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Abstract The school bus-driver problem with resource constraints (SBDP-RC) is an op-

timization problem with many practical applications. In the problem, several

vehicles are prepared to pick up a number of pupils in which the total resources

of all vehicles are lower than a predefined value. The aim is to find a schedule

that minimizes the sum of the pupils’ waiting times. The problem is NP-hard

in the general case. In this paper, we propose a two-phase metaheuristic to solve

the problem. The first phase creates an initial solution by using an insertion

heuristic. After this, the post phase improves the solution by a general variable

neighborhood search (GVNS) with a random neighborhood search combined

with the shaking technique. The proposed metaheuristic algorithm is tested

on a benchmark to show its efficiency. The results show that the algorithm

received good feasible solutions fast. In many cases, better solutions can be

found compared to previous metaheuristic algorithms.
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1. Introduction

1.1. Motivation

Some variants of SBDP-RC are the cumulative multiple traveling salesmen problem

(C-TSP), multiple deliverymen problem (mDMP), and multiple traveling repairman

problem (mTRP). These consider a set of vehicles to find a route that minimizes the

total waiting times of all of the clients [4, 6, 8, 12, 14, 15, 18]. In mDMP and mTRP,

there are no constraints. SBDP-RC has many practical applications (which can be

found in [19]). There is only one vehicle whose resources are infinitive in the original

school bus-driver problem (SBDP) [19]. This means it can run for as long as it wants;

however, it is impossible in real situations when vehicles have strict regulations on

resources such as oil, gas, etc. This paper considers two new assumptions: 1) multiple

vehicles; and 2) the maximum total resources RMmax of all vehicles. We describe the

problem: a set of vehicles at a starting depot and clients at different locations. The aim

is to obtain a tour such that each client is picked up in which the total resources

of all vehicles are limited and the total waiting times of all clients are minimized.

1.2. Problem statement

A complete graph Kn includes a set of n vertex V = {v1, v2, ..., vn} and a distance

matrix C = {c(vi, vj) | i, j = 1, 2, ..., n} (c(vi, vj) that is the cost to travel from

vertex vi to vj). A resource matrix RM = {r(vi, vj)} shows the required resource

consumption to travel from vertex vi to vj . Let R = (1, 2, ..., k) be a set of k vehicles.

All vehicles start at a depot s = v1. Let RMmax be the maximum total resources of

all vehicles. A route T = (R1, ..., Rl, ..., Rk) consists of a set of routes. Each route

Rl = (v1, ..., vh, ..., vm, vm+1 = v1) is created by vehicle l − th. The waiting time of

vh (1 < h ≤ m) on Rl is the cost of the path from v1 to vh:

l(P (v1, vh)) =
h−1∑
i=1

c(vi, vi+1) (1)

Let W (Rl) be the total of the waiting times of Rl, and the resource consumption of

route Rl (LR) is the total of the resource consumption on its edges.

W (Rl) =

m+1∑
h=2

l(P (v1, vh)) (2)

LR(Rl) =

m∑
i=1

r(vi, vi+1) (3)

The aim is as follows:

W (T ) =

k∑
l=1

W (Rl) → min (4)
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The resource consumption of each vehicle must satisfy the following:

k∑
l=1

LR(Rl) ≤ RMmax (5)

SBDP-RC requires a solution that begins at v1 and visits each vertex exactly once

such that the waiting times of the route are minimized. In this problem, we are

interested in a Hamiltonian cycle; this means that the deliverymen return to the

vertex from which they began their routes. Consider the example of the small graph

that is shown in Figure 1.
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Figure 1. Example of how SBDP-RC is represented in drawing

Assume that we have complete graph K12 = 0∪{1, 2, 3, ..., 12}. All vehicles start

at the main depot (vertex 0), and each pupil’s location corresponds to a vertex in

the graph. The cost values to travel between two vertices are highlighted in black,

while the resource consumption values are highlighted in red. We have route T =

(R1 = (v0, v2, v5, v8, v11, v0), R2 = (v0, v1, v4, v7, v10, v0), R3 = (v0, v3, v6, v9, v12, v0)).

