COMPUTER SCIENCE e 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.35

Abstract

Keywords

MICHAL SMIALEK
NORBERT JARZEBOWSKI
WIKTOR NOWAKOWSKI

TRANSLATION OF USE CASE SCENARIOS
TO JAVA CODE

Use cases are usually treated as second class citizens in the software develop-
ment chain based on models. Their textual descriptions (scenarios) are tre-
ated as informal input to more formal design models that can then be (semi-
)automatically transformed down to code. In this paper we will show that use
case scenarios can gain precise metamodel-based notation and semantics ena-
bling automatic processing. What is more, we will show transformation algori-
thms that can transform use case scenarios directly to dynamic code in Java.
The presented transformation can generate the full structure of the system fol-
lowing the MV P architectural pattern, including complete method contents for
the application logic (Presenter) and presentation (View) layers. It also provides
a code skeleton for the domain logic (Model) layer. The use case notation and
the transformation were implemented within a sophisticated tool suite. Based
on this, the paper discusses the evaluation efforts based on a case study.

use cases, runtime semantics, model transformation

35

36 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

1. Introduction

Use cases are currently one of the most widely used notations in specifying functional
requirements. Developing a use case model is normally the first step in the software
development (SD) process, especially when model-based techniques are used. Use ca-
ses serve as the process drivers in many contemporary SD methodologies. For each
of the use cases, specific design artifacts are developed (e.g. interaction diagrams)
thus contributing to the overall system structure expressed through component dia-
grams and/or class diagrams. This finally leads to a code that implements the specific
functionality defined through use cases.

The use case notation is standardized to some extent within the UML specifi-
cation. However, this part of UML is very poorly defined, as discussed already in
1999 [18], and the situation has not changed up till now in UML 2. For this reason,
use cases were always excluded from the main stream of model-driven transformation
paths. Translation from use case to design and code was made manually, sometimes
supported by specific best practice heuristics. However, use case descriptions tend to
become more and more precise thus improving their applicability in the software de-
velopment chain. This is done through applying precise quality-related guidelines for
textual use case descriptions [14, 10] and proposing alternative visual notations [21].

By bringing precision to use cases we shift into their becoming “first class so-
ftware citizens” within software development. This is associated with automating the
translation of use case models and their descriptions into various other models. The
first group of attempts at this issue consists in generating analysis models, like con-
ceptual class diagrams and some dynamic diagrams (eg. state machines), as reviewed
in [24]. The second group approaches to deriving design models. In [19] we can find
a detailed set of rules for transforming into architectural design models, including
dynamic sequence diagrams. The authors of [23] propose a simple meta-model for
describing textual use case descriptions and transforming them into static component
models. A similar approach, but extended with natural language parsing and genera-
ting service-oriented component models was proposed in [3] (see also [1]). In [17] there
is proposed a set of heuristics and a resulting algorithm to generate detailed design
class models from constrained natural language use case scenarios. These models are
purely static but do contain complete sets of class operations for the application logic,
and can become the start to implementation efforts.

Ultimately, this leads to relating use case descriptions to code. In some appro-
aches, use case models (as such) are derived from code by applying certain reverse-
engineering techniques (see [2], [6], [16], [7]). This is mainly used to better understand
and trace from the source code of legacy applications. Though, recently there have
emerged approaches to generate code directly from use case descriptions. In [5] there
is proposed a framework to produce three-tier-based code. Textual scenarios are first
translated into special trace scripts (“procases”) and then into the contents of ap-
plication logic layer class methods. Similarly, [20] proposes a set of rules to translate
constrained natural language scenarios directly into Java code.

Translation of use case scenarios to Java code 37

Recently, in RSL [8] there was introduced a new specification of the use case
model, together with a precise notation for use case representations (scenarios). This
starts an opportunity to introduce use cases as “first-class citizens” on the transforma-
tion path, thus introducing automatic translation from the use case models to more
detailed models. Within the ReDSeeDS project (www.redseeds.eu) [22] there were
introduced such transformations leading to detailed design models, including classes
and interactions. What is more, this can lead to treating use case scenarios as a kind
of programming language that can significantly speed-up the software development
(evolution) cycles [20].

In this paper we extend the above results with a detailed description of the pro-
cess of translation from the precisely defined RSL-based scenarios to Java-based code.
The source language (RSL) is expressed according to the rules of software language
engineering (see [11]). Based on this, the translation is done in accordance with the
rules of model transformation (see e.g. [12]). We show that it is possible to translate
scenarios written in semi-natural language into the fully operational dynamic code of
the application logic and presentation layers. The resulting process is shown in Figu-
re 1. The RSL scenario model is transformed into the UML design model with Java
method bodies by using an automatic transformation in the MOLA language [9]. The
UML model can then be easily generated into code using the standard mechanisms
of CASE tools.

