
Computer Science • 23(3) 2022 https://doi.org/10.7494/csci.2022.23.3.4487

Shalaka Prasad Deore

A DHCR SMARTNET:
A SMART DEVANAGARI HANDWRITTEN
CHARACTER RECOGNITION
USING LEVEL-WISED CNN ARCHITECTURE

Abstract Handwritten script recognition is a vital application of the machine-learning do-

main. Applications like automatic license plate detection, pin-code detection,

and historical document management increases attention toward handwritten

script recognition. English is the most widely spoken language in India; hence,

there has been a lot of research into identifying a script using a machine. De-

vanagari is a popular script that is used by a large number of people on the

Indian subcontinent. In this paper, a level-wised efficient transfer-learning ap-

proach is presented on the VGG16 model of a convolutional neural network

(CNN) for identifying isolated Devanagari handwritten characters. In this

work, a new dataset of Devanagari characters is presented and made acces-

sible to the public. This newly created dataset is comprised of 5800 sam-

ples for 12 vowels, 36 consonants, and 10 digits. Initially, a simple CNN is

implemented and trained on this new small dataset. During the next stage,

a transfer-learning approach is implemented on the VGG16 model, and during

the last stage, the efficient fine-tuned VGG16 model is implemented. The ob-

tained accuracy of the fine-tuned model’s training and testing came to 98.16%

and 96.47%, respectively.

Keywords convolutional neural network, VGG16, fine-tuned, handwritten script,

Devanagari characters

Citation Computer Science 23(3) 2022: 301–320

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

301

https://doi.org/10.7494/csci.2022.23.3.4487
https://orcid.org/0000-0002-6767-6289
https://creativecommons.org/licenses/by/4.0/


302 Shalaka Prasad Deore

1. Introduction

India is a land of diversity, with several languages and cultures in one place. In India,

Devanagari is the most commonly used script; it consists of 120 languages, which

makes it the most adapted writing system [21]. Devanagari serves as the base lan-

guage to many languages, such as Marathi, Hindi, Sanskrit, Gujarati, and Nepali.

Devanagari has evolved over a period of 2000 years and is highly continuous in nature.

Speaking about technology in the computational genre the introduction of GPUs has

made substantial improvement. There has been considerable growth in data sources

and improvement in computational power, creating a scope for new methodologies

that recognize handwriting in different languages. This gives us an opportunity to

develop language-processing models for Devanagari (being a compound script-based

language). Word recognition is one of the applications that deal with recognizing

handwritten or printed words in text. The text is scanned and then converted to

a machine-editable format. With the printed word, handwritten word recognition

is also gaining more interest nowadays. Many research works that are related to

handwritten word recognition have been noted in various scripts like Japanese [16],

Chinese [36], etc. The field is comprised of both artificial intelligence and image pro-

cessing. The recognition process is comprised of two categories: online recognition,

and offline recognition [22]. Online recognition deals with recognizing real-time acqui-

sition; it typically uses an optical pen for drawing on a screen, and a recognized word

is displayed on the screen. This approach is mainly used in real-time environments for

handwriting recognition. The second approach is offline recognition; this deals with

recognizing text that is written on a sheet. The sheet is scanned through a digital

device like a camera or scanner, and the image is stored in the system and, hence,

recognized. The main advantage of the offline method is that it can be done at any

time, as the images are scanned and stored.

For any text recognition, an input image goes through different phases to produce

the output [11]; Figure 1 depicts these different phases. The first phase is data

generation/collection; this phase involves the collection of data from various sources.

This data can be collected in two ways: online, or offline. In this work, a Devanagari

handwritten character data set has been newly created and is publicly available for

research. The second stage is data pre-processing, where noise is eliminated from the

data. All of the necessary operations are performed on the input data (binarization,

sampling, noise reduction, thinning, smoothing, etc.) in order to produce clean data.

The segmentation phase deals with dividing a text into parts or zones in order

to recognize each part individually. The segmentation task is very difficult for hand-

written characters that are touching each other. In Devanagari, the script consists

of various character sets that include vowels and consonants as well as compound

and composite characters. One horizontal line is present in each character (called

shirorekha); this produces a problem in the segmentation phase and decreases the

identification accuracy (as explained by Sonkusare et al. [32]). These authors also

presented various segmentation techniques along with their efficiency. Based on the



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 303

seed pixel that is chosen among the candidate pixels, the segmentation facilitate fea-

ture technique was presented by Kohli et al. [13] in order to discover a connective way

to separate any touched components. In this proposed method, three neighboring

pixels are considered, and the connection link between the touching characters are

identified for separating them. Containing two touching consonant words achieved the

highest accuracy of 96.2%. The importance of a zonal-based segmentation method-

ology that can be used for Indic language recognition was explained in [3, 25]. Here,

the image is split into several zones; then, each zone is recognized individually. The

authors found that the zonal methodology was more efficient than the traditional one.

Feature extraction is a very important stage and plays an important role in classifica-

tion. Extracting good features always helps to gain better accuracy. Features that are

extracted manually result in a very time-consuming task. In our work, a deep-learning

approach is explored to extract features automatically, which is a faster method that

works directly on raw pixel data. The last phase consists of classification, recognizing

an input image, and mapping it to an output class.

Figure 1. Text recognition phases

More than 300 million individuals use the Devanagari script for maintaining

their records on the Indian subcontinent [9]. Being an important script in India, the

work for digitizing Devanagari-based languages is comparatively minimal. There is

considerably less available research on Indian languages when compared to the number

of people that interact in them. Recognizing a handwritten script comes under the

applications of character recognition, which deals with recognizing various kinds of

handwritten/printed characters (such as digits, cursive scripts, symbols, and touch

characters).

In [24], the author presented a Chinese text-recognition model that consisted of

three layers. A new layer was introduced as a feature extractor that was combined

with the residual network to gain the advantages of more-accurate identification.