Assume that the value of RMmax is 100; the waiting times for each route are calculated

as follows:

W (R1) = c(v0, v2) + c(v0, v2) + c(v2, v5) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v8, v11)

+c(v5, v8) + c(v0, v2) + c(v2, v5)

+c(v5, v8) + c(v8, v11) + c(v11, v0)

= 2 + (2 + 5) + (2 + 5 + 8)

+(2 + 5 + 8 + 9) + (2 + 5 + 8 + 9 + 12) = 84
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W (R2) = c(v0, v1) + c(v0, v1) + c(v1, v4) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v7, v10)

+c(v0, v1) + c(v1, v4) + c(v4, v7)

+c(v7, v10) + c(v10, v0)

= 3 + (3 + 6) + (3 + 6 + 7)

+(3 + 6 + 7 + 12) + (3 + 6 + 7 + 12 + 10) = 94

W (R3) = c(v0, v3) + c(v0, v3) + c(v3, v6)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v9, v12) + c(v0, v3) + c(v3, v6)

+c(v6, v9) + c(v9, v12) + c(v12, v0)

= 4 + (4 + 10) + (4 + 10 + 11)

+(4 + 10 + 11 + 12)

+(4 + 10 + 11 + 12 + 5) = 122

The waiting times for the route are as follows:

W (T ) = 84 + 94 + 122 = 300

The resource consumption of each route is as follows:

LR(R1) = r(v0, v2) + r(v2, v5) + r(v5, v8)

+r(v8, v11 + r(v11, v0)

= 5 + 4 + 3 + 10 + 5 = 27

LR(R2) = r(v0, v1) + r(v1, v4) + r(v4, v7)

+r(v7, v10) + r(v10, v0)

5 + 8 + 6 + 10 + 7 = 36

LR(R3) = r(v0, v3) + r(v3, v6)

+r(v6, v9) + r(v9v12) + r(v12, v0)

= 8 + 5 + 5 + 6 + 7 = 31

LR(T ) = 27 + 36 + 31 = 94

The solution is feasible because the total resource consumption of all routes LR(Ri)

(i = 1, ..., 3) is less than RMmax.
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1.3. Literature review

As we know, SBDP-RC has not been studied much. In the literature, several variants

of the problem have been proposed; we describe these as follows: 1) mDMP or mTRP

is the case when the resources are infinitive. Several metaheuristics for solving the

problem were proposed in [4,13,17]. The experimental results showed that several al-

gorithms [4,13,17] gave good solutions fast for large instances of up to 500 customers;

2) mTRP with distance constraint (mTRP-DC) is the case where the maximum dura-

tion of each vehicle is lower a predetermined value. The two metaheuristic algorithms

in [2, 11] can be applied well to the problem in a reasonable amount of time; 3) Ca-

pacitated mTRP [9, 19] is the case where the vehicle’s capacity does not exceed the

permitted limit. The metaheuristic in [2] also receives good feasible solutions fast;

4) mTRP with profits (mTRPP) aims to find a solution to maximize the total revenue.

In this case, some vertices may not be visited. The metaheuristic algorithm in [10,18]

produced good instances with up to 200 vertices; 5) The deliveryman problem (DMP)

with (without) time windows is a special case of mTRP where there is a only vehicle

to run. Numerous metaheuristic algorithms [3,5,6,12] for the problem have also been

developed. The experimental results showed their expressive performance for large

instances; 6) Recently, a new variant of mTRP post-disaster was introduced in [1,7].

In this case, an additional cost for a road-clearance operator is involved in the function

cost. They tested their algorithms on the Istanbul data set.

To our knowledge, the above algorithms are the best algorithms for the problem’s

several variants. However, resource constraints are not involved; therefore, these

algorithms are not easily adapted to SBDP-RC.

1.4. Our algorithm and contribution

The problem can be solved by exact and heuristic (or metaheuristic) algorithms. An

exact algorithm obtains an optimal solution, but it consumes much time. Heuristic

approaches include the classical heuristic and metaheuristic algorithms: the former

finds a solution fast, but the solution’s quality may not be good; on the other hand,

the latter reaches a near-optimal solution in a short amount of computation time.

Therefore, metaheuristic is a suitable approach for solving large-scale problems; how-

ever, its efficiency is mainly evaluated through experiments.