Java code

Use Case model

Transformation
rules

v MOLA program

UML design model
RSL scenario model +Java method bodies

Figure 1. Overview of the translation process.

2. Precise notation for use case scenarios

The Requirements Specification Language (RSL) is a semi-formal language for specify-
ing software requirements. RSL employs use cases for defining the system’s behaviour.
Each use can be detailed by one or more textual scenarios consisting of sentences in

38 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

constrained natural language. Notions and phrases used in scenario sentences are lin-
ked to elements of the domain model. These elements can have their definitions specific
to the system’s domain. Such notation, separating descriptions of the system’s beha-
viour from descriptions of the domain problem, is easily understandable to different
audiences, including end-users, thus allowing them to discuss and partially construct
software through writing the application logic at the level of requirements. On the
other hand, to facilitate automatic transformations from requirements to design-level
models and code, RSL syntax is precisely defined through a meta-model in MOF [13].
The full RSL specification, including abstract syntax, concrete syntax and semantics,
can be found in [8]. Here, we describe only some simplified language constructs, which
are relevant to the process of translation of use case scenarios into code.

Name: Name: Add new book
precondition: precondition:
1. User clicks display books button 1. User clicks add new book button
2. System fetches book list 2. System displays add new book window
3. System displays book list window book list| | 3 User fills add new book window " book
4. User chooses book 4. System validates book
5. System displays book details window =>cond: 0/"Book data ok"/
5. System saves book

Figure 2. Concrete syntax for use case scenarios.

Figure 2 shows examples of use case scenario notation. Every scenario is a num-
bered sequence of actions that are performed either by an actor or the system and
lead to success or failure in reaching the use case goal. Every such action is expressed
by a single sentence in the SVOO grammar. Sentences in this grammar are composed
of a subject, a verb and an object, optionally followed by a second indirect object.
The subject indicates who performs the action (the “user” or the “system”). The
objects in a sentence represent notions from the business or the system domain (eg.
“book”, “book details window”). The verb, in turn, is strongly relevant to the direct
object (the VO part of a sentence) — it describes an operation that can be performed
in association with that object (eg. “validate book”, “display book details window”).
The indirect objects (VOO part) can represent detailed data that is passed while
performing actions (eg. “displays book list window with book list”). In addition to
action sentences, also condition sentences can be used to define an alternate sequence
of actions that is performed according to the condition defined. Conditions relate to
system state or actor’s decision.

Figure 3 shows a fragment of the RSL metamodel that deals with use case sce-
narios and sentences. Every Requirement (ie. a use case) in RSL can have at least
one representation in the form of ConstrainedLanguageScenario. Scenarios, in turn,
are composed of ordered sets of scenario steps (ConstrainedLanguageSentence metac-
lass) that can be of two types: SVOSentence (for expressing actions performed by the
actors or the system) or ConditionSentence (for defining conditions for the alternative

Translation of use case scenarios to Java code 39

scenario paths). An SVOSentence is composed of a Subject and a Predicate that are
in fact hyperlinks to definitions of the proper phrases in a vocabulary.

scenario scenarioStep | ConstrainedLanguageSentence

ContrainedlL io
0.1 * {ordered}| sentenceText: String
representation | 1..* / \
requirement @ 1
¢ SVOSentence ConditionSentence
Requirement source source
1 1
. 1 1 .
subject predicate
Subject subject 1 Phrase | object 0..1 Phrase |target B TIIm
. o F
* target! NounPhrase 1 verbPhrase Relase 1 predicate

Figure 3. Abstract syntax of use case scenarios and sentences.

Phrase
object verbPhrase
NounPhrase ! P VerbPhrase
1 0.1
source 1
complexVerbPhrase 1 I
ComplexVerbPhrase @ SimpleVerbPhrase
0..1 simpleVerbPhrase
source | 1
noun |1 verb| 1

NounLink D> TermHyperlink < PhraseVerbLink

value: String

ounLink * verbLink *
target |1 target|1
Noun > Term I Verb
name: String

Figure 4. Abstract syntax of sentence phrases.