In [12], the authors developed a dataset of Malayalam handwritten words and trained

their model using a deep convolutional neural network (CNN) architecture; here, the

hybrid approach was implemented where CNN was used for extracting features, and

a support vector machine (SVM) was implemented for their identification. In [18],

research was performed on the recognition of ancient Devanagari documents; sta-

tistical features like open endpoints, centroid, horizontal, and vertical peak levels,

and intersection points were extracted from the images. A random forest multi-layer



304 Shalaka Prasad Deore

perceptron (MLP) neural network, SVM with an RBF kernel, and CNN classifiers

were explored in this work, and all of the results were compared. A feature of data

plays an important role in recognition. Histogram of oriented gradient-based local fea-

tures were presented in [4,5]; this HOG approach was demonstrated to be an efficient

method for extracting the curvature features of Devanagari characters. Dutta et al. [6]

presented a lexicon-free Bangla and Devanagari word-recognition system. The per-

formance of the system was evaluated using a hybrid model that was based on CNN-

RNN. The results were evaluated on both lexicon-free and lexicon-based datasets. The

model included various layers: a spatial transformer, residual convolutional blocks,

and bi-directional LSTM. In [34], the author proposed the word-level recognition that

was present in scenes; basically, the characters of a word in a scene touch each other,

making their recognition difficult. So, the author used a segmentation-free approach;

in this, an image is converted into a sequential signal, then it is passed to a recurrent

neural network (RNN) for recognition. The RNN technique is then combined with

the LSTM technique to gain a good result; however, the system provides very poor

results for curvy or distorted images. For classification, identifying the features of an

image is crucial. Selecting the appropriate features would improve the results; how-

ever, this is lengthy and complex method. In a deep-learning approach, this works

directly on raw images and automatically extracts the required information from an

image; this helps us improve the accuracy while devoting less time [14].

Deep neural networks have received significant attention because of their appli-

cability for developing various applications in different areas (such as recommen-

dation systems, text identification, stock prediction, and audio recognition) [15].

Alom et al. [2] evaluated the application of a different CNN for recognizing hand-

written Bangla characters. A layer-wise deep-CNN approach was proposed in [10]

in order to improve the recognition of Devanagari characters over a standard CNN.

Based on the permutations of the convolutional-pooling layers and neurons, the au-

thor presented six architectures of DCNN here; this resulted in an accuracy of 96.45%.

In paper [8], author represented the use of various convolutional blocks for design-

ing a residual network with feedback. Using many convolutional blocks, it is very

easy to design deep convolutional models. With this concept, the author achieved

vast improvements in segmentation, detection, and classification. Guha et al. [7] com-

pared various CNN models with respect to the parameters that were required for

the training, memory space, and execution time. The authors primarily concentrated

on developing parts of the model in order to create a model that was effective in

terms of space and time. The proposed model was evaluated on publicly available

datasets in this paper, and the findings were positive. The model was easy in de-

sign. Since it had fewer layers, it took less time to train. A handwritten page-level

dataset (PHDIndic 11) of 11 popular Indic scripts was created by the authors of [20].

With script identification, the authors stated that the generated dataset could also

be useful for a number of applications, including understanding scripts, recognizing

a page writer, word recognition, etc. Santosh and Wendling [29] presented a novel

algorithm called dynamic time warping (DTW). Here, the features were extracted



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 305

for each projection using Radon transformation, and the feature pairs were matched

using the DTW algorithm. The DTW algorithm avoids a loss of data because there

is no need to convert the feature vector into one vector. The proposed method can

handle any type of image that includes defects, but its computational cost is high.

Based on a literature study, deep learning stands out as the most effective tech-

nique for obtaining encouraging results on image classification. Even scripts such as

Bangla [23], Roman (MNIST) [19], and Arabic [37] have been effectively recognized

using deep-learning approaches. In a deep-learning approach, hyper-parameter selec-

tion is the most difficult problem to solve and necessitates much research. This raises

a number of questions concerning CNN’s architecture for the problem of handwriting

recognition: How could CNN improve its ability to extract numerous features from

handwritten characters? What impact do different hyper-parameters have on CNN’s

success? What effect do design parameters have in CNN efficiency optimization?

Hence, this research attempts to answer these questions based of the research gap

that was identified in the literature study. The contributions of this research are as

follows:

1. corpus creation: constructed isolated Devanagari handwritten character dataset;

2. level-wised model: implemented level-wised Devanagari handwritten character-

recognition (DHCR) model (first stage – simple CNN model is implemented;

second stage – model is implemented using pre-trained VGG16 network; finally

fine-tuning done on several layers (top) of pre-trained network);

3. several deep-learning models explored on our newly created dataset, and our

fine-tuned model also executed on standard datasets like UCI, CMATERdb, etc.

Furthermore, Section 2 describes the features of the Devanagari script. The cre-

ation of the dataset and the proposed work are discussed in Sections 3 and 4, respect-

ively. The experimental protocol and results are explained in Section 5. The conclu-

sion of this paper is given in Section 6.

2. Features of Devanagari script

The Devanagari script was initially developed to write the Sanskrit language; later on,

it was extended to develop other Indian languages (Hindi, Marathi, Gujarati, etc.).

Devanagari represents a phonetic script; this means that each character is pronounced

in exactly the way that it is written. The left-to-right direction is followed for writing

Devanagari. Each word is separated by a line that exists at the top; this is known

as ”Shirorekha.” Devanagari is an alphasyllabary writing system; such systems are

based on consonants in which the vowels are requisite yet secondary. It is a syllabic

script; this means that Devanagari characters are written as combinations of vowels

and consonants where a vowel can be added to a consonant in the form of character

or in the form of a modifier.

