturity and Methodology. IBM, May 2005.
[12] Orriéns B., Yang J., Papazoglou M.: Model driven service composition. ICSOC

2003, Springer-Verlag, 2003.
[13] Ravichandar R., Narendra N., Ponnalagu K., Gangopadhyay D.: Morpheus: Se-

mantics-based incremental change propagation in SOA-based solutions. IEEE
International Conference on Services Computing, 7–11, July 2008.

[14] Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference
Manual. 2004.

[15] Sindhgatta R., Sengupta B.: An extensible framework for tracing model evolution
in SOA solution design. In OOPSLA Companion(2009), pp. 647–658.

[16] Tyree J., Akerman A.: Architecture decisions: Demystifying architecture. 22(2):
19–27, 2005.

[17] Winter A., Ziemann J.: Model-Based Migration to Service-Oriented Architectu-
res. Proc. of the International Workshop on SOA Maintenance Evolution (SOAM
2007), 11th European Conference on Software Maintenance and Reengineering
(CSMR 2007), Amsterdam, March 20–23, 2007.

[18] Ziemann J., Leyking K., Kahl T., Werth D.: SOA Development Based on En-
terprise Models and Existing IT Systems. Exploiting the Knowledge Economy:
Issues, Applications and Case Studies, Edited by Paul Cunningham, IOS Press,
2006.

Affiliations

Andrzej Zalewski
University of Technology, Institute of Automatic Control and Computational Engineering,
Warsaw, Poland, a.zalewski@elka.pw.edu.pl

Marcin Szlenk
University of Technology, Institute of Automatic Control and Computational Engineering,
Warsaw, Poland, m.szlenk@elka.pw.edu.pl

Szymon Kijas
University of Technology, Institute of Automatic Control and Computational Engineering,
Warsaw, Poland, s.kijas@elka.pw.edu.pl

Received: 20.03.2012
Revised: 12.07.2012
Accepted: 3.09.2012

2012/11/21; 18:40 str. 16/16

86 Andrzej Zalewski, Marcin Szlenk, Szymon Kijas