A good metaheuristic needs to maintain a balance between exploration and ex-

ploitation strategies. The main contributions of this work can be summarized as

follows:

• From an algorithmic perspective, the proposed metaheuristic consists of two

phases: 1) in the first phase (the construction phase), an initial solution is created

based on the insertion heuristic scheme. This step aims to obtain a good-enough

solution; 2) the post-phase (the improvement phase) improves the solution cre-

ated from the previous one. Starting from a good-enough solution helps the

algorithm to increase the chance of improving the solution’s quality. In this

phase, we use the randomized variable neighborhood search scheme (RVNS) to
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investigate various neighboring solutions to find good solutions. RVNS aims to

exploit a good solution space that is explored. Two additional characteristics

are integrated into the proposed algorithm. First, according to a distance met-

ric, the algorithm accepts a solution that is worse than the current solution if

it is far from it; this enhances the exploration of far-away valleys. Second, the

search is allowed to move to unfeasible solution spaces by using a penalty method.

When a constraint is violated, the value of the parameter increases to drive the

search toward feasible regions. This means that the algorithm tries to exploit

the feasible regions that are explored. After this, we enlarge the search space by

decreasing it if no better solutions can be found. By doing this, the algorithm

has a higher chance of finding better solutions. When the algorithm still fails

in finding better solutions, the shaking technique is applied to move the search

toward a completely new solution space that is unexplored.

• From the computational perspective, our algorithm obtains good feasible solu-

tions fast for instances with large sizes. Additionally, the algorithm receives

better solutions as compared to the previous algorithms in many cases.

The rest of this paper is organized as follows. Section 2 introduces our algorithm; then,

the experiments are described in Section 3. Sections 4 and 5 discuss and conclude the

article, respectively.

2. Proposed algorithm

2.1. Variants of VNS

We describe VNS, GVNS [13], and shaking [12], respectively.

• VNS is described in [13]. It is divided into two main steps: 1) shaking, and a local

search step. In the step, shaking implements the move to a random solution. The

second phase consists of applying a local search to the solution and selecting the

best one in a neighborhood set.

• Randomized VNS (RVNS) [13] is a variant of VNS. In RVNS, the search proce-

dure is performed randomly to generate neighbor solutions.

• GVNS [13] is a variant of VNS. GVNS is a version of VNS in which VNS is applied

as the improvement procedure. In this article, we use GVNS with a random

neighborhood search.

• Skewed-GVNS [13] is an extension of basic GVNS that explores solution spaces

that are far from the incumbent solution. Therefore, we can accept worse solu-

tions if they are different from the incumbent.

2.2. Neighborhood investigation

Several neighborhoods [8, 14] in the literature are applied to exploit the search

region. Let Nk(k = 1, ..., km) be a set of neighborhood structures. Now, let

T = (R1, R2, ..., Rl) be a tour with l routes, we then introduce a novel neighbor-

hood structure.
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For inter-route: it optimizes a route.

• Forward (N1) pushes a vertex forward one position. This neighborhood of R

is defined as a set N1(R) = {Ri = (v1, v2, ..., vi−1, vi+1, vi, ..., vm) : i = 2, 3, ...,

m− 1}. The complexity time is O(n).

• Backward (N2) pushes a vertex backward one position. This neighborhood of

R is defined as a set N2(R) = {Ri = (v1, v2, ..., vi, vi−1, vi+1, ..., vm) : i = 2, 3, ...,

m− 1}. The complexity time is O(n).

• Exchange-adjacent (N3) exchanges each pair of adjacent ver-

tices. This neighborhood of R is defined as a set N3(R) = {Ri =

(v1, v2, ..., vi−2, vi, vi−1, vi+1, ..., vm) : i = 3, 4, ...,m − 1}. The complexity

time is O(n).

• Exchange (N4) exchanges the positions of each pair of vertices.

This neighborhood of R is defined as a set N4(R) = {Rij =

(v1, v2, ..., vi−1, vj , vi+1, ..., vj−1, vi, vj+1, ..., vm) : i = 2, 3, ...,m − 3; j =

i+ 3, ...,m}. The complexity time is O(n2).