The Devanagari script is comprised of 36 consonants, 12 vowels (with 12 modi-

fiers), and 10 digits (as depicted in Figure 2). In Figure 2, a) describes a handwritten



306 Shalaka Prasad Deore

sample of the vowels and consonants, and b) depicts the digits. The vowels can be

written as individual characters or can be combined with consonants in the form of

modifiers. For instance, the vowel ”aA” is in its independent form; with the conso-

nant ”p,” it can be written in a combined form (”pA”) where the vertical line at the

end is a modifier. Being a phonetic script, Devanagari allows for the continuation of

a consonant to another as a half character. This joined character is called a composite

character and plays significant factors in recognition. Due to this composite, character

recognition becomes more complex. There are several other factors that contribute to

a recognition system’s complexity and difficulty; these reasons are as follows: i) dif-

ferent handwriting styles (as shown in Figure 3); ii) similarly shaped characters (as

shown in Figure 4); iii) noise present while collecting data; and iv) variations that are

present in a person’s handwriting under various conditions.

Figure 2. Handwritten sample: a) vowel & consonant characters; b) digits

Figure 3. Different writing styles of same character

Figure 4. Similarly shaped characters

3. Dataset corpus creation

In the field of pattern identification, corpus creation is a rather vital task. Better-

quality data helps us gain good accuracy and improves the recognition rate of a sys-



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 307

tem. For the corpus creation, fixed-sized papers were distributed to people of different

age groups to write isolated characters using a ball-point pen; then, all of these hand-

written characters were scanned separately. Constraints like the age of the person, the

quality of the paper, the writing style, and the type of pen was not kept while taking

the samples. Samples were collected from 50 people for 58 different classes (these

consisted of 12 vowels, 36 consonants, and 10 numerals). The size of each image was

1600 × 1600 pixels, and they were pre-processed and saved using the .jpg format.

Each scanned image was named with a class name as well as an order number; for

example, ”c” was the 18th character, so it was labeled ”C18 1.jpg, C18 2.jpg.”

4. Proposed methodology

4.1. Pre-processing and data augmentation

This stage came after the data collection. The data that was created had variations

and noise; hence, the images required pre-processing. For our created dataset, the

characters were written on paper using a blue pen, and then all of the images were

scanned separately. All of the images were converted into grayscale images. The

XnConvert batch processing tool (which consists of many pre-processing operations)

was applied to the dataset. The various filters that were used and their output is

shown in Figure 5:

1. minimum filter increases thickness of each character;

2. resizing is done to enlarge or reduce size of image into some specific size (like 64

× 64);

3. zealous crop is content-aware crop that slices image through all boundaries until

pixel at which content is found;

4. curve pre-processing operation changes color channels of image to enhance specific

features.

Figure 5. Pre-processing output

To avoid overfitting the model, data augmentation was performed. It was also

used to enlarge the existing small dataset by performing various data-augmentation

operations. This paper uses the ImageDataGenerator class of Keras for real-time

data augmentation. It accepts an original batch of input images, applies random

transformation, and generates a new batch of images for training. The model will get

a new set of images for training each time, so it avoids the overfitting problem on our

dataset.



308 Shalaka Prasad Deore

4.2. Architecture of VGG16

The convolution neural network (CNN/ConvNet) is a multi-layer fully connected

network that automatically extracts features from input images [23]. It extracts

a sufficient number of features from the images, so it reduces the job of manual feature

extraction. Basically, it introduces a large number of datasets for training to provide

better accuracy. However, ConvNet also has the capability of learning features from

a small dataset by using a pre-trained model like ImageNet. The ImageNet dataset

consists of 14 million images that belong to 1000 different classes. Based the depth

of the layers, the VGG architecture is classified in the VGG11, VGG16, and VGG19

architectures. The VGG16 model attained a top-5 test accuracy on the ImageNet

dataset [31]. To balance the computational cost after increasing the depth of the

network, VGG uses reduced convolutional filters of a size of 3 × 3 and fewer field

channels [26]. The architecture of the VGG19 network is the same as VGG16 except

for its number of layers; it has a total of 19 weight layers. The VGG16 architecture

is illustrated in Figure 6 and consists of the following three main layers:

A) convolution layer: this is very important layer that is used for feature extraction

from input images – it uses different sizes of filters for this purpose;

B) pooling layer: this is mainly used to decrease dimensions of data (it is also called

down sampling) – pooling carried out by using filter of size of 2 × 2; most

regularly used pooling methods are maximum (max) and average (avg) pooling;

C) fully connected layer: the purpose of this layer is to identify images – flattened

vector is sent to fully connected layer for identification; it uses principle of multi-

layer perceptron.

Figure 6. Architecture of VGG16 pre-trained network

The learning rate (LR) is very important for training the model; it determines the

weight modification in each network layer. A high LR diverts the network to achieve

fewer errors, where a low LR requires more time to reduce errors; hence, adaptive

gradient optimizers are the best choice for training a network faster. The proposed

DHCR model is trained by using one of the faster adaptive learning optimizers –

RMSprop (root mean square propagation). This automatically adjusts the learning

rate of each parameter separately.



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 309

4.3. Architectures of proposed level-wised DHCR model

This paper has proposed an efficient level-wised architecture for identifying Devana-

gari isolated handwritten characters (as depicted in Figure 7). The main goal behind

the implementation of a level-wised model is to create a powerful DHCR model with

a small number of character images. Hence, a small convolutional network is de-

signed from scratch on the first level as a baseline for evaluating its performance on

small character samples. When there are fewer training samples, a good choice is to

use pre-trained models that are trained on large-scale data with only minor changes.