The structure of phrases is shown in Figure 4. All the phrases are sequences
of hyperlinks (see NounLink and PhraseVerbLink) pointing at terms (see the Term
metaclass and its subclasses: Noun and Verb) in a global terminology. These terms
(with their forms, inflections, cases) are stored in a WordNet [4] repository. The
Subject points to a NounPhrase that is linked to just one Noun. The Predicate points
to one of the two VerbPhrase specialisations. If a sentence contains only the direct
object (SVO sentences), the predicate points to a SimpleVerbPhrase. This subtype
of VerbPhrase contains a link (see PhraseVerbLink) to one Verb that precedes the

40 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

NounPhrase (inherited from the VerbPhrase). Phrases containing both the direct and
indirect object (SVOO sentences) are stored in a ComplexVerbPhrase. This subtype of
the VerbPhrase links an instance of a SimpleVerbPhrase followed by an indirect object
(see NounPhrase) inherited from the VerbPhrase.

statement 1 0..1 name
Dc i Y DomainEl it PN NounPhrase
* domainElement element 1
statement 0.1
name |1
Phrase Actor SystemElement Notion

Figure 5. Abstract syntax of domain vocabulary elements.

All the phrases used in scenarios to describe system’s behaviour need to be pre-
cisely defined in the context of the problem domain. In RSL, it is done by introducing
domain elements that together form a domain vocabulary. The metamodel showing
the structure of domain elements is presented in Figure 5. All phrases that refer to the
same noun used in a scenario are grouped within a DomainElement, where a NounPhra-
se linked to that noun is the element’s name. Other Phrases, (especially VerbPhrases)
pointing to the noun are contained within a DomainElement as DomainStatements.
All these DomainStatements have their definitions describing behavioural features of
the related nouns. For example, “validate book” has a different meaning than “save
book”.

In order to distinguish data to be handled by the system from the actors inte-
racting with its components, the DomainElements have three subtypes. Every part of
the composite system that is referred to in scenarios is modelled as an instance of
a SystemElement. All actors are modelled as instances of Actor. Other elements of
domain vocabulary that are used in scenarios (domain entities, data, UI elements,
etc.) and are not system elements or actors are modelled as instances of a Notion.

3. Equivalence of use case scenarios and Java

This section describes how requirement specification elements are transformed into
code. The transformed code is written in Java and its structure is based on the MVP
(Model-View-Presenter) [15] architectural pattern. Each generated class consists of
the source object’s name and a predefined prefix that emphasizes layer affinity:

o “V” for view layer classes. The view layer classes are GUI elements responsible
for presenting information and interacting with the user.

e “M” for model layer classes. They are created based on the business objects
stored in the system and contains all operations that can be performed on those
objects.

Translation of use case scenarios to Java code 41

e “C” for controller/presenter layer classes. The controller/presenter classes are
responsible for conducting the system’s observable behavior.

e “X” for data transfer object (DTO) classes. They are used to transfer data be-
tween layers, therefore they contain only attributes and no operations (except
for the constructor).

=] ApplicationLogic
. &3 ApplicationLogic
= (] Firstlteration
- B Firstiteration
& CAddNewBook
e (5 CDisplayBook
& B AMain

4 Requirements Specification

First iteration

4 © Add new book
Add new book

Validation

4 © Display book
Display book details

Figure 6. Generation of the controller/presenter layer classes.

Figure 6 presents an example transformation of use cases into classes. Each use
case transforms into one class in the controller/presenter layer. The name of the
class consist of the “C” prefix and the source use case’s name. Scenarios do not
transform directly into any objects, but their sentences are the basis for generating
class operations. The precise rules of scenario sentence processing will be explained
further in this paper. In turn, Figure 7 shows how the notions from the domain
specification are transformed. Each notion transforms into one data transfer object
class and one model layer class. To maintain the consistency of specification and code,
the generated model classes are arranged in packages named as in the source model
(cf. the “Books” package).

(] DTO
&3 DTO
= B XBook
la & Books @ name
» [book @ [XBookList
D> book list = J DomainLogic
@ (3 Books
%3 Books
& B MBook
@[MBookList

1

o

Figure 7. Generation of the model layer classes.

The notions that represent Ul elements are placed in a special IUIElements pac-
kage. They are transformed differently to “normal” domain elements as shown in
Figure 8. Each such notion transforms into one class in the view layer. It is worth
mentioning that notions from the !'Buttons package do not transform into any new

42 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

4 \wi UIElements =] Presentation

4 (&l 'Buttons @3 Presentation
» [add new book button =] Elements
» B display books button 23 Elements

®

> [add new book window
» [E book details window

» [E book list window

» [F error message

% B VAddNewBookWindow
VBookDetailsWindow
& VBookListWindow

& VErrorMessage

i & AMainMenu

#

o

=

®

Figure 8. Generation of the view layer classes.

classes because buttons are always part of some window or form. Additionally a class
representing the application’s main window is generated.