• 2-opt (N5) removes each pair of edges from the tour and reconnects

them. This neighborhood of T is defined as a set N5(T ) = {Tij =

(v1, v2, ..., vi, vj , vj−1, ..., vi+2, vi+1, vj+1, ..., vm) : i = 1, ..., n−4; j = i+4, ...,m}.
The complexity time is O(n2).

• 3-opt (N6) reallocates three vertices to another position. This

neighborhood of R is defined as a set N6(R) = {Ri =

(v1, v2, ..., vi−1, vi, vj+1, ..., vk, vi+1, ..., vj , vk+1...., vm) : i = 2, 3, ...,m − 5, j =

4, ...,m− 3, k = 6, ...,m− 1}. The complexity time is O(n3).

For intra-route: Intra-route is used to swap or exchange vertices between two dif-

ferent routes.

• Exchange-2-routes N7(R) exchanges two vertices from different routes.

The swap-2-route neighborhood of Rl and Rh is defined as a set

N8(T ) = {Ti = (R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih, vil+1, ..., vml), ..., Rh =

(v1h, v2h, ..., vil, vih+1, ..., vmh), ..., Rk) : il = 2, 3, ...,ml− 1, ih = 2, 3, ...,mh− 1}.
The complexity time is O(n2)

• Insert-2-routes N8(R) removes a vertex in turn and inserts it at

the best possible position in the other. An insert-2-route neigh-

borhood of Rl and Rh is defined as a set N8(T ) = {Ti =

(R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih−1, vih, vil+1, ..., vml), ..., Rh = (v1h, v2h, ...,

vih−1, vih+1, ..., vmh), ..., Rk) : il = 2, 3, ...,ml − 1, ih = 2, 3, ...,mh − 1}. The

complexity time is O(n2).

2.3. Restricted infeasible solution space

Infeasible solutions are penalized by a value. With route T , letV S(T ), LR(Ri) be

a penalty value and the resource consumption of route Ri. Penalty value V S(T )

is computed as follows: max{(
∑k

i=1 LR(Ri)−RMmax), 0}. The solutions are then
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calculated in accordance with W ′ = W + PV × V S(T ), in which PV is the penalty

factor. If the solution is feasible, then LR ≤ RMmax and W ′ = W .

To make the algorithm’s structure more readable, a flowchart of the proposed

algorithm is described in Figure 2. The proposed algorithm consists of two phases.

Algorithm 1 depicts the whole process in pseudocode.

T = Insertion Heuristic

T' = Perturbation(T, p)

T'=RVNS(T')

iter<IterMax

iter=0

yes

p=0

p++

p<level_max

no

time<t_max

start

no

Return the best
solution

no

found better or

accept worse 


solution 

 

T          T'

p=0


iter=0
iter++

yes no

yes

yes

Figure 2. Flowchart of skewed GVNS algorithm
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Algorithm 1 Skewed GVNS

Input: T, IterMax, lvel max, and tmax are a starting solution, the number of iterations,

the strength of the perturbation procedure, and the maximum time to run, respectively.

Output: the best-found solution T ∗.

1: repeat

2: {Step 1: construction step}
3: T ← Construction(v1, V );{T is an initial solution. It can be feasible or infeasible}
4: p = 1;

5: {Step 2: improvement step}
6: while (p < lvel max) do

7: iter = 0;

8: while (iter < IterMax ) do

9: T
′
← T ;

10: {driving the search to a new promising solution space}
11: T

′
← Perturbation(T,p);

12: {implement RVNS to exploit good solution space}
13: T

′
= RVNS(T

′
);

14: {accepting the worse solution}
15: if (W (T

′
) < W (T )× (1 + β × d(T

′
, T )) or (W (T

′
) < W (T ∗)) then

16: T ← T
′
;

17: p=0;

18: iter=0;

19: {update best solution}
20: if ((W (T

′
) < W (T ∗)) and (T is feasible)) then

21: T ∗ ← T
′
;

22: end if

23: else

24: iter ++;

25: end if

26: end while

27: p++;

28: end while

29: until time < tmax

30: return T ∗;

2.4. Construction

Algorithm 2 shows the constructive procedure. Assume that we have a partial solu-

tion and V
′
is a list of unvisited vertices (V

′ ⊆ V ). To complete the partial solution,

a vertex in V
′
needs to be inserted. We need to select a vertex and the position

to insert it into the solution. We use a greedy scheme to pick a vertex so that its

insertion causes the solution with the lowest cost. A solution is generated when all

of the vertices of Kn are routed. The procedure then returns the feasible solution (if

any). Otherwise, for added randomness in routing, it tries to generate n solutions;

then, the one with the minimum fitness value will be returned.
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Algorithm 2 Construction(v1,Kn)

Input: v1,Kn are a main depot and the graph, respectively.