VGG16 is one of the most popular CNN architectures and is used frequently for

image classification; therefore, the DHCR model is implemented using a VGG16 pre-

trained network on the next level. The fully connected layer of the VGG16 pre-trained

network is modified according to our requirement. To improve upon our prior per-

formance, the fine-tuning is done on the top layers of the VGG16 pre-trained DHCR

model on the last level. The features of the proposed level-wised architecture are as

follows:

1. level-by-level enhancing performance of DHCR model;

2. promising results on small dataset;

3. to avoid overfitting of model, use real-time data augmentation and dropout layer;

4. fine-tuned model is computationally efficient.

Figure 7. Proposed level-wised DHCR model

4.3.1. First level: DHCR CNN architecture (baseline)

On the first level, the CNN model from scratch is implemented to recognize isolated

Devanagari handwritten characters. Here, our main aim is to develop effective DHCR

using CNN on a very small and newly created dataset. The architecture of the

DHCR model is depicted in Figure 8. Our first-level model consists of a stack of five

Convolution2D-BatchNormalization-ReLU-MaxPooling2D layers. The input images

are resized to 64 × 64 and divided into mini-batches. For fast training on a whole

dataset, it is better to train the model on mini-batches; this also improves the feature

flow during the training. Batch normalization is also used while training the model

in order to stabilize the process of learning while also reducing the number of epochs.

While training deep networks, small modifications affect the complete network; hence,

mini-batch data normalization avoids this problem. Here, a 3 × 3 convolution with

fixed feature map dimensions 32, 64, 128, 256, and 512 were performed. The input



310 Shalaka Prasad Deore

reduction between layers is obtained by using an increasing size of the stride (from

one to two). In the convolution operation, a kernel of a size of 3 is used. In the batch

normalization, there is no need to change the size of our volume because the batch-

normalization operation is performed element-wise. The ReLU non-linear activation

function is used (which is detailed in [Eq. 1]):

f(x) = max(0, x). (1)

Function f(x) returns 0 for a negative input; for any positive value of x, it

returns that value back. The ReLU function consists of fewer mathematical tasks and

is comparatively much faster than the other non-linear functions [17]. The output

of a network is mapped using the Softmax function. The model is compiled using

the RMSprop optimizer. The optimizer is used to optimize the results – to update

the weights. This is an extension of the stochastic gradient algorithm; it is simple,

straightforward, computationally efficient, and has fewer memory requirements.

Figure 8. Architecture of DHCR model using CNN

4.3.2. Second level: DHCR model using pre-trained bottleneck features

Pre-trained networks (transfer learning) often speed up the training process on new

data (particularly when the dataset size is small), and they often produce a more

accurate and effective model in general. A large amount of high-quality data is needed

for direct supervised settings (which is an expensive process). A model that has

already pre-trained on amply labeled training data will be able to handle a new

similar task with trivial data in less time. During this stage, the convolution segment

of a pre-trained network will be instantiated up to the fully connected layer (as shown

in Figure 6) and then on top of the network, and our fully connected layer is added.

Figure 9 represents the DHCR model that was derived from the VGG16 pre-trained

model with two dense layers with one dropout layer (this dropout layer prevented

our model from overfitting). The dropout technique is simply ignoring some random



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 311

neurons while training the network [33]. In this technique, the channel connections

are temporarily removed from the network. After dropping the random units, the

new lighter network is formed for training. Each neuron has a fixed probability of p;

setting p to 0.5 is one of the best options. A neural network learns more robust features

by the dropout method. The Softmax function is used to map the network’s output

to the expected output classes in the fully connected (dense 2) layer.

Figure 9. DHCR model using pre-trained bottleneck features

4.3.3. Third level: DHCR fine-tuned architecture

Fine-tuning the top level layers of the previous network is performed on this level to

improve the overall efficiency of the DHCR model. Convolutional Blocks 5 and 4 of

VGG16 is considered for fine-tuning (along with a top-level classifier). A minimum

weight update is carried out while performing the fine-tuning. First, the VGG16 base

is located; then, its weights are loaded. Next, our earlier defined fully connected

model is added on top, and its weights are loaded. Finally, the VGG16 layers are

frozen up to the third convolutional block of the network (as shown in Figure 10).

Figure 10. DHCR fine-tuned architecture



312 Shalaka Prasad Deore

In the fine-tuning approach, the training is needed to be start with correctly

trained weights, as randomly initializing the weights may ruin the learned weights of

the convolutional base. Only Convolution Blocks 4 and 5 are fine-tuned (as seen in

Figure 9) instead of the entire network to prevent the overfitting problem from arising

due to the high entropic ability of the entire network. The more specific features of

Convolutional Blocks 4 and 5 are updated instead of the more general features of the

previous layer by freezing the initial blocks of the network. The new network is

tainted when using a low LR, so destruction will be not be faced in the previously

learned features. The steps of the fine-tuning of the DHCR model are mentioned in

Algorithm 1.

Notations used in Algorithm 1:

• tr: training set,

• ts: testing set,

• bs: batch size,

• lr: learning rate.

// randomly divided total number of samples in Tr and Ts sets

Algorithm 1: Fine-tuned DHCR model

Input: (tr, ts, bs )

Output: Fine-tuned Devanagari handwritten character system model

1 Begin

2 Instantiate VGG16 model and load its weights

3 Add our second-level fully connected model on top of network

4 load its weights

5 top_model.add(Dense, ReLU)

6 top_model.add(Dropout, 0.5)

7 top_model.add(Output_classes, Softmax)

8 top_model.load_weights(first_level model)

9 Freeze trainable layers of model through third convolution block

10 top_model.compile(RMSProp Optimizer)

11 top_model.fit(tr, ts, bs, lr) // use slow learning rate

12 End

5. Experiments, results, and discussion

5.1. Experimental protocol

Our recommended framework was assessed on our Devanagari handwritten charac-

ter dataset; in addition, it was also evaluated on some benchmark datasets. The

recommended methods were assessed on the prevailing openly available Devanagari

and Indic script datasets (including their character and digits). The four different

datasets that were used for performing the experiments were the UCI Devanagari

character and digit dataset [1], CMATERdb 3.1.1 of Bangla digits, and CMATERdb

3.1.2 of Bangla simple characters [30]. These datasets represent distinct scripts and



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 313

are a solid foundation for testing the recommended models. Refer to Table 1 for the

dataset statistics that were used for the experiments.

