
Computer Science • 23(4) 2022 https://doi.org/10.7494/csci.2022.23.4.4375

Aicha Aggoune
Mohamed Sofiane Namoune

METADATA-DRIVEN DATA MIGRATION
FROM OBJECT-RELATIONAL DATABASE
TO NOSQL DOCUMENT-ORIENTED
DATABASE

Abstract Object-relational databases (ORDB) are powerful tools for managing complex

data, but they suffer from problems of scalability and managing large-scale data.

Therefore, the importance of the migration of ORDB to NoSQL derives from

the fact that the large volume of data can be handled in the best way with high

scalability and availability. This paper reports a metadata-driven approach

for the migration of ORDB to a document-oriented NoSQL database. Our

data-migration approach involves three major stages: a pre-processing stage

(to extract data and a schema’s components), a processing stage (to provide

data transformation), and a post-processing stage (to store migrated data as

BSON documents). This approach maintains the benefits of Oracle ORDB in

NoSQL MongoDB by supporting integrity constraint checking. To validate our

approach, we developed the OR2DOD (object relational to document-oriented

database) system, and the experimental results confirm the effectiveness of our

proposal.

Keywords NoSQL document-oriented database, object-relational database, data migration,

mapping rules, metadata

Citation Computer Science 23(4) 2022: 495–519

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

495

https://doi.org/10.7494/csci.2022.23.4.4375
https://creativecommons.org/licenses/by/4.0/

496 Aicha Aggoune, Mohamed Sofiane Namoune

1. Introduction

Many contemporary companies include complex data sets that are stored in object-

relational databases [13, 28]. These databases were modeled by a hybrid data model

that combines the advantages of the relational data model and the modeling primi-

tives of the object-oriented paradigm to properly represent complex data, support rich

data types, and address the object-relational impedance mismatch [31]. The hybrid

data model is the object-relational model that allows for the natural representation

of complex data (e.g., geospatial and multimedia data) using various concepts such

as objects, identifiers, inheritances, encapsulation, and polymorphism [12]. In object-

relational databases, the data is stored in different tables that are related to each other

using references and collection data types [9]. Access to this data is easy by using what

is known as the SQL:1999 structured query language and may be difficult when us-

ing the PL/SQL procedural language [14]. The ORDBMS object-relational database

management system provides great support for the object-oriented programming lan-

guage, and it is expected to become increasingly important for handling a large volume

of complex data. ORDBMS supports transaction-oriented applications that provide

data consistency within multiple partitions of a node [24]. However, the tremendously

increasing volume of multiple data types (multimedia, embedded data, etc.) makes

ORDBMS very complex, and its performance degrades rapidly [27]. Also, the data

heterogeneity and rigid schema introduce a storage problem when the data to be

inserted is not adequate [20].

In 1998, Carlo Strozzi coined the term NoSQL (not only SQL) to describe a new

approach for managing a large amount of heterogeneous data [33].

NoSQL databases provide a good solution for supporting a large scale of different

data types, enabling high horizontal scalability and availability that cannot be eas-

ily accomplished in ORDB [10]. In contrast to the object-relational database, which

is based on a strict schema with integrity constraints, the NoSQL schema is char-

acterized by a schema-less where data can be stored without any defined database

schema [21]. A NoSQL database can also be modeled by different data models; there-

fore, different kinds of NoSQL databases can be distinguished. They are classified

into four categories: key-value, wide columnar, document, and graph databases [10].

To efficiently and flexibly manage the large existing volume of object-relational

databases, it is necessary to transform and migrate them to NoSQL databases rather

than creating NoSQL data from scratch. Several approaches and frameworks have

focused on the migration of relational databases to NoSQL [22]. These solutions

are not suitable for the migration of object-relational databases. So far, very little

research has investigated this type of data migration.

The main contribution of this paper is to ensure the migration of object-relational

databases to NoSQL (which are more complex than relational databases). In this

study, we focused on the MongoDB document-oriented database. MongoDB is the

most popular NoSQL database and includes JSON- and BSON-based documents for

Metadata-driven data migration from object-relational database... 497

storing data with replication that leads to high scalability, availability, auto-sharding,

and data querying [30].

Our data-migration approach is based on the use of metadata that contains a list

of mapping rules between the object-relational and NoSQL models. This metadata

can be used for many data-migration activities such as data reconciliation, data inte-

gration, data repairing, and data management. The proposed data migration adopts

a mapping process that involves three stages: a pre-processing stage (to extract

data and a schema’s components), a processing stage (to provide data transforma-

tion), and a post-processing stage (to store the migrated data as BSON documents).

The rest of this paper is organized as follows. Section 2 reviews the related works

of data migration. Section 3 introduces an overview of our data-migration approach,

while Section 4 describes the metadata that is used in this approach. Section 5 presents

our proposal in detail. Section 6 shows the experimental results in order to demon-

strate the performance of our OR2DOD system. Section 7 ends with our conclusions

and future directions.

2. Related work

Recently, several researchers in the data-migration domain have focused on the trans-

formation from relational databases to NoSQL. Generally, the existing studies have

been focused on either relational or object-oriented data migration.

In relational data migration, different approaches have been proposed such as con-

version rules-based approaches, which aim at defining a set of conversion or translation

rules that applying to a relational database [7, 25, 32]. Some works are based on the

integration of a mid-model that is used between source data and target data [3, 18, 19].

Rocha et al. [29] developed a complete framework for the auto-migration of relational

to NoSQL document-oriented databases. This framework provides a seamless NoSQL

layer for the transformation of SQL queries to NoSQL ones; thus, the results of

any NoSQL queries must be transformed to relational data, which will then be sent

to the user.

In addition, several object-NoSQL data-mapping (ONDM) frameworks have been

developed for the migration of an object-oriented database to NoSQL [27]. As an

example, the Hibernate OGM framework (OMG) [16] supports the migration of

an object-oriented database to three types of NoSQL stores: MongoDB document-

oriented, Neo4j graph-oriented, and Infinispan key-value databases.