Output: A starting solution T .

1: S = ∅; {S is the list of infeasible routes}
2: FOUND=False;

3: T = ϕ; {Initially, T is empty}
4: for (l = 1; l ≤ k; l ++) do

5: Rl ← Rl ∪ v1; {k routes start at depot}
6: end for

7: repeat

8: repeat

9: Select a random route Rl(Rl ∈ R);

10: Randomly pick a new vertex v and an inserted position j < |Rl| so that the cost of

R
′
l after inserting is minimal; {|Rl| is the number of vertices inRl}

11: Update Rl by R
′
l ;

12: until all vertices are visited

13: for (i = 1; i ≤ k; i++) do

14: T ← T ∪Ri;{update all routes in the tour}
15: end for

16: if (T is feasible) then

17: return T ;

18: else

19: S ← S ∪ T ;

20: end if

21: until |S| < n

22: if FOUND=False then

23: T ←− solution with minimum cost W ′ in set S;

24: end if

25: return T ;

2.5. Improvement

In the second step, it tries to improve the feasible solution that was created by the

previous phase. In this step, we use RVNS in [13] to exploit the neighborhood so-

lutions. Whenever a given neighborhood of set N fails to improve the current best

solution, RVNS randomly selects another neighborhood from the same set to con-

tinue the search. The aim of using RVNS is to exploit a good solution space that

has just been explored. Preliminary experiments indicate that randomly selecting

another neighborhood can find better solutions than a deterministic order. If we find

a better solution, it becomes the new current solution. However, the search cannot

escape from very large valleys in some cases. In this paper, we adopt a skewed VNS

approach that permits moves to worse solutions to explore more valleys that are far

from the current solution. The aim is to support the search for getting out of huge

valleys. Here, we make a move from solution T to neighboring solution T
′′
if

W (T
′
) < W (T )× (1 + β × d(T, T

′
) (6)
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Let d(T, T
′
) be the metric distance between T , and T

′
; this shows the difference

between the two solutions. The greater and greater the metric distance is, the more

and more the difference is. In mathematical respect, the distance is the minimum

number of transformations from T to T
′
. When there exists no polynomial operator

for calculating d(T, T
′
), d(T, T

′
) is n (the number of vertices in the graph) minus the

number of vertices that have the same position in both T and T
′
.

The detail of the improvement step is described in Algorithm 3.

Algorithm 3 RVNS(T )

Input: T is a route.

Output: A new solution T .

1: Initialize neighborhood list NL;

2: while NL ̸= 0 do

3: Choose a neighborhood N in NL at random

4: T
′
← arg min N(T ); {Neighborhood search}

5: if ((L(T
′
) < L(T )) then

6: T ← T
′

7: Update NL;

8: else

9: Remove N from the NL;

10: end if

11: end while

The aim of the perturbation mechanism is to maintain exploration; it drives the

search to a new promising solution space. If the mechanism implements too-small

shaking moves, the search gets stuck into the local optima. Conversely, large moves

in the shaking drive the search to unpromising or infeasible spaces. In an approach

to fulfill the omission, we use a new shaking technique that was developed from the

original double-bridge technique [12] (see Figure 3).
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Figure 3. Double bridge



308 Ha-Bang Ban, Hong-Phuong Nguyen, Dang-Hai Pham

A randomly neighboring solution T
′′
is generated by the double-bridge or random

exchange method; then, it replaces the current solution if (W (T
′′
) > (1−ρ)×W (T ∗))

(ρ is a threshold ratio). The shaking procedure performs p times, where ρ is

a parameter that is called the strength of the shake. The shaking is applied suc-

cessfully in [19]. The detail is described in Algorithm 4.

Algorithm 4 Perturbation(T, p)

Input: T, T ∗, p are the route, the best current route, and the value to control the strength

of the perturbation, respectively.