JFrame
Elements::
VEr +vErmorM g
+ displays() : void
CAddNew Book
A Books::MBook
+ aBook XBook{bag} AddNewBook
- + getResult(): int
+cAddNewBook + _ClicksAddNewBookButton() : void +mBook |+ saves(@Book :XBook) : void
+ FillsAddNewBookWindow(pBook :XBook) : void + validates@@aBook :XBook) : void
JFrame + init() : void
Elements::

+ displays() : void

Figure 9. General structure of the generated code.

public voifl FillsAddNewBookWindow (XBook pBook) {
3. User fills add new book window " book int res=0;
4. System validates book aBook = pBook;

\/ mBook.validates (aBook) ; res = mBook.getResult();

(..0)
public void _ClicksDisplayBooksButton() {
int res=0;
mBookList.fetches (aBookList); res = mBookList.getResult();
vBookListWindow = new VBookListWindow() ;
vBookListWindow.cDisplayBook = this;

3. System displays book list window /1 book list {
vBookListWindow.displays (aBookList) ;

}

Figure 10. Dynamic code generated for SVO sentences.

To summarise the above rules, the general structure of the generated code for
the Add new book use case from Figure 2 is presented in Figure 9. The operations
in this model are generated based on the scenario contents. In this section we will
give an example of such a generation, and in the next section detailed rules will
be described (see sentence processing algorithm in Figure 14). Figure 10 presents
two examples of code generated for SVOO sentences. The first example shows a code

Translation of use case scenarios to Java code 43

generated for an “Actor-to-System” sentence. The operation name is constructed from
a verb phrase and the (optional) operation parameter — from an indirect object. Then,
the XBook object is assigned to a local aBook variable and passed to the validates
operation in the MBook class. The second example shows code for a “System-to-
Actor” sentence. The system constructs a new VBookListWindow object and then
displays it with a previously fetched XBookList data (cf. aBookList).

public void FillsAddNewBookWindow () {

4. System validates book 2nE. res= ’
—>cond: 0/*Book data ok*/ mBook.validates (aBook) ; res = mBook.getResult();
5. System saves book > if (res == /*Book data ok¥*/) {

mBook.saves (aBook) ; res = mBook.getResult() ;
}
/>else if (res == /*Book data not ok*/) {
=>cond: 1/*Book data not ok*/ vErrorMessage = new VErrorMessage() ;
vErrorMessage.cAddNewBook = this;
vErrorMessage.displays() ;

411 System displays error message

Figure 11. Dynamic code generated for condition sentences.

Figure 11 presents a code generated for the condition sentences. A condition
sentence’s text is transformed directly into the if-else structure code. It’s a less user-
friendly approach but allows the scenarios’ author to better control the scenario flow.
The body of the if-else structure is generated based on sentences occurring after the
condition. In an example presented in Figure 11 the controller /presenter class assigns
the result of validation to a local variable and then, depending on the validation result,
the if-else structure decides whether to save the XBook object or to display an error
message.

The full code (slightly abbreviated for clarity) generated for the CAddNewBook
class is presented in Figure 12. It contains all the necessary declarations, imports
(not shown in the Figure) and a constructor. It contains the operations presented in
Figures 11 and 10. It can be also noted that appropriate references to the view and
model layer objects are generated (see mBook, textsfaMainMenu, etc.).

4. Transforming use case scenarios to Java

This section precisely describes the mechanism for transforming requirements into
code. It starts with general high-level algorithms written in the UML activity diagram
notation and moves to discuss the actual MOLA procedures used to transform the
RSL specification into code. Figure 13 shows the high-level algorithm for use case
processing. The algorithm starts from the requirement specification level and processes
each use case. While processing a use case, the algorithm takes and processes each of
its scenarios and scenario sentences according to the algorithm presented in Figure 14.

44

Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

public class CAddNewBook {
public Xbook aBook;
public VAddNewBookWindow vAddNewBookWindow;
public Mbook mBook;
public AMainMenu aMainMenu;

public CAddNewBook () {

}

public void finalize() throws Throwable ({

}

public void _ClickAddNewBookButton () {

}
/

int res = 0;

vAddNewBookWindow = new VAddNewBookWindow () ;
vAddNewBookWindow.cAddNewBook = this;
vAddNewBookWindow.display () ;

* %

* @param pBook redseeds_uid7671714083261269300—6917814001634927640—
* 554483506756785203—8217886436700875814redseeds_uid

*/

public void FillsAddNewBookWindow (XBook pBook) {

int res = 0;

aBook = pBook;

mBook.validates (aBook) ;

res = mBook.getResult() ;

if (res == 0 /*Book data ok.*/) {
mBook. saves (aBook) ;
res = mBook.getResult() ;

}

else if (res == 1 /*Book data not ok.*/) {
vErrorMessage = new VErrorMessage() ;
vErrorMessage.cAddNewBook = this;
vErrorMessage.displays () ;

}

public void init() {

}

aBook = new Xbook() ;

Figure 12, Full code of a generated controller/presenter layer class.