These works are all confined to migrate from the relational/object databases to

NoSQL databases. Unfortunately, these proposals are not fitted to the migration of

ORDB to NoSQL. Despite the many advantages of the object-relational model, it

is not appropriate for high speeds nor huge quantities of data (also known as big

data) [8, 24]. The migration of a large volume of ORDB to NoSQL is a promising

way to data manage with high scalability and availability.

While the migration of relational databases to NoSQL is a well-studied field of

research, there is only one solution that focuses on the migration of object-relational

498 Aicha Aggoune, Mohamed Sofiane Namoune

databases. In [15], the authors proposed an approach for model transformation

from an object-relational database (ORDB) to a NoSQL document-oriented database.

This approach involves the use of an intermediate layer between the ORDB and the

document-oriented model. The goal of this layer is to generate a data model of an

object-relational database by extracting all of the elements of its logical schema such

as abstract data type, relationships, tables, etc. Thus, a set of transformation rules

is defined and applied to the generated data model to produce a NoSQL document

model as an output. This contribution is still a preliminary work, and the proposal

lacks insightful analysis. A more verbose comparison of our work to this related work

is shown in Table 1.

Table 1
Comparison between our work and related work

Our work Related work

Migration from object-relational database Migration from object-relational database

of Oracle to document-oriented database of Oracle to document-oriented database

of MongoDB of MongoDB

Development of OR2DOD system Ongoing research

Data migration Model migration

Metadata-driven approach Rules-guided approach

Ensuring Constraint migration Only migration of primary key

Ensuring migration of Index, nullable, Nothing

check, and default constraints

Experimental analysis Demonstrative examples without

implementation

Compared to the related work that is presented in [15], our work defines a com-

plete solution that enables users to migrate their object-relational databases to NoSQL

document-oriented databases.

3. Overview of metadata-driven data-migration approach

We propose a metadata-driven approach for the migration of an object-relational

database to a NoSQL document-oriented database. Moving to the leading new tech-

nology (termed NoSQL) is a suitable solution for storing and handling this next-

generation data.

The aim of our data-migration approach was twofold. First, we addressed the

main drawback of object-relational database management systems, which have been

unable to live up to expectations when a large volume of data must be stored and pro-

cessed. Second, we maintained the benefits of both the object-relational and NoSQL

technologies (such as scalability to handle huge amount of data and integrity con-

straints to ensure data quality). The authors have presented a preliminary proposal

that pays less attention to the problem of data migration from an object-relational

Metadata-driven data migration from object-relational database... 499

database (ORDB) to a NoSQL database [2]; thus, it does not study integrity con-

straint management from the data-migration perspective.

In this paper, we present a metadata-driven approach for data migration. We

also present OR2DOD (object-relational to document-oriented database) – a system

for validating our proposal.

The approach involves our process to define three major stages: the pre-

processing stage (for data acquisition and extraction), the processing stage (to per-

form the data transformation), and the post-processing stage (to provide adjustments

of the constraints and data importing). Figure 1 pictorially shows an overview of the

proposed approach.

Figure 1. Overview of metadata-driven data-migration approach

The goal of data pre-processing is to acquire an original database that is modeled

by an object-relational model and extract the data and schema components (table

name, data type, column name, column value, constraints, etc.). This stage essentially

relies on SQL queries in order to extract these elements, which will be stored in

lists and used during the processing stage. This stage is the fundamental phase

in the data-migration process. The processing stage is guided by the metadata of

mappings between the source and target models; it aims to perform the migration

by automatically creating blank JSON files from the parent and super tables. JSON

(JavaScript object notation) is the principal format that is used to store data in

a NoSQL document-oriented database [26, 32]. Due to the lack of schema in the target

500 Aicha Aggoune, Mohamed Sofiane Namoune

model (the NoSQL model), we make sure to ignore all empty columns (columns with

a null value) while transforming the data so as not to transform any missing data.

The final stage aims at filling the objects in the appropriate blank JSON files

and adding some constraints by using the metadata. After this, the generated JSON

files can be imported in the BSON (binary JSON) format, which is directly managed

by the MongoDB system.

Furthermore, this approach provides a mechanism for using integrity constraints

as a target persistence backend in order to take advantage of the full benefits of

the object-relational model. This combination makes it possible to handle a huge

amount of data while retaining the advantages of both the object-relational and

NoSQL document-oriented models.

4. Metadata description

As previously explained, our data-migration approach is guided by metadata that in-

cludes mapping rules that allow one to generate a NoSQL document-oriented database

from an object-relational database. The motivation of the metadata is to minimize

the migration costs for applications that access object-relational databases that are

intended to be moved to NoSQL databases. To represent such mappings of our meta-

data, it is helpful to briefly describe the data model of both the object-relational and

NoSQL document-oriented databases.

The object-relational model is an extended relational one for supporting the

non-first normal form (NF2), which allows attributes to have complex types by using

abstract data types (ADT). This intends to manage diverse data types by incorpo-

rating the object-oriented features into relational models, such as objects, methods,

which are written in PL/SQL, encapsulation, inheritance, and polymorphism [31].

The object-relational model allows users to create their data-structured types by us-

ing ADT [9]. The latter is defined by four elements:

• ADT name;

• ADT type (object, REF reference to another ADT, and collection data types);

• list of attributes that are associated with domain that is built-in datatype or

other ADT;

• list of methods signatures for representing behavior of ADT.

For example, the following SQL statement allows for the creation

of an ADT named Author t as an object type with three attributes

(Code, Name, Email): CREATE TYPE Author t AS OBJECT (Code Integer, Name

varchar2(40), email Varchar2(40)).

ADT offers multi-valued attributes by using collection-data types such as varrays

(arrays with variable sizes), nested tables, etc. [17]. These collection-data types differ

from one ORDBMS to another. In our work, we focused on the best ORDBMS (the

so-called Oracle). The object-relational table (also called the NF2 table) was created

through the object ADT with a set of constraints. For example, we can create a table

Metadata-driven data migration from object-relational database... 501

that is termed Author from the Author t object type as follows: CREATE TABLE

Author OF Author t (Primary key (Code)).