Table 1
Experimental data statistics

Dataset
No. of output

classes

No. of

trained

samples

No. of. test

samples
Total samples

Our dataset

(characters)
46 3840 960 4800

Our dataset

(Digits)
10 800 200 1000

UCI

Devanagari

characters

36 61,200 10,800 72,000

UCI

Devanagari

digits

10 17,000 3000 20,000

CMATERdb

3.1.2
50 12,000 3000 15,000

CMATERdb

3.1.1
10 4000 2000 6000

The DHCR model was trained with diverse methods; each approach required

a number of training parameters. A summary of the training hyperparameters for the

different approaches is provided in Table 2. For the fine-tuned model, the trainable

factor was zero with a constant condition. Also, the max-pooling layer’s trainable

parameter was zero since it passed the maximum value to the next layer. The different

parameters (like machine, implementation tools, input image size, and image type)

are depicted in Table 3.

Table 2
Training hyperparameters of different proposed approaches

Model Optimizer Learning rate No. of epochs Mini-batch size

First-level

model
RMSProp 1e-4 20 32

Second-level

model
RMSProp 1e-4 20

For training

= 20 and

validation = 10

Third-level

model
RMSProp le-6 10

For training

= 20 and

validation = 10



314 Shalaka Prasad Deore

Table 3
Other execution parameters

Parameter name Parameter value

Machine Google Colaboratory (12 GB NVIDIA Tesla K80 GPU)

Implementation tools Keras and TensorFlow

Input image size 64 x 64

Input image type JPG

5.2. Results and discussion

Our proposed level-wised DHCR has been implemented using different approaches;

each approach has evolved, resulting in improvements in the recognition accuracy.

The data was divided into batches of 32 samples during the first stage. Only an

85.64% accuracy was achieved by the model at this point; this uncertainty was due to

the limited number of samples that were used for the validation. The experiment was

then repeated with a larger batch size with all of the testing and training samples. The

testing accuracy increased to 93.17% with a very high training time of 45 minutes and

53 seconds. Without any specific feature engineering, training a CNN from scratch

on a small dataset will still provide reasonable results.

On the next level, the VGG16 pre-trained network was implemented. The use

of a pre-trained network speeds up the training process on new data (particularly

when a dataset’s size is small), and it also results in a more accurate and effective

model. Here, the pre-trained network increased the accuracy as compared to the first

stage model; the results were achieved in 29.9 minutes with a 94.13% accuracy. Other

pre-trained networks were also executed on our dataset to analyze the performance of

various pre-trained networks; these testing accuracy results are shown in Figure 11.

Figure 11. Recognition accuracy rates of different models

Figure 11 clearly shows that VGG16 performed better than the other models

(especially with a small-sized dataset); hence, the VGG16 model was selected for



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 315

fine-tuning its parameters to improve the performance of the DHCR model. This

approach contained a function f() that made a fine weight adjustment in the network

by using a very low LR. Aggressive data augmentation and regularization techniques

were also used in order to solve the overfitting problem.

Table 4
Performance of second-level and fine-tuned models

Proposed

model
Accuracy [%] Average time/Epoch Total time

Second-level

model
94.13 1.50m (20 epochs) 29.9m 9s

Third-level

model

(Fine-tuned

model)

96.47 1.62m (only 10 epochs) 16.2m 5s

Table 4 presents the obtained experimental results. It can be clearly observed

that the proposed fine-tuned model is more efficient than the other stage models;

the accuracy improved by approximately 2–3% in only 10 epochs. The performance

analysis of the level-wised DHCR CNN model is shown in Figure 12. The fine-tuned

DHCR CNN model improved the performance by 3% with a minimum time of 16.2

minutes.

Figure 12. Performance analysis of different level-wised DHCR models

By aggressively performing real-time data augmentation, distortions like trans-

formation, scaling, and rotation can be handled. In real-time data augmentation, the

batch of the original images are considered; then, a new transformed batch of images

is generated for the training network by using the above augmentation operations.

Each time a new variation of images is produced for learning features from images,



316 Shalaka Prasad Deore

it helps to implement a more generalized DHCR model. With this the proposed

fine-tuned method, we also tested on four popular standard handwritten datasets of

different scripts that contained characters and digits. The proposed model was also

separately tested on our character and digit dataset. The testing accuracy that was

obtained on these four datasets is shown in Table 5. The proposed fine-tuned model

shows encouraging outputs with different datasets (as depicted in Tables 5 and 6).

Table 5
Recognition rate of proposed fine-tuned model on different datasets

Datasets Accuracy [%]

Our dataset (only characters) 97.05

Our dataset (only digits) 95.35

UCI Devanagari characters 97.80

UCI Devanagari digits 99.40

CMATERdb 3.1.2 95.83

CMATERdb 3.1.1 97.45

Table 6
Comparison of recognition accuracy with different research work

Dataset Work reference Accuracy [%]