Take Scenario
for the UseCase

Take for
the Scenario

[no more]
End
[no more]

[OK] ")

Figure 13. General algorithm for use case processing.

Translation of use case scenarios to Java code 45

What kind of ?

>(Add O ion to Class where Operation.name := verb.name + object.name)

[Actor SVO

Indirect object exists?

[System SVO sentence]
[yes]

[Add to O ion where .name := iobject.name

What kind of Sentence object?

[Ul element]

[Condition| sentence]
Add code to current Operation, where code is procedure call to the View layer Class object

[Regular Domain element]

Add code to current Operation, where code is procedure call to the Model layer Class object

\ Indirect object exists?
What kind of scenario? Add to the call
[’)~ Iyes]
[alternative course]
[no]
[Add code to the current Operation, where code is "else" End
Get next Sentence
in Scenario

[Add code to the current Operation, where code is "if* with condition and "{"
[no more] [OK]
H Add code to the current Operation, where code is "}")

End

?e

[main cRurse]

Figure 14. General algorithm for scenario sentence processing (ProcessSentence procedure).

Before we explain the algorithm, it is very important to identify the direction
of control flow between an actor and a system. Depending on the flow direction, the
target class for generating the appropriate operation’s code is chosen according to the
following general rules:

e Actor-to-System (subject is an actor) sentence generates an operation in the
controller/presenter layer class.

e System-to-Actor (subject is a system, direct object in a Ul element) sentence
generates an operation in the view layer class.

e System-to-System (subject is a system, direct object is a regular domain notion)
sentence generates an operation in the model layer class.

Having this in mind, we can go to Figure 14 that presents the general algorithm
for sentences processing. The algorithm can also be described by the following textual
rules:

e Each Actor-to-System SVO sentence is transformed into an operation. The ope-
ration’s name is constructed from the VerbPhrase pointed by the predicate of the
sentence.

46 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

e Each Actor-to-System SVOO sentence is transformed in the same way as the
SVO sentence but additionally the operation’s parameter (based on the indirect
object) is added.

e Each System-to-Actor (UI element) sentence is generated into a code that calls
a proper procedure from the view layer class object.

e Each System-to-System (normal domain element) sentence is generated into a co-
de that calls a proper procedure from the model layer class object.

Finally, condition sentences are transformed differently to regular SVO sentences.
Each condition sentence is transformed into the if-else structure where the operations
created from the basic scenario sentences are added to the if structure and the opera-
tions created from the alternative scenario sentences are added to the else structure.

@uc : Requirement @cl : Class
1 2
\V/ {RequirementsSpecifications} {Kernel}
Y
@ @genop : Operation| |@ui_op : Operation| |@else : Integer | |@break : Integer|
% {Kernel} {Kernel} T
'

@uc : Requirement
{RequirementsSpecifications}|

representation ESqRiem ent

scen : ConstrainedLanguageScenario
{DescriptiveRequirementRepresentations}

@scen : ConstrainedLanguageScenario
{DescriptiveRequirementRepresentations}|

scenario

scenarioStep

sent : ConstrainedLanguageSentence

{ConstrainedLanguageSentences}

V V
----------- 1 &2
V

ProcessSentence(@uc, @sent, @cl, @genop,
@break, @else, @ui_op)

(

Figure 15. Main use case transformation procedure.

)

Based on the above described general algorithm we can now construct the trans-
formation program. Figure 15 presents the main procedure written in MOLA (MOdel
transformation LAnguage, [9]). MOLA is a graphical transformation language based
on pattern matching at the metamodel level (see appropriate language tutorials at
mola.mii.lu.lv). It is capable of modifying a model that complies to a specific abs-
tract syntax written in MOF or transforming it into another model in a similarly
defined different language. The syntax is generally similar and has similar control-
passing semantics as UML activity models. An elementary instance transformation
statement in MOLA is called a rule. Rules are represented by grey rectangles with ro-
unded corners. Their main role is to check whether the elements in the model match

Translation of use case scenarios to Java code 47

the metamodel-related objects presented in the rule. Other important MOLA ele-
ments are loops. They are represented by rectangles with thick edges and controlled
by a thick edged element inside. In Figure 15, the procedure iterates and matches
each ConstrainedLanguageScenario representing a Requirement and takes each of its
scenario’s (iterates over) ConstrainedLanguageSentence for processing. Note that the
metamodel definition for ConstrainedLanguageScenario and ConstrainedLanguageSen-
tence is described in Figure 3.

. @svo : SVOSentence @cl : Class <@genop : Operation> <@ui_op : Operation>
: 1 2 3 4
H {SVOSentences} {Kernel} {Kemel} {Kemel}
:
.