In contrast to the relational model, a relationship between the NF2 tables can

be achieved without using foreign keys [12]. Indeed, the relationship can be made

according to the association between the object types on which the NF2 tables were

created. There are two types of associations between the object types of NF2 tables:

aggregation associations, and symmetric associations [11, 23]. The aggregation asso-

ciation (also called total nesting) is when the tables are nested within other tables

as values in a column. In other words, the data type of this column is an object

type (in the case of a one-to-one relationship) or collection-data types (in the cases

of one-to-many or many-to-many relationships) like nested tables and varrays. The

symmetric association (also called partial nesting) is when tables are created with

a column whose data type is a reference or a collection of references to other tables.

The target data of the migration approach is modeled by the NoSQL document-

oriented model. The document-oriented database stores data in the form of semi-

structured documents that are fully schemaless (like the JSON and BSON for-

mats) [10]. The document can be considered as a row or object in an NF2 table.

Each document has a set of fields or attributes that are associated with ordinary

values, complex values (such as references to documents), embedded documents, and

a list of values or references. A set of documents that represent the same entity are

organized in the so-called collection, which is the equivalent of an object-relational

table [6]. The relationship in the document-oriented database can be modeled by us-

ing references or embedded documents [29]. We use one of the most popular NoSQL

document-oriented database systems called MongoDB, which was developed by 10gen

and an open-source community [6].

The list of the mapping rules that is included in the metadata is divided into three

categories: component mapping, data mapping, and constraint mapping. Component

mapping (CM) intends to convert the principal components of an object-relational

schema into a NoSQL document model; it consists of four mapping rules:

CM1. The schema’s name of the ORDB corresponds to the name of the NoSQL

document-oriented database.

CM2. In the case of aggregation association, the name of the parent table corresponds

to the name of the collection.

CM3. In the case of symmetric association, the names of related tables correspond

to the names of collections.

CM4. The super table with its sub-tables that are produced by the inheritance be-

tween their object types is mapped to one collection (which takes the same

name as the super table). This rule is motivated by the fact that the NoSQL

schema is very flexible in storing data. So, the generated documents with

minimum fields probably represent the content of the super table, and the

documents with maximum fields represent the objects of the sub-tables.

502 Aicha Aggoune, Mohamed Sofiane Namoune

Note that defining collections involves the creation of blank JSON files. In the

second category of the mapping, we describe the data-mapping (DM) rules to trans-

form the object-relational data into documents.

DM1. In the case of aggregation association, each row of parent tables corresponds

to an empty document.

DM2. In the case of symmetric association, each row of related tables corresponds

to an empty document.

DM3. Each row of both the super table with its sub-tables corresponds to an empty

document.

DM4. If a column of a table has a null value, then it has nothing to do in the NoSQL

document-oriented model.

DM5. Each atomic column of the mapped tables is represented in the appropriate

document as a field that is associated with a column value.

DM6. Each column has a structured datatype (an object or row) and is mapped to

a field (where its value is an empty embedded document).

DM7. Each column represents a nested table or a varray of values that is mapped

to a list of empty embedded documents.

DM8. Each atomic column of a nested table (or of a structured type) is mapped

to a field with a column value and added to the field’s list of its mapped

embedded documents.

DM9. Each column has a reference REF as a data type to a row of the second

table (symmetric association) and is mapped to a field (where its value is

a reference to a document of the second collection, which was previously

generated).

DM10. Each column has a data type such as a nested table or varray of references to

the second table and is mapped to a field (where its value is a list of references

to documents of the second collection, which was previously generated).

The third category of mapping (termed constraint mapping – COM) is typically

used during the post-processing stage. When documents are located in the appropri-

ate JSON files, we translate the different constraints into a NoSQL document-oriented

database.

COM1. The primary key of a table (simple primary or composite primary keys that

contain multiple columns) corresponds to the creation of a unique index on

one or multiple fields of the appropriate collection.

COM2. The unique keys of a table correspond to the creation of unique indexes.

COM3. Each index (or unique index) is mapped to the creation of an index (or

unique index).

COM4. The sequence has auto-increment functionality that has a name (SN), initial

value (IV), and increment value (step – SV). Each sequence is mapped to

the creation of a function that takes SN and SV values as inputs and return

Metadata-driven data migration from object-relational database... 503

an updated sequence number. The initial value (IV) is defined as a new

collection called counters, which is used in the aforesaid function.

COM5. The check constraint allows one to specify a condition on each row in a

table. This condition is mapped to the creation of function CHK, which is

integrated into the new NoSql database that takes the benefits of the object-

relational model. The created CHK function is very important for inserting

and updating the documents of a new NoSQL database.

COM6. The default constraint indicates a default value for a column. This option is

mapped to the creation of function DFLT, which contains all of the default

values that are related to the corresponding fields of a new NoSQL database.

COM7. The not null constraint is very important for enforcing the completeness

of a column value [1]. This means that we cannot insert or update a row

without providing a value to this column. This constraint is also mapped to

the creation of the NUF function, which defines a condition for each value of

a specified field of a new NoSQL database.

5. Detailed approach

To illustrate the data-migration process, consider an example of the object-relational

database that was used in our experimental study. This database specified a statistical

data set on France’s population distribution (FPD), which is available at the SQL.sh

website (http://www.sql.sh). To clearly describe the FPD schema, we have adjusted

all of the names of the schema components to English. The principal part of the

object-relational model is shown in Figure 2.

Figure 2. Object-relational model of FPD database

Figure 3 illustrates the SQL statements for creating the schema of FPD.

Our FPD schema is defined by the Department relationship, which describes the

territorial division of France. The departments are further subdivided into cities,

http:// www.sql.sh

504 Aicha Aggoune, Mohamed Sofiane Namoune

which in turn contain the important properties of each city and population (such as

arrondissement, Caton, surface, etc.). The population of each city is defined by three

properties: Year (defining the year of the population distribution), Population -

Number (presenting the number of people), and Density (specifying the popula-

tion density). We take an example of ten years of population data (between 1999

and 2019).