UCI Devanagari character

[28] 93.00

[35] 97.33

Proposed fine-tuned model 97.80

UCI Devanagari numerals
[1] 98.47

Proposed fine-tuned model 99.40

Bangla basic character

[23] 85.96

[27] 93.40

Proposed fine-tuned model 93.83

Bangla digit
[27] 97.26

Proposed fine-tuned model 97.45

6. Conclusion

Deep neural networks have proven to be superior in pattern and script recognition

for many languages with different script styles. Recognizing handwritten characters

is a very complex job under unimpeded situations, so many researchers have worked

on this problem in recent years. There have been several approaches for resolving

this problem; however, there is a gap in automatic Devanagari character recogni-

tion. Realizing the need, we have attempted to implement a system for Devanagari

handwritten character identification. In this paper, a newly created handwritten De-

vanagari character dataset was introduced (which is presented publicly); this is our

contribution to the academic community for further research. DHCR has evolved by



A DHCR SmartNet: a smart Devanagari handwritten character recognition... 317

using a different network architecture. On the first level, a CNN architecture was

implemented from scratch in a supervised learning environment. On the next level,

a pre-trained model was implemented using bottleneck features. Finally, a fine-tuned

network was employed. The highest accuracy (96.47%) was achieved in 16.20 min-

utes when using the fine-tuned model on our small dataset. The proposed model was

also executed on different Indic scripts. The obtained results prove the efficacy of

the proposed fine-tuned model. In the future, modifications can be performed in the

proposed algorithm to enhance the efficacy of the model in terms of space and time

by developing a compact deep convolution network.

Acknowledgements

Authors thank to Dr. S. H. Gawande, Professor, M.E.S. College of Engineering,

Pune, India for his support and encouragement.

References

[1] Acharya S., Pant A.K., Gyawali P.K.: Deep Learning Based Large Scale Hand-

written Devanagari Character Recognition. In: Proceedings of the 9th Interna-

tional Conference on Software, Knowledge, Information Management and Appli-

cations (SKIMA), pp. 121–126, 2015. doi: 10.1109/SKIMA.2015.7400041.

[2] Alom M.Z., Sidike P., Hasan M., Taha T.M., Asari V.K.: Handwritten Bangla

Character Recognition Using the State-of-the-Art Deep Convolutional Neural

Networks, Computational Intelligence and Neuroscience, vol. 2018, pp. 1–13,

2018. doi: 10.1155/2018/6747098.

[3] Bhunia A.K., Roy P.P., Mohta A., Pal U.: Cross-language framework for word

recognition and spotting of indic scripts, Pattern Recognition, vol. 79, pp. 12–31,

2018. doi: 10.1016/j.patcog.2018.01.034.

[4] Deore S.P., A. P.: Ensembling: Model of histogram of oriented gradient based

handwritten Devanagari character recognition system, Traitement du signal,

vol. 34(1–2), pp. 7–20, 2017. doi: 10.3166/ts.34.7-20.

[5] Deore S.P., A. P.: Histogram of oriented gradients based off-line handwritten

Devanagari characters recognition using SVM, K-NN and NN classifiers, Revue

d’Intelligence Artificielle, vol. 33(6), pp. 441–446, 2019. doi: 10.18280/ria.330606.

[6] Dutta K., Krishnan P., Mathew M., Jawahar C.: Towards Accurate Handwritten

Word Recognition for Hindi and Bangla. In: Computer Vision, Pattern Recog-

nition, Image Processing, and Graphics. NCVPRIPG 2017, Communications in

Computer and Information Science, vol. 841, pp. 470–480, Springer, Singapore,

2017. doi: 10.1007/978-981-13-0020-2 41.

[7] Guha R., Das N., Kundu M., Nasipuri M., Santosh K.C.: DevNet: An Efficient

CNN Architecture for Handwritten Devanagari Character Recognition, Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, vol. 34(12), 2019.

doi: 10.1142/S0218001420520096.

https://doi.org/10.1109/SKIMA.2015.7400041
https://doi.org/10.1109/SKIMA.2015.7400041
https://doi.org/10.1109/SKIMA.2015.7400041
https://doi.org/10.1155/2018/6747098
https://doi.org/10.1155/2018/6747098
https://doi.org/10.1155/2018/6747098
https://doi.org/10.1155/2018/6747098
https://doi.org/10.1016/j.patcog.2018.01.034
https://doi.org/10.1016/j.patcog.2018.01.034
https://doi.org/10.1016/j.patcog.2018.01.034
https://doi.org/10.3166/ts.34.7-20
https://doi.org/10.3166/ts.34.7-20
https://doi.org/10.3166/ts.34.7-20
https://doi.org/10.18280/ria.330606
https://doi.org/10.18280/ria.330606
https://doi.org/10.18280/ria.330606
https://doi.org/10.1007/978-981-13-0020-2_41
https://doi.org/10.1007/978-981-13-0020-2_41
https://doi.org/10.1007/978-981-13-0020-2_41
https://doi.org/10.1142/S0218001420520096
https://doi.org/10.1142/S0218001420520096
https://doi.org/10.1142/S0218001420520096


318 Shalaka Prasad Deore

[8] He K., Zhang X., Ren S., Sun J.: Deep residual learning for image recognition,

CVPR arXiv:151203385[csCV], 2015.

[9] Islam N., Islam Z., Noor N.: A Survey on Optical Character Recognition System,

Journal of Information & Communication Technology, vol. 10(2), pp. 1–4, 2016.

[10] Jangid M., Srivastava S.: Handwritten Devanagari Character Recognition Us-

ing Layer-Wise Training of Deep Convolutional Neural Networks and Adaptive

Gradient Methods, Journal of Imaging, vol. 4(2), pp. 1–14, 2018. doi: 10.3390/

jimaging4020041.

[11] Jayadevan R., Kolhe S.R., Patil P.M., Pal U.: Offline Recognition of Devanagari

Script: A Survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 41(6), pp. 782–796, 2011. doi: 10.1109/TSMCC.

2010.2095841.

[12] Jino P.J., Balakrishnan K., Bhattacharya U.: Offline Handwritten Malayalam

Word Recognition Using a Deep Architecture. In: International Conference

on Soft Computing for Problem Solving, Advances in Intelligent Systems and

Computing, vol. 816, pp. 913–925, Springer, Singapore, 2019. doi: 10.1007/

978-981-13-1592-3 73.