@svo : SVOSentence| source (ss\;J:J : Subject | subject phrt : NounPhrase ST nl1: NounLink | o nyink | noun :Noun
{SVOSentences} subject et {Phrases} moun {Phrases} et {Tems}
actor : Actor Brement phr2 : NounPhrase source | M2 :NounLink | 100 nyink | @noun : Noun
{Actors} {Phrases} {Phrases} {Tems}
name noun target
T
'
v{ELSE}

GmcessSystemSemence(@svo, @cl, @genop, @ui_o;v GmcessActorSemence(@svo. @cl, @genop, @ui_o;ﬁ
T T

Figure 16. SVO sentence processing procedure.

The procedure presented in Figure 16 checks whether the sentence’s subject is
an actor or a system and decides which procedure to choose next (compare the object
structure in the rules with the metamodel in Figures 3 and 4). The procedure Proces-
sActorSentence for processing Actor-to-System sentences is presented in Figure 17.
The first two rules checks whether the sentence is an SVO or an SVOO sentence.
Regardless of the result, the procedure sets the str variable to the verb and the direct
object names. If the sentence is an SVOO sentence, the procedure sets the paraml
variable to the indirect object name. The following rules checks if an operation with
the same name already exists. If not, the transformation creates a new operation
(with the Comment containing the initial method body) with the name based on the
str variable and a parameter based on the paraml variable. The last element of the
procedure it to call the utl_genJButton procedure that creates a new button within
the proper application window class (more precisely: within the ui_op window con-
structor). The procedure ProcessSystemSentence is much simpler as it just generates
appropriate procedure calls, and will be omitted for brevity.

Finally, Figure 18 describes how the condition sentences are processed. The proce-
dure creates the if-else structure by generating the “if” or the “else if” code fragment,
depending on the else variable. The condition’s text is transferred directly into code.

48 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

’ @svo - SVOSentence @l Class @genop opemnon @ui_op Operauo;u |@opname Stg) ‘@sir:smng ‘@paramw St
1
"7 {SVOSentences} {Kemel} {Kemel} {Kemel}
|@svo SVOSenlencelwum |pred Predwtatelw.cm|vph SimpleVerbPhrase | source | verb - PhraseVerbLink
{svosentences} | [argw] {Phrases} vers| {Phrases} .D(stﬁ@verbvalue'r“"+@domec(value)
| ; | |
nbjeﬁlmphn“ s
dobject : NounLink | noun nph - NounPhrase
{Phrases} source {Phrases}
L | | | pa
v’{ELSE)
—
@svo svosmence|,,,,.,m ICP"?G Predmatele'm Icvph ComplexVerbPhrase| oy ap —co ..DQI'=@JEIDV3U€+""'@GDDJE£I valuia)
{SVO! }] wnll {Phrases} T

object

bPhrase cnph2 - NounPhrasel
2 pl’l SneartPTare | P utl _lnCa:ne!Case(@ioued vaue,)
{Phrases} g !

nolm snum

verb - PhraseVerbLink
{Phrases}

utl_genJ Button(@ui_op, @cl,nanE,
@opname, @param 1, @dobject value)

>
{> -
4 ceeemeaa

dobject - NounLink| noun cnpn1 - NounPhrase] object I |'°°Je“ NounLink (utl_toCameiCase(@str, @opname))(]
(Phrases} T {Phrases) {Phrases}
& | ¢ { T
: a
5 @cl- Class | cjags op - Operation
: {Kemel) {Kemel} (E LS E) @c\ C rass class op - Operation
5 —_— [iname = @opname}] L]
: {name <> "init")
${ELSE} = \va \vi
: AR e reeTee
5 genop:=@op genop =@newop @cl - Ciass | glass + newop . Operation « : comm : Comment
: L,_) L_)q | eme) O oneration 7 emeq lowmingElementWR: {Kemel)
5 + hame: s Enouy ='000c odeint res:\n" §
H

! name ="p"s@param1 * WP |mame = "+@param 1}

' @nﬁ*pr Operation] gperation " part - Pammeter 4 Type Class
ELSE) { P Kemep MPS| (eme)

Figure 17. Actor-to-System sentence processing procedure.

The Processlf procedure is responsible for processing the sentences of the scenario that
follow so that the code for those sentences is generated inside the if-else structure.
It is similar to the main procedure in Figure 15.