Figure 3. SQL statements for creating object-relational schema of FPD

The type of relationship between departments and cities is a one-to-many re-

lationship with an aggregation association between their object ADT, because the

Department table dominates the Cities table (each city must be included in its de-

partment). Therefore, we define an additional attribute called Cities in the object

type of the Department table (termed Department t). This attribute has a collection

data type called Ens cities (ensemble of cities) (Line 8), which is defined through

the object ADT City T (Line 7). City t is defined by a set of the properties of a city

(like surface, latitude, etc. – Lines 3–6). For each city, we also need to know infor-

mation about its population for each of the years. We take the last ten years as an

example. So, we define the population’s information by a varray data type (termed

Population t of ten elements – Line 2). Each element of Population t has the

object ADT called Have, which is presented by the three aforementioned attributes

(Line 1).

Finally, the Department table is created via the Department t object type, with

Department ID as a primary key (Line 9). The nested table data of the Cities column

will be stored in an appendix table named Thecities, which is accessed indirectly

via the Cities complex column of the Department table (Line 10).

The data-migration process starts with a data investigation of the original

database. We establish a set of SQL queries to automatically extract the compo-

nents of the object-relational schema. Table 2 presents some SQL queries that were

used in this stage.

Each type of extracted component will be stored in the lists of the string; for

example, Parent-list includes all names of the Parent tables, column Nestedtable

contains the names of the columns of the extracted Nested table, etc. We continue

with the example of the FPD database. The output of the pre-processing stage is

introduced in Table 3.

Metadata-driven data migration from object-relational database... 505

Table 2
Some SQL queries of pre-processing phase

SQL query Description

SELECT Tname FROM Tab extracting the names of all of the existing tables

SELECT DISTINCT Table name extracting the names of all of the existing

FROM ALL NESTED TABLE COLS nested tables from the specific schema’s name

WHERE owner=schema’s name

SELECT column name, data type extracting the column name with its data type

FROM SYS.ALL TAB COLUMNS of the selected table defined in the table name

WHERE owner =schema’s name AND from the specific schema that is presented by

Table name=selected table the owner property

Table 3
Output of pre-processing phase

Output list Comment

Parent-list=[Department] List of the parent tables.

We have one table Department

Nested-list=[Thecities] The nested table of the column

Cities is represented by the appendix

table Thecities

Column Parent (Department)= Columns of the Department table

[Department ID,Cities]

Column nestedtable(Thecities)= Columns of the nested table Thecities

[City id, City simpleName,

City realName, City soundexName,

Zip code, Commune code,

Arrondissement, Canton, Surface,

Longitude Degree, Latitude Degree,

City zmin, City zmax, Population]

Column array(Population)=(Have) Columns of the varray called Population

Column structured(Have)= (Year, Columns of the structured type

Population Number, Density) termed Have

Constraint-parent(Department)= Department table has two properties:

(primary key (Department ID), the primary key constraint and the nested

Nestedtable (Thecities, cities)) table Thecities of the column cities

Constraint-Nested(Thecities)= The primary key of the nested table

(primary key(City ID)) Lescities

The atomic and referenced values of each column are also stored in lists. Thus,

each complex value is represented by a set of column values of the corresponding

data type. For example, the Population column of the Thecities nested table has

a varray data type; namely, Population t. So, each value of Population is defined

by a list of the column values of the Population t type.

506 Aicha Aggoune, Mohamed Sofiane Namoune

The output of the pre-processing stage becomes the input for the processing

stage, which provides the data transformation into the NoSQL document-oriented

model. The result of the transformation process is a set of blank JSON files and a list

of JSON objects.

Referring to our example, the output of the data-transformation stage is one

blank JSON file (i.e., one collection), which takes the same name as the Departement

parent table (applying the CM2 rule). Thus, a set of JSON objects is produced, which

means the documents of the NoSQL document-oriented database. The following

statements show the creation of the NoSQL database and the Departement collection,

respectively:

• Use ⟨Schema’s name⟩ // The name of the NoSQL database is the same name as

the user schema of FPD.

• db.createCollection(⟨Parentlist.get(i)⟩), where i indicates the ith name

of the parent table.

An example of the creation of the JSON object from the Department table is as

follows:

{” Department ID”:”045”,

”Cities”:[

{”City ID”:”16836”,”City simpleName”:”selle-sur-le-bied”,

”Population”:[{”Year”:2017, ”Population Number”:1012,

”Density” : 23,93}]},
{”City ID”:”16837”,”City simpleName”:”bouzy-la-fore”}, ”Population”:
[{”Year” : 2017, ”Population Number” : 1221, ”Density” : 33}]}
] }
The documents nesting (equivalent to nesting tables in ORDB) is based on

the Constraint-Parent and Constraint-Nested lists. From the Constraint-Parent

Department, we have the property Nestedtable(Thecities, Cities), which means

that all JSON objects of the nested table Thecities become the embedded documents

in the Department collection. These embedded documents are defined by the field

called Cities.

The post-processing stage is divided into three steps:

1. Filing the JSON objects in the appropriate JSON files.

2. Adding constraints. This final stage is based on the constraint mapping

rules of metadata to transform the extracted constraints of the ORDB

into functions of the NoSQL document-oriented database. In our exam-

ple, we have two lists of constraints: Constraint-Parent(Department) and

Constraint-Nested(Thecities). In the first list of constraints, the primary

key of the Department table becomes the unique index that is created as

follows: db.Department.ensureIndex("Department ID":1, "unique":true).

The same case applies in the second list of constraints, where we create the

unique index of the embedded documents.

Metadata-driven data migration from object-relational database... 507

3. Importing the generated JSON files to the BSON that is directly managed by

the MongoDB system.

The generated JSON files are well used not only in MongoDB system but also in

any NoSQL document-oriented database systems such as CouchDB, DynamoDB, etc.

Using MongoDB is for ensuring the matching between SQL and the Mongo language

as well as importing the generated JSON files to the BSON that is directly managed

by the MongoDB system.