Output: a route T .

1: i = 1;

2: while (i < p) do

3: {Select random method to shaking}
4: rnd=rand(2);

5: if (rnd == 1) then

6: T
′
← Apply double-bridge in T ;

7: else

8: T
′
← Exchange randomly vertices in T ;

9: end if

10: T
′′
← arg min 3-opt-(T

′
);

11: if (W (T
′′
) > (1− ρ)×W (T ∗)) then

12: T ← T
′′

13: break;

14: else

15: i++;

16: end if

17: end while

18: return T ;

The algorithm finishes after tmax seconds or when the best-found solution is

reached.

3. Evaluations

Our algorithm is implemented on a single-threaded Pentium 4 core i7 2.50 GHz pro-

cessor with 16 GB of RAM.

As we know, the parameter values quite strongly affect the quality of the so-

lutions. The choices of parameter values were conducted in the preliminary experi-

ments. Finding the best configuration by running all instances would be computa-

tionally too expensive, so we implemented our analysis on some selected instances.

This determined configuration was tested in multiple combinations, and the one that

presented the best solution was chosen. In Table 1, we define a range for each of

the five parameters that yielded 1875 different parameter combinations and ran the

algorithm for some selected instances of these combinations. This exhaustive search

for the best parameter combinations was useful as a benchmark for evaluating the
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algorithm. Looking at the parameter combinations, we found the following settings

so that our algorithm could obtain the best solutions: β=5, PV = 5, IterMax = 10,

level max = 10, ρ = 0.3, and t max = 300.

Table 1
Variable parameters

Parameters Value ranges

PV 2 ≤ PV ≤ 0, incremented by 2

β 2 ≤ β ≤ 10, incremented by 2

IterMax 5 ≤ IterMax ≤ 20, incremented by 5

level max 5 ≤ level max ≤ 20, incremented by 5

t max 100 ≤ t max ≤ 300 seconds incremented by 100

The experiments were implemented on benchmark instances for capacitated VRP

in [15] and several random data sets. These were as follows:

• The random data set: the cost matrix elements (cij) were independent and uni-

formly chosen from random integers (from 0 to 500). The resource matrix ele-

ments (rij) were independent and uniformly chosen integers from 0 to 500 – cij .

These cost matrices were symmetrical; moreover, these costs satisfied the triangle

inequality. The maximum resource (Rmax) was computed by using the following

formula:

Rmax = ⌈(1− ∝)×
∑
i∈V

∑
j∈V

rijx
c
ij+ ∝ ×

∑
i∈V

∑
j∈V

rijx
r
ij⌉ (7)

The xc
ij values represented the optimal solution for C-mTSP in which the cost

matrix was defined by matrix cij . Similarly, the xr
ij values represented the opti-

mal solution of problem

k∑
i=1

LRi → min (8)

where the cost matrix was defined by matrix rij .

The number of vehicles was generated randomly within a range of [n5 ,
n
10 ]. α was

used to control the tightness of the resource constraint. Beginning with α = 1,

the resource constraint became tight; if α = 0, the problem became an uncon-

strained problem. They chose α = 0.5, 0.75, and 1 and varied the sizes of the

instances (between 30 and 150 vertices) to create 300 instances. In formula Rmax,

the approximate solutions were used instead of finding the optimal solutions. The

approximate solutions were computed by using the metaheuristic in [2, 16]. All

of the instances were supported upon request.

• Christofides et al.: this data set consisted of instances such as CMT6, CMT7, ...,

and CMT14.

• Z. Luo et al. and S. Nucamendi-Guilln et al.: 250 instances were used in the

experiments; the optimal solutions of these can be obtained from [11].
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3.1. Results

The performance of the proposed algorithm was compared to the initial solution from

the construction phase as follows:

Gap1[%] =
Best.Sol − Init.Sol

Init.Sol
× 100% (9)

The execution time of the proposed algorithm in each run was measured in sec-

onds. Each instance was run ten times. In the Tables 2–16, OPT, Init.Sol, Best.Sol,

Aver.Sol, and T corresponded to the optimal solution, the initial solution, the best

solution, the average solution, and the average time by seconds over ten executions,

respectively.