[13] Kohli M., Kumar S.: Segmentation of handwritten words into characters, Multi-

media Tools and Applications, vol. 80(14), pp. 22121–22133, 2021. doi: 10.1007/

s11042-021-10638-0.

[14] Lee H., Grosse R., Ranganath R., Ng A.Y.: Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In: Proceedings

of the 26th Annual International Conference on Machine Learning, ICML’09,

pp. 609–616, ACM, New York, 2009.

[15] Liu W., Wang Z., Liu X., Zeng N., Liu Y., Alsaadi F.E.: A survey of deep

neural network architectures and their applications, Neurocomputing, vol. 234,

pp. 11–26, 2017. doi: 10.1016/j.neucom.2016.12.038.

[16] Ly N.T., Nguyen C.T., Nguyen K.C., Nakagawa M.: Deep Convolutional Recur-

rent Network for Segmentation-Free Offline Handwritten Japanese Text Recogni-

tion. In: 14th IAPR International Conference on Document Analysis and Recog-

nition (ICDAR), pp. 5–9, 2017. doi: 10.1109/ICDAR.2017.357.

[17] Nair V., Hinton G.E.: Rectified linear units improve restricted Boltzmann ma-

chines. In: Proceedings of the 27th International Conference on International

Conference on Machine Learning ICML’10, pp. 807–814, Haifa, Israel, 2010.

[18] Narang S., Jindal M.K., Kumar M.: Devanagari ancient documents recognition

using statistical feature extraction techniques, Sādhanā, vol. 44(141), pp. 1–8,

2019. doi: 10.1007/s12046-019-1126-9.

[19] Niu X.X., Suen C.Y.: A novel hybrid CNN–SVM classifier for recognizing hand-

written digits, Pattern Recognition, vol. 45(4), pp. 1318–1325, 2012. doi: 10.1016/

j.patcog.2011.09.021.

https://doi.org/10.3390/jimaging4020041
https://doi.org/10.3390/jimaging4020041
https://doi.org/10.3390/jimaging4020041
https://doi.org/10.3390/jimaging4020041
https://doi.org/10.3390/jimaging4020041
https://doi.org/10.1109/TSMCC.2010.2095841
https://doi.org/10.1109/TSMCC.2010.2095841
https://doi.org/10.1109/TSMCC.2010.2095841
https://doi.org/10.1109/TSMCC.2010.2095841
https://doi.org/10.1007/978-981-13-1592-3_73
https://doi.org/10.1007/978-981-13-1592-3_73
https://doi.org/10.1007/978-981-13-1592-3_73
https://doi.org/10.1007/978-981-13-1592-3_73
https://doi.org/10.1007/s11042-021-10638-0
https://doi.org/10.1007/s11042-021-10638-0
https://doi.org/10.1007/s11042-021-10638-0
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/ICDAR.2017.357
https://doi.org/10.1109/ICDAR.2017.357
https://doi.org/10.1109/ICDAR.2017.357
https://doi.org/10.1109/ICDAR.2017.357
https://doi.org/10.1007/s12046-019-1126-9
https://doi.org/10.1007/s12046-019-1126-9
https://doi.org/10.1007/s12046-019-1126-9
https://doi.org/10.1016/j.patcog.2011.09.021
https://doi.org/10.1016/j.patcog.2011.09.021
https://doi.org/10.1016/j.patcog.2011.09.021
https://doi.org/10.1016/j.patcog.2011.09.021


A DHCR SmartNet: a smart Devanagari handwritten character recognition... 319

[20] Obaidullah S.M., Halder C., Santosh K.C., Das N., Roy K.: PHDIndic 11: page-

level handwritten document image dataset of 11 official Indic scripts for script

identification, Multimedia Tools and Applications, vol. 77, pp. 1643–1678, 2018.

doi: 10.1007/s11042-017-4373-y.

[21] Pal U., Chaudhuri B.B.: Indian script character recognition: A survey, Pattern

Recognition, vol. 37(9), pp. 1887–1899, 2004.

[22] Plamondon R., Srihari S.N.: Online and off-line handwriting recognition: a com-

prehensive survey, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 22(1), pp. 63–84, 2000. doi: 10.1109/34.824821.

[23] Rahman M.M., Akhand M.A.H., Islam S., Shill P.C., Rahman M.M.H.: Bangla

Handwritten Character Recognition using Convolutional Neural Network, Inter-

national Journal of Image, Graphics and Signal Processing, vol. 7(8), pp. 52–59,

2015. doi: 10.5815/ijigsp.2015.08.05.

[24] Ren X., Zhou Y., Huang Z., Sun J., Yang X., Chen K.: A Novel Text Struc-

ture Feature Extractor for Chinese Scene Text Detection and Recognition, IEEE

Access, vol. 5, pp. 3193–3204, 2017. doi: 10.1109/ACCESS.2017.2676158.

[25] Roy P.P., Bhunia A.K., Das A., Dey P., Pal U.: HMM-based Indic handwrit-

ten word recognition using zone segmentation, Pattern Recognition, vol. 60,

pp. 1057–1075, 2016. doi: 10.1016/j.patcog.2016.04.012.

[26] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., et al.:

ImageNet Large Scale Visual Recognition Challenge, International Journal of

Computer Vision, vol. 115, pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[27] Saha C., Faisal R., Rahman M.M.: Bangla Handwritten Character Recogni-

tion Using Local Binary Pattern and Its Variants. In: International Conference

on Innovations in Science, Engineering and Technology (ICISET), pp. 236–241,

Chittagong, Bangladesh, 2018. doi: 10.1109/ICISET.2018.8745645.

[28] Saha P., Jaiswal A.: Handwriting Recognition Using Active Contour. In: Arti-

ficial Intelligence and Evolutionary Computations in Engineering Systems, Ad-

vances in Intelligent Systems and Computing, vol. 1056, pp. 505–514, Springer,

Singapore, 2000. doi: 10.1007/978-981-15-0199-9 43.