5. Initial validation and conclusions

In order to validate the presented transformation, an appropriate tooling framework
has been prepared. The framework consists of the ReDSeeDS tool developed within
the ReDSeeDS project [22] that provides a comprehensive RSL editor. This editor
allows writing use case scenarios in accordance with the rules of the RSL language
grammar presented in Section 2. The use case scenarios are stored in a model re-
pository, based on the RSL metamodel. The ReDSeeDS tool, thanks to the built-in
transformation engine, also enables performing transformation programs written in

Translation of use case scenarios to Java code 49
@cond : ConditionSentence @cl : Class @uc : Requirement
1 2 3
. {ControlSentences} {Kernel} {RequirementsSpecifications}
\/
(E.L.S_EZ. (ut_addCode(@genop, "else)) T
4
H H {Kernel}
V4 AV
Gﬂ_ addC: if (res == "+@cond. Text+") (\n9
T 5

(@ui_op : Operation
Gmcesslf(@uc, @cl, @cond, @genop, @ui_o@ 5

{Kernel}

\V/

utl_addCode(@genop, "\n")
Figure 18. Condition sentence processing procedure.

MOLA. The transformation program, implementing translation rules described in
this paper, has been developed to be used with ReDSeeDS. This transformation takes
an RSL model stored in a model repository as an input and translates it into Java
code. This, however, is not done directly. First, the transformation creates a UML
class model with embedded textual Java-compliant contents for the class operation
descriptions. This Java-enhanced UML model can be easily generated into Java code
using standard capabilities of a UML tool integrated within the framework (currently
it is Enterprise Architect by SparxSystems). Since these two steps do not involve any
manual intervention, in future implementations this can obviously be substituted by
a single step. Future work also includes a simple natural language parser that would
additionally facilitate determining scenario sentence parts. Currently, the sentence
parts need to be marked manually by the developers.

This framework has been used in an experiment conducted during laboratory
sessions with students. The students were instructed on RSL story constructs and
had previously gained knowledge about constructing MVC/MVP style systems, using
UML and Java. During the classes, they were formed into 8 groups consisting of 3-4
students each. All the groups were assigned a ready use case model of a Campus Ma-
nagement System, containing 12 use cases. The first assignment consisted in writing
scenarios for the use cases. Four groups wrote the scenarios using the RLS editor, whi-
le four other groups used a structured use case editor built into Enterprise Architect
(EA). The EA editor did not enforce any syntax for the scenario sentences, although
allowed for almost identical structure of scenarios with conditions and notation for
alternatives.

The students had 4 hours (2 lab sessions) to write their scenarios and were asked
to write them only during the classes. All the groups managed to write good quality
scenarios for all the assigned use cases. There were no significant differences between

50 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

the groups using EA and ReDSeeDS. The groups produced from 121 to 159 story
sentences of all types. Based on this, the groups were asked to implement their systems
in Java having 10 hours (5 lab sessions). Each story sentence was treated as complete
if the system managed to pass appropriate data between layers and output “debug”
messages. Two of the groups used the use case to Java transformation, two groups
used a standard ReDSeeDS generator that produces ready three-tier class diagrams
and sequence diagrams. The remaining four groups used manual translation into UML
and then code generation within the EA. The first two groups of students managed to
implement almost half of the functionality, where on average 68 out of 141 sentences
were implemented. It has to be noted that these two groups had extended acceptance
criteria where the “debug” messages for the presentation layer were substituted with
Swing-style GUI forms. The last four groups of students managed to implement 21
sentences on average. The groups that used the ReDSeeDS standard transformation
performed somewhat better with the average of 28 sentences.

The above simple experiment shows significant improvement in productivity
when using the presented scenario translation. It also shows that quite inexperienced
programmers and software designers (students) can benefit from removing the need
to structure their code and write the application logic part. Instead of finding techno-
logical ways to implement the end-user functional requirements, they can concentrate
on writing the data processing (domain logic) code. The presented approach allows
for generating a ready skeleton for such code.

Acknowledgements

This research has been carried out in the REMICS project and partially funded by
the EU (contract number IST-257798 under the 7th framework programme), see
http://www.remics.eu/.

References

[1] de Castro V., Marcos E., Vara J. M.: Applying CIM-to-PIM model transforma-
tions for the service-oriented development of information systems. Information
and Software Technology, 53:87-105, 2011.

[2] di Lucca G., Fasolino A., de Carlini U.: Recovering use case models from object-
oriented code: a thread-based approach. In Proc. 7th Working Conf. on Reverse
Engineering, pp. 108-117. IEEE, 2000.

[3] Ding Z., Jiang M., Palsberg J.: From textual use cases to service component
models. In Proc. 8rd Int. Workshop on Principles of Engineering Service-Oriented
Systems, pp. 8-14. ACM, 2011.