6. Performance and experimental results

For the experimental study, we implemented the OR2DOD (object-relational to

document-oriented database) system to validate our data-migration approach. We

created two object-relational databases: the first was based on the data that was

available at the SQL.sh website (http://www.sql.sh). This database describes infor-

mation about the distribution of the population throughout France, which is presented

in Section 5; it contains 36,700 records. The second database describes a running ex-

ample of an e-commerce application that defines the relationships between providers

and products in enterprises; at aims to present a many-to-many relationship, which

is interpreted by the creation of a nested table of another related table in each table.

The E-commerce database contains 45,000 records and is composed of three tables:

Provider, Product, and Enterprise. These tables are related by many-to-many rela-

tionships where a provider can offer many different products to many enterprises; on

the other hand, there are many providers that an enterprise works with. Figure 4

illustrates the object-relation model of the second database.

Figure 4. Object-relational model of E-commerce database

http:// www.sql.sh

508 Aicha Aggoune, Mohamed Sofiane Namoune

Both databases were implemented using Oracle (Release 11.2.0.2.0.), which pro-

vided the ability to view tables back in time and offered grid-computing functions. The

output database of the data-migration framework was handled by using MongoDB

(Version 3.2.22), which presented good performance in the replication and sharding

of large volumes of BSON documents. The OR2DOD system was developed by using

the Java language, and all of the experiments were performed on a computer that was

equipped with an Intel Core i5 with 2.50 GHz, 4 GB RAM, and the 64-bit version of

the Windows 10 operating system.

The OR2DOD tool not only offered data migration but also other functionalities

(see Figure 5):

• OR-DATA: to display object-relational data via SQL queries.

• OR-SCHEMA: to display object-relational schema via standard SQL queries of the

Oracle system.

• Queries: to ensure three kinds of data update queries (INSERT, DELETE,

and UPDATE). This functionality was very important when we needed to in-

crease/decrease/change the input and output data during the experimental study.

Figure 5 depicts the OR-SCHEMA of the FPD database as an example of one of the

aforementioned OR2DOD functionalities. We kept all of the names of the departments

of France in French, where ’Lesvilles’ in the Schema menu meant the Thecities

nested table. The column named ’Column name’ of the presented table returned

all columns of the selected table (for example, Department) where the values Ville -

departement:Integer and Villes:Ens villes present respectively, Departement ID and

Cities, which is defined by a datatype called Ens cities.

Figure 5. Visualizing object-relational schema in OR2DOD tool

Figure 6 presents an example of data migration in the OR2DOD system.

In Figure 6, the OR2DOD system provided the transparent migration for users

by pressing the “Start the migration” button of the selected object-relational database

Metadata-driven data migration from object-relational database... 509

and viewing the data-migration progression with the result in two different ways. In

the first mode, the user can click a JSON file’s name to download it (see Part 1). The

second mode is meant to select the generated collections that are given in Part 2 and

show its contents in Part 3.

Figure 6. Example of data migration in OR2DOD tool

The proposed approach was validated by the development of an end-to-end sys-

tem called “OR2DOD”, which required a performance evaluation. On this basis, we

established two major evaluations: qualitative, and quantitative. In each type of

evaluation, three different tests were performed.

6.1. Qualitative evaluation

The first performance study that we performed aims at assessing whether the pro-

posed approach properly migrated the data without any data loss or data poorly

transformed. In other words, we evaluated the quality of our metadata (which is

the fundamental building block of the data-migration process). Therefore, we estab-

lished three principal data tests in this evaluation: loss, corruption, and integrity

constraints.

In the data-loss test, we checked whether the data from the input database mi-

grated without any data loss. Our strategy relied on queries to compare the numbers

of both the source data and the target data according to two dimensions: the rows,

and the columns. In the row dimension, we verified the equality between the number

of rows in each object-relational table and the number of documents of the corre-

sponding collection. Thus, the same operation must be applied between the nested

table and the embedded document of the corresponding document of a collection.

510 Aicha Aggoune, Mohamed Sofiane Namoune

The column dimension aims to check each row and the number of its columns that do

not have a null value. This concerns all of the columns of the parent tables, nested

tables, structured columns, and columns with row- and varray-data types. Table 4

shows some SQL queries with their equivalent NoSQL ones in order to perform the

first test of the qualitative evaluation.

Table 4
Some queries performed in qualitative evaluation

SQL query NoSQL query Description

SELECT COUNT(Department ID) db.Department.count(). return number

FROM Department of departments

SELECT Department ID, db.Department.aggregate return number

COUNT(C.COLUMN VALUE. ([{$group : { id : of cities for each

City ID) FROM Department "$Department ID", department

D, TABLE(D.Cities) C num cities:{$sum:1}}}]).
GROUP BY Department ID.

SELECT column name FROM db.Department.aggregate return columns

SYS.ALL TAB COLUMNS, ([{”$project": with not-null

WHERE table name= {”arrayofkeyvalue" constraint

:{”$objectToArray":"$$ROOT" }}}, {”$project": ”:{”keys":
’DEPARTMENT’ AND "$arrayofkeyvalue.k”}}])
Nullable=’N’.

SELECT * FROM Department. db.Department.find(). display all

pretty(). departements

SELECT C FROM Department db.Department.find({ return all cities of

D, TABLE(D.Cities) C WHERE "Department ID":"045"}, department that are

D.Department ID=045 {"Cities":1}).pretty() identified by 045

SELECT COUNT(P.Column db. Department.distinct(return size of

value) FROM Deparement D, ’cities.population’). varray of population

Table (D. cities) C, length. column from complex

Table (C.population) P. column cities

Several SQL queries were used during this qualitative evaluation. Due to a limi-

tation of space, we directly present the results in Figure 7.

The plot that is presented in Figure 7 describes the different SQL and NoSQL

queries that were performed on the two databases on the x-axis and the number of

responses (NR) of each query on the y-axis. For example, the query named ‘Depart-

ment’ aims to count the number of existing departments in the Departement table

as well as in the Departement collection. Observing the results that were related to

this assessment, our metadata-driven approach allowed for data migration without

any data loss.

Metadata-driven data migration from object-relational database... 511

Figure 7. Results of test of data loss

Due to the huge amount of data and the heterogeneity of the data structure

between the input and output of the migration process, it is recommended to verify the

effectiveness of our proposal in terms of data-migration mismatches. Indeed, testing

the data corruption is achieved by automatically comparing the values between the

row of the ORDB and the document of the NoSQL document-oriented database.