[29] Santosh K.C., Wendling L.: Character recognition based on non-linear multi-

projection profiles measure, Frontiers of Computer Science, vol. 9, pp. 678–690,

2015. doi: 10.1007/s11704-015-3400-2.

[30] Sarkhel R., Das N., Basu S., Kundu M., Nasipuri M., Basu D.K.: CMATERdb1:

a database of unconstrained handwritten Bangla and Bangla–English mixed

script document image, International Journal on Document Analysis and Recog-

nition, vol. 15, pp. 71–83, 2012. doi: 10.1007/s10032-011-0148-6.

[31] Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale

Image Recognition, CVPR, arXiv:14091556v6[csCV], 2015.

https://doi.org/10.1007/s11042-017-4373-y
https://doi.org/10.1007/s11042-017-4373-y
https://doi.org/10.1007/s11042-017-4373-y
https://doi.org/10.1007/s11042-017-4373-y
https://doi.org/10.1109/34.824821
https://doi.org/10.1109/34.824821
https://doi.org/10.1109/34.824821
https://doi.org/10.5815/ijigsp.2015.08.05
https://doi.org/10.5815/ijigsp.2015.08.05
https://doi.org/10.5815/ijigsp.2015.08.05
https://doi.org/10.1109/ACCESS.2017.2676158
https://doi.org/10.1109/ACCESS.2017.2676158
https://doi.org/10.1109/ACCESS.2017.2676158
https://doi.org/10.1016/j.patcog.2016.04.012
https://doi.org/10.1016/j.patcog.2016.04.012
https://doi.org/10.1016/j.patcog.2016.04.012
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICISET.2018.8745645
https://doi.org/10.1109/ICISET.2018.8745645
https://doi.org/10.1109/ICISET.2018.8745645
https://doi.org/10.1007/978-981-15-0199-9_43
https://doi.org/10.1007/978-981-15-0199-9_43
https://doi.org/10.1007/s11704-015-3400-2
https://doi.org/10.1007/s11704-015-3400-2
https://doi.org/10.1007/s11704-015-3400-2
https://doi.org/10.1007/s10032-011-0148-6
https://doi.org/10.1007/s10032-011-0148-6
https://doi.org/10.1007/s10032-011-0148-6
https://doi.org/10.1007/s10032-011-0148-6


320 Shalaka Prasad Deore

[32] Sonkusare M., Gupta R., Moghe A.: A Review on Character Segmentation Ap-

proach for Devanagari Script. In: Intelligent Systems. Proceedings of SCIS 2021,

vol. 22(1), pp. 181–189, Algorithms for Intelligent Systems, Springer, Singapore,

2021. doi: 10.1007/978-981-16-2248-9 19.

[33] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.:

Dropout: A simple way to prevent neural networks from overfitting, Journal

of Machine Learning Research, vol. 15(56), pp. 1929–1958, 2014.

[34] Su B., Lu S.: Accurate recognition of words in scenes without character segmen-

tation using recurrent neural network, Pattern Recognition, vol. 63, pp. 397–405,

2017. doi: 10.1016/j.patcog.2016.10.016.

[35] Vijaya Kumar Reddy R., Ravi Babu U.: Handwritten Hindi Character Recogni-

tion using Deep Learning Techniques, International Journal of Computer Sciences

and Engineering, vol. 7(2), pp. 1–7, 2019. doi: 10.26438/ijcse/v7i2.17.

[36] Wu Y.C., Yin F., Liu C.L.: Improving handwritten Chinese text recognition

using neural network language models and convolutional neural network shape

models, Pattern Recognition, vol. 65, pp. 251–264, 2017. doi: 10.1016/j.patcog.

2016.12.026.

[37] Younis K.: Arabic Handwritten Character Recognition Based On Deep Con-

volutional Neural Networks, Jordanian Journal of Computers and Information

Technology, vol. 3(3), pp. 186–200, 2018.

Affiliations

Shalaka Prasad Deore
S.P. Pune University, Department of Computer Engineering, M.E.S. College of Engineering,
Pune, Maharashtra, India; shalakasonawane25@gmail.com, ORCID ID:
https://orcid.org/0000-0002-6767-6289

Received: 25.09.2021

Revised: 28.03.2022

Accepted: 08.07.2022

https://doi.org/10.1007/978-981-16-2248-9_19
https://doi.org/10.1007/978-981-16-2248-9_19
https://doi.org/10.1007/978-981-16-2248-9_19
https://doi.org/10.1016/j.patcog.2016.10.016
https://doi.org/10.1016/j.patcog.2016.10.016
https://doi.org/10.1016/j.patcog.2016.10.016
https://doi.org/10.26438/ijcse/v7i2.17
https://doi.org/10.26438/ijcse/v7i2.17
https://doi.org/10.26438/ijcse/v7i2.17
https://doi.org/10.1016/j.patcog.2016.12.026
https://doi.org/10.1016/j.patcog.2016.12.026
https://doi.org/10.1016/j.patcog.2016.12.026
https://doi.org/10.1016/j.patcog.2016.12.026
https://doi.org/10.1016/j.patcog.2016.12.026
https://orcid.org/0000-0002-6767-6289
shalakasonawane25@gmail.com
https://orcid.org/0000-0002-6767-6289

	Introduction
	Features of Devanagari script
	Dataset corpus creation
	Proposed methodology
	Pre-processing and data augmentation
	Architecture of VGG16
	Architectures of proposed level-wised DHCR model
	First level: DHCR CNN architecture (baseline)
	Second level: DHCR model using pre-trained bottleneck features
	Third level: DHCR fine-tuned architecture


	Experiments, results, and discussion
	Experimental protocol
	Results and discussion

	Conclusion