[4] Fellbaum C., editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[5] Francu J., Hnétynka P.: Automated generation of implementation from textual
system requirements. In Software Engineering Techniques, volume 4980 of Lecture
Notes in Computer Science, pp. 34—47. Springer; Berlin / Heidelberg, 2011.

Translation of use case scenarios to Java code 51

[6] Grechanik M., McKinley K.S., Perry D.E.: Recovering and using use-case-
diagram-to-source-code traceability links. In Proc. 6th Joint Meeting Europe-
an Software Eng. Conf. and ACM SIGSOFT Symp. on Foundations of Software
Eng., pp. 95-104, 2007.

[7] Hirschfeld R., Perscheid M., Haupt M.: Explicit use-case representation in object-
oriented programming languages. In Proc. 7th Symp. on Dynamic Languages,
pp- 51-60. ACM, 2011.

[8] Kaindl H., Smialek M., Wagner P., Svetinovic D., Ambroziewicz A., Bojarski J.,
Nowakowski W., Straszak T., Schwarz H., Bildhauer D., Brogan J.P., Muka-
sa K.S., Wolter K., Krebs T.: Requirements specification language definition.
Project Deliverable D2.4.2, ReDSeeDS Project, 2009. www.redseeds.eu.

[9] Kalnins A., Barzdins J., Celms E.: Model transformation language MOLA. Lec-
ture Notes in Computer Science, 3599:14-28, 2004. Proc. of MDAFA’04.

[10] Kamalrudin M., Hosking J., Grundy J.: Improving requirements quality using
essential use case interaction patterns. In Proc. 33rd International Conference
on Software Engineering, pp. 531-540. IEEE, 2011.

[11] Kleppe A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 2008.

[12] Kleppe A. G., Warmer J. B., Wim B.: MDA Explained, The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley, Boston, 2003.

[13] Object Management Group. Meta Object Facility Core Specification, version 2.0,
formal/2006-01-01, 2006.

[14] Phalp K. T., Vincent J., Cox K.: Improving the quality of use case descriptions:
empirical assessment of writing guidelines. Software Quality Journal, 15:383-399,
2007.

[15] Potel M.: Mvp: Model-view-presenter the taligent programming model for C++
and java. Technical Report, Taligent Inc., 1996.

[16] Qin T., Zhang L., Zhou Z., Hao D., Sun J.: Discovering use cases from source
code using the branch-reserving call graph. In Proc. 10th Asia-Pacific Software
Eng. Conf., pp. 60-67. IEEE, 2003.

[17] Sarkar S., Sharma V.S., Agarwal R.: Creating design from requirements and use
cases: bridging the gap between requirement and detailed design. In Proc. 5th
India Software Engineering Conference, pp. 3—12. ACM, 2012.

[18] Simons A. J.H.: Use cases considered harmful. In Proc. of the 29th Conferen-
ce on Technology of Object-Oriented Languages and Systems-TOOLS Europe’99,
pp- 194-203, Nancy, France, June 1999. IEEE Computer Society Press.

[19] Smialek M.: Software Development with Reusable Requirements-Based Cases.
Publishing House of the Warsaw University of Technology, 2007.

[20] Smiatek M.: Requirements-level programming for rapid software evolution. In

J. Barzdins, M. Kirikova, eds., Databases and Information Systems VI, chapter 3,
pp. 37-51. IOS Press, 2011.

52 Michal Smialek, Norbert Jarzebowski, Wiktor Nowakowski

[21] Smialek M., Bojarski J., Nowakowski W., Ambroziewicz A., Straszak T.: Comple-
mentary use case scenario representations based on domain vocabularies. Lecture
Notes in Computer Science, 4735:544-558, 2007. Proc. of MODELS’07.

[22] Smiatek M., Kalnins A., Ambroziewicz A., Straszak T., Wolter K.: Comprehensive
system for systematic case-driven software reuse. Lecture Notes in Computer
Science, 5901:697-708, 2010. Proc. of SOFSEM’10.

[23] Simko V., Hnétynka P., Bures T.: From textual use-cases to component-based
applications. Studies in Computational Intelligence, 295:23-37, 2010.

[24] Yue T., Briand L. C., Labiche Y.: A systematic review of transformation appro-
aches between user requirements and analysis models. Requirements Engineering,
16(2):75-99, 2011.

Affiliations

Michat Smiatek
Warsaw University of Technology, Warsaw, Poland, smialek@iem.pw.edu.pl

Norbert Jarzebowski
Warsaw University of Technology, Warsaw, Poland, jarzebon@iem.pw.edu.pl

Wiktor Nowakowski
Warsaw University of Technology, Warsaw, Poland, nowakoww@iem.pw.edu.pl

Received: 8.03.2012
Revised: 26.06.2012
Accepted: 3.09.2012