We focused on a technique that was used to detect the mismatches between

values of the input and their corresponding values in the output data. In fact, we

proposed a similarity-based data-comparison algorithm to automatically determine

that the input values had been correctly migrated. The proposed algorithm is es-

sential for comparing the contents of two different databases (object-relational and

document-oriented). The row of the object table has a value for each column. The

extraction of the values of the columns and fields were respectively based on SQL and

Mongo queries.

The proposed data-comparison algorithm is based on the use of two similarity

measures: the Euclidean distance-based, and the cosine’s. The Euclidean distance-

based similarity SimD is most often used to compare two lists of numerical values,

while the cosine’s measure is applied for computing the resemblance between vectors of

words for word-sense disambiguation [4, 7]. For example, we measured the Euclidean

distance-based similarities between their values in ORDB and NoSQL in order to

compare the population densities:

SimD(A,B) = 1/Dist(A,B) (1)

where Dist(A,B) is the Euclidean distance between A and B (which is given by the

following formula):

Dist(A,B) =

√√√√ n∑
i=1

(xi − yi)2 (2)

In another example for comparing the names of the cities (City simpleName),

we applied the cosine’s similarity between their values in ORDB and NoSQL. The

512 Aicha Aggoune, Mohamed Sofiane Namoune

cosine’s similarity Cosim between the two vectors of Words X and Y is defined as

follows:

Cosim(X,Y) =
X · Y

∥ X ∥2 · ∥ Y ∥2
(3)

∥ X ∥ means the magnitude of X. The perfect value of these similarities is 1, which

indicates that the two compared elements are closely similar, while the bad value is

0 – this designates that the two elements are completely dissimilar.

Due to the flexibility of the NoSQL schema, we take only the values of those

columns that are not null for each row of the object table; we then compare these

with all of the values of the corresponding field in the NoSQL database. The following

algorithm describes how to measure the similarity between the rows of ORDB and

the documents of the generated NoSQL database.

Algorithm 1: Similarity-based data-comparison algorithm

Input: T: Table of ORDB

C: collection of NoSQL

1 begin

2 foreach row Ri ∈ T do

3 foreach document Di ∈ C do

4 foreach not null column Cj ∈ Ri and Field Fj ∈ Di do

5 S[j]:=Compute similarity (Cj , Fj);

6 Avg[i]:=average(S[j]);

7 SimRow[i]:=Max (Avg[i]);

8 end

The similarity-based algorithm starts by computing and recording the simi-

larities between the selected columns (columns without a not-null constraint) of

the ith row of Table T and the corresponding fields of the ith document (Line 5). In

Line 6, we calculate the average of similarities of these columns; this represents the

similarity between row Ri and document Di. The loop in Line 3 aims to compute

the similarities between row Ri and the existing documents of collection C. In the

final step, we select the most similar document to row Ri. Take the following

object-relational row from the FPD database as an example:

Department (045, Cities (

City t (16836, ’selle-sur-le-bied’, ’SELLE-SUR-LE-BIED’, L2426413,

45210, null, null, null, null, 53405, 25342, 480353, 97, 143,

Population (Population t (Have(2017, 1012, 23, 93))),

City t (16837, ’bouzy-la-fore’, ’BOUZY-LA-FORE’, B24163, 45460,

1215, null, null, null, null, ’53168’, ’22243’, ’475105’, 113, 142,

Population (Population t(Have(2017, 1221, 33))))).

Due to the large amount of data, Table 5 exhibits an example of a comparison

between one row and ten documents that are identified by Department ID.

Metadata-driven data migration from object-relational database... 513

Table 5
Comparison between one row and ten documents

N Department ID Average of similarities (Avg.)

1 001 0.320

2 020 0.178

3 030 0.430

4 040 0.310

5 045 1.000

6 050 0.634

7 066 0.213

8 070 0.193

9 073 0.314

10 114 0.291

The results of Table 5 assume that the data-migration process was successfully

achieved without data corruption.

Moreover, the principal idea behind the metadata-driven data-migration ap-

proach is to retain the SQL integrity constraints. In this context, we carry out the

insert and update operations on the generated NoSQL document-oriented database,

and we evaluate the integrity-constraint checking. During this stage, we use the

Queries menu of the OR2DOD tool to insert new documents and update others.

Table 6 shows the results of some operations of the data insertion and updating by

displaying a dialog box. From these results, we assume that the data-migration pro-

cess can achieve the integrity-constraint checking, thereby demonstrating the proper

goal of our proposal.

Table 6
Some result of test of integrity constraints

N Changing operation Result

1 Insert same document identified by 60 data already exists

2 Insert same embedded document in data already exists

document identified by 34

3 Insert same list of population of data already exists

city identified by 2 of document

identified by 25

4 Insert new department identified by 40.000 new data inserted

5 Insert new city in document identified new data inserted

by 40.000

6 Insert new city without City ID error of integrity constraint

7 Insert new department without error of integrity constraint

Department ID

8 Update departement 50 by 001 error of integrity constraint

9 Update identifier of city by null error of integrity constraint

10 Update name of existing city by new value data updated

514 Aicha Aggoune, Mohamed Sofiane Namoune

In sum, our data-migration tool achieves complex data migration and improves

efficiency, thus effectively addressing two issues (that is, the complexity and data

quality) of object-relational databases.

6.2. Quantitative evaluation

The quantitative evaluation aims at verifying the efficiency of our proposal in terms

of the running time of the data migration. We conducted three fundamental tests:

increasing the data source size, data structure complexity, and data sharding.

In the first test, we performed five experiments where we increased the size of

the original database to 32, 64, 128, 256, and 512 MB. In fact, we use the Queries

menu of the OR2DOD tool to insert new rows and update others.

Figure 8 displays the variations of the running time of the OR2DOD system

under different data-set sizes.

Figure 8. Results of quantitative evaluation according to increment in source size

Figure 8 shows that the execution time remained stable when the data source

increased. Moreover, the time-cost gap among the five experiments was quite small

when the data sizes increased (as was expected). Besides, the results indicated that

the data-migration approach still had an obvious advantage when faced with the

volume of the data sources.

The second quantitative evaluation aimed to assess the migration time in vari-

ous complexities of the data sources. In this context, we used two different object-

relational databases. The first one stored France’s population distribution (FPD),

and the second database (E-commerce) had a different structure. To achieve this test,

we focused only on the complexity of the data structure without any other factors.

Table 7 shows the overall performance of our data-migration approach.

Metadata-driven data migration from object-relational database... 515

Table 7
Result of quantitative evaluation according to data complexities

Criterion FPD E-commerce

Total number of records 36,700 45,000

Total number of nested tables 1 4

Total number of varrays 1 0

Total number of object columns 1 0

Migration running time (sec) 1832 1850

The result in Table 7 shows the time costs with varying data complexities. The

migration of the FPD database costed less time than E-commerce, because the FPD

structure was less complex than E-commerce was; so, it took less time in the data

and schema migration. Besides, the E-commerce database contained more nested

tables than FPD, and the time-cost gap between them was just 18 sec. Thus, the

data-migration time was about 31 min in the scenario of migrating the E-commerce

database with 4 nested tables, while that of FPD with 1 nested table (thecities),

1 varray (Population t), and 1 object column (Have) was 30 min. This indicates that

our data-migration approach has an obvious advantage when faced with complex data

structures regardless of the number of records migrated per second.

Therefore, our data migration was still efficient in the scenario with the complex

data type and obtained a good solution for migrating complex data of the object-

relational database to the NoSQL document-based database.

In the third quantitative evaluation, we attempted to explore two important

features of NoSQL databases, which are its data sharding and its replication to dis-

tribute data on multiple nodes. In this study, we provided two different modes: simple

migration, and advanced migration.

In the simple migration, we took the same configuration of our OR2DOD sys-

tem, while the advanced migration provided sharding with a replication of each gen-

erated collection from the document-oriented database. The sharding function parti-

tioned the database in smaller and faster shards across different servers. We defined

four servers: a configuration server (to configure the database engine to listen to

Port 37017), sharding server (to ensure the auto-sharding of the generated collec-

tions [Port 37018]), and two servers in Ports 37019 and 37020 to receive the shards

(partitions and chunks).

In the context of the complex data migration, the generated data sharding not

only related to the quantity of the documents but also to the complexity of the data

structure (documents with embedded documents, references, lists, etc.).

Hence, we performed two scenarios:

• applying simple and advanced migrations with varying data source sizes;

• applying simple and advanced migrations with varying data complexities.

516 Aicha Aggoune, Mohamed Sofiane Namoune

We present these results in Figure 9.

a) b)

Figure 9. Results of quantitative evaluation according to two modes of

data migration and under two different configurations: a) increasing data sizes;

b) various data-structure complexities

As the results in Figure 9 show, advanced migration gave a better result for the

migration of a large database. Furthermore, the advanced migration of the complex

data set required less time for the large data size as compared to the simple migration.

We can also observe that advanced migration showed a slight increase in the

running times of small databases (see Fig. 9a) as compared to simple migration; it

also required less time when the increased sizes were greater than 64 MB. This explains

that the data sharding is more efficient when the data source is large enough. In this

study, migration with data sharding may depend greatly on the data volume and the

application itself. The strength of our metadata-driven data-migration approach is

that it easily transforms data with or without data sharding.

In general, our experimental results reflect the fact that our approach provides

a good solution for managing the large object-relational database in the NoSQL model.

The OR2DOD tool aims to migrate an object-relational database that has al-

ready been created to a document NoSQL-oriented database while keeping all of the

restrictions of the input data as well as the scalability and flexibility of the output

data. So, the latter is considered to be a new NoSQL database that is created from

an object-relational database has both of the features of the object-relational and

document NoSQL data models.

7. Conclusion

This paper proposes an effective metadata-driven approach to migrate the large vol-

umes of object-relational databases into NoSQL document-oriented databases that

is easily scalable with high availability. The principal advantage of our approach

Metadata-driven data migration from object-relational database... 517

is the ability to retain the integrity constraints of the original database in order to

take the full benefits of both the object-relational and NoSQL models. We devel-

oped an OR2DOD system that validated our proposal, and we carried out two main

evaluations (in each, three different tests were performed). A qualitative evaluation

demonstrated the excellent performance of our data migration without any data loss

or data corruption, while a quantitative evaluation proved that the various data-set

sizes and data-structure complexities did not affect the running times of the data

migration. The advanced data migration aims at offering the sharding of each gener-

ated collection of documents. This migration mode gives a better result when a large

volume of data must be migrated.

Our results open future directions for data migration. We plan to extend our

data-migration approach to other types of NoSQL databases (like a graph-oriented

database, which is more suitable for describing relationships between components).

Our ongoing work also aims at proposing an approach for NoSQL data mapping and

incorporating it in our data-integration process, thus providing a second round of

data migration. In this round, we will offer the ability to transform the migrated

data from a document-oriented database to other NoSQL databases.

Finally, the proposed approach provides off-line migration, since object-relational

databases offer a much more complex data model. Future studies should support this

on-the-fly technique for improving the tool’s functionalities.

References

[1] Aggoune A.: Intelligent data integration from heterogeneous relational databases

containing incomplete and uncertain information, Intelligent Data Analysis,

vol. 26(1), pp. 75–99, 2022.

[2] Aggoune A., Namoune M.S.: A method for transforming object-relational to

document-oriented databases. In: 2020 2nd International Conference on Mathe-

matics and Information Technology (ICMIT), pp. 154–158, IEEE, 2020.

[3] Alotaibi O., Pardede E.: Transformation of Schema from Relational Database

(RDB) to NoSQL Databases, Data, vol. 4(4), 2019.

[4] Anderson M.J.: Distance-based tests for homogeneity of multivariate dispersions,

Biometrics, vol. 62, pp. 245–253, 2006.

[5] Chen X., Liu Z., Sun M.: A unified model for word sense representation and

disambiguation. In: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 1025–1035, 2014.

[6] Chodorow K.: MongoDB: the definitive guide: powerful and scalable data storage,

O’Reilly Media, 2013.

[7] Chung W.C., Lin H.P., Chen S.C., Jiang M.F., Chung Y.C.: JackHare: a frame-

work for SQL to NoSQL translation using MapReduce, Automated Software En-

gineering, vol. 21, pp. 489–508, 2014.

518 Aicha Aggoune, Mohamed Sofiane Namoune

[8] Corbellini A., Mateos C., Zunino A., Godoy D., Schiaffino S.: Persisting big-data:

The NoSQL landscape, Information Systems, vol. 63, pp. 1–23, 2017.

[9] Date C.J., Darwen H.: Foundation for Object/Relational Databases: the third

manifesto, Addison Wesley Longman Publishing, 1998.

[10] Davoudian A., Chen L., Liu M.: A survey on NoSQL stores, ACM Computing

Surveys (CSUR), vol. 51, pp. 1–43, 2018.

[11] Delmal P.: SQL2-SQL3: applications à Oracle, De Boeck Supérieur, 2000.

[12] Devarakonda R.S.: Object-relational database systems the road ahead, XRDS:

Crossroads, The ACM Magazine for Students, vol. 7, pp. 15–18, 2001.

[13] Eder J., Kanzian S.: Logical Design of Generalizations in Object-relational

Databases. In: ADBIS (Local Proceedings), 2004.

[14] Eisenberg A., Melton J.: SQL: 1999, formerly known as SQL3, ACM Sigmod

Record, vol. 28, pp. 131–138, 1999.

[15] Fouad T., Mohamed B.: Model Transformation From Object Relational Database

to NoSQL Document Database. In: Proceedings of the 2nd International Confer-

ence on Networking, Information Systems & Security, pp. 1–5, 2019.

[16] Hibernate: OMG. http://www.hibernate.org.

[17] Kreines D.C.: Oracle SQL: the essential reference, O’Reilly Media, 2000.

[18] Kuszera E.M., Peres L.M., Del Fabro M.D.: Exploring data structure alternatives

in the RDB to NoSQL document store conversion process, Information Systems,

vol. 105, 2022.

[19] Kuszera E.M., Peres L.M., Fabro M.D.D.: Toward RDB to NoSQL: transforming

data with metamorfose framework. In: Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, pp. 456–463, 2019.

[20] Laender A.H.F., Ribeiro-Neto B.A., Da Silva A.S., Teixeira J.S.: A brief survey

of web data extraction tools, ACM Sigmod Record, vol. 31, pp. 84–93, 2002.

[21] Lee K.K.Y., Tang W.C., Choi K.S.: Alternatives to relational database: compar-

ison of NoSQL and XML approaches for clinical data storage, Computer Methods

and Programs in Biomedicine, vol. 110, pp. 99–109, 2013.

[22] Liao Y.T., Zhou J., Lu C.H., Chen S.C., Hsu C.H., Chen W., Jiang M.F.,

Chung Y.C.: Data adapter for querying and transformation between SQL

and NoSQL database, Future Generation Computer Systems, vol. 65,

pp. 111–121, 2016.

[23] Mansouri Y., Babar M.A.: The Impact of Distance on Performance and Scal-

ability of Distributed Database Systems in Hybrid Clouds, arXiv preprint

arXiv:200715826, 2020.

[24] Marcos E., Vela B., Cavero J.M.: A Methodological Approach for Object-

Relational Database Design using UML, Software and Systems Modeling, vol. 2,

pp. 59–72, 2003.

[25] Ouanouki R., April A., Abran A., Gomez A., Desharnais J.M.: Toward building

RDB to HBase conversion rules, Journal of Big Data, vol. 4, pp. 1–21, 2017.

http://www.hibernate.org

Metadata-driven data migration from object-relational database... 519

[26] Piech M., Marcjan R.: A new approach to storing dynamic data in relational

databases using JSON, Computer Science, vol. 19, 2018.

[27] Reniers V., Van Landuyt D., Rafique A., Joosen W.: Object to NoSQL Database

Mappers (ONDM): A systematic survey and comparison of frameworks, Infor-

mation Systems, vol. 85, pp. 1–20, 2019.

[28] Roberts P.: Seamlessness as a desirable aspect of quality for MDE: the contri-

bution of object-relational database stuctures. In: 2010 Seventh International

Conference on the Quality of Information and Communications Technology,

pp. 253–258, IEEE, 2010.

[29] Rocha L., Vale F., Cirilo E., Barbosa D., Mourão F.: A framework for mi-

grating relational datasets to NoSQL, Procedia Computer Science, vol. 51,

pp. 2593–2602, 2015.

[30] Singh S.: Security Analysis of MongoDB, International Journal of Digital Society

(IJDS), vol. 10(4), pp. 1556–1561, 2019.

[31] Soutou C.: Modeling relationships in object-relational databases, Data & Knowl-

edge Engineering, vol. 36, pp. 79–107, 2001.

[32] Stanescu L., Brezovan M., Burdescu D.D.: An algorithm for mapping the rela-

tional databases to MongoDB – a case study, International Journal of Computer

Science & Applications, vol. 14, pp. 65–79, 2017.

[33] Strozzi C.: NoSQL: a non-SQL RDBMS. http://www.strozzi.it/cgi-bin/CSA/

tw7/I/en US/nosql/Home%20Page.

Affiliations

Aicha Aggoune
University of 8th of May, 1945, Computer Science Department, LabSTIC Laboratory, Guelma
Algeria, aggoune.aicha@univ-guelma.dz

Mohamed Sofiane Namoune
University of 8th of May, 1945, Computer Science Department, Guelma Algeria,
namoune.sofianemohamed@gmail.com

Received: 06.07.2021

Revised: 03.03.2022

Accepted: 07.07.2022

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
aggoune.aicha@univ-guelma.dz
namoune.sofianemohamed@gmail.com

	Introduction
	Related work
	Overview of metadata-driven data-migration approach
	Metadata description
	Detailed approach
	Performance and experimental results
	Qualitative evaluation
	Quantitative evaluation

	Conclusion