In Tables 2 through 16, Column 1 shows the output of the construction phase,

while Columns from 2 through 5 correspond to the best solution, the average solu-

tion, Gap, and the running time of the proposed algorithm after ten runs, respectively.

The differences in the objective function between SBDP-RC and C-mTSP on the se-

lected instances are described in Table 17. Columns VNS and GVNS in Table 17

show the results of Ban et al.’s algorithm in [7] and the proposed algorithm, respec-

tively. Tables 18 through 20 indicate the comparison between the proposed algorithm

and several state-of-the-art metaheuristics in terms of solution quality. Each column

in the two tables represents the best solution for each algorithm [2, 4, 9, 11, 16, 17].

Table 2
Our results for ins-30-x with α = 0.5

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-30-1 4,326.63 3,367.16 3,367.16 −22.18 0.19

ins-30-2 – 3,047.12 3,047.12 – 0.19

ins-30-3 – 3,092.38 3,092.38 – 0.2

ins-30-4 4,333.55 3,608.81 3,608.81 −16.72 0.21

ins-30-5 – 3,089.98 3,089.98 – 0.18

ins-30-6 3,878.61 3,118.82 3,118.82 −19.59 0.18

ins-30-7 – 2,890.81 2,890.81 – 0.2

ins-30-8 – 3,247.83 3,247.83 – 0.19

ins-30-9 – 3,052.64 3,052.64 – 0.19

ins-30-10 4,202.63 3,184.64 3,184.64 −24.22 0.2

ins-30-11 – 3,139.65 3,139.65 – 0.2

ins-30-12 3,789.79 3,073.56 3,073.56 −18.90 0.19

ins-30-13 – 3,075.03 3,075.03 – 0.2

ins-30-14 3,783.01 3,005.11 3,005.11 −20.56 0.19

ins-30-15 – 3,080.24 3,080.24 – 0.18

ins-30-16 – 3,134.26 3,134.26 – 0.21

ins-30-17 – 3,210.07 3,210.07 – 0.2

ins-30-18 – 3,247.09 3,247.09 – 0.18

ins-30-19 4,059.33 3,185.03 3,185.03 −21.54 0.19

ins-30-20 – 2,954.77 2,954.77 – 0.19
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Table 3
Our results for ins-40-x with α = 0.5

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-40-1 5,061.54 4,173.1 4,173.1 −17.55 0.38

ins-40-2 – 4,338.94 4,338.94 – 0.39

ins-40-3 – 4,081.79 4,081.79 −15.17 0.41

ins-40-4 – 4,273.97 4,273.97 – 0.39

ins-40-5 – 3,987.33 3,987.33 – 0.39

ins-40-6 4,846.46 4,272.83 4,272.83 – 0.4

ins-40-7 – 4,074.3 4,074.3 – 0.38

ins-40-8 – 4,282.6 4,282.6 −10.15 0.42

ins-40-9 – 4,566.88 4,566.88 – 0.4

ins-40-10 5,403.42 4,195.86 4,195.86 – 0.41

ins-40-11 – 4,360.23 4,360.23 – 0.42

ins-40-12 4,831.03 3,894.8 3,894.8 – 0.41

ins-40-13 – 4,102.23 4,102.23 – 0.42

ins-40-14 – 4,197.87 4,197.87 – 0.39

ins-40-15 – 4,092.98 4,092.98 −11.14 0.4

ins-40-16 – 4,344.44 4,344.44 – 0.39

ins-40-17 – 4,134.12 4,134.12 – 0.39

ins-40-18 – 4,265.24 4,265.24 – 0.4

ins-40-19 5,204.03 4,108.38 4,108.38 – 0.38

ins-40-20 – 4,165.23 4,165.23 – 0.4

Table 4
Our results for ins-50-x with α = 0.5

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-50-1 – 5,786.72 5,786.72 – 0.65

ins-50-2 – 5,732.18 5,732.18 – 0.71

ins-50-3 – 5,500.63 5,500.63 – 0.69

ins-50-4 – 5,255.76 5,255.76 – 0.69

ins-50-5 – 5,228.71 5,228.71 – 0.69

ins-50-6 – 5,560.95 5,560.95 – 0.7

ins-50-7 – 5,634.2 5,634.2 – 0.69

ins-50-8 – 5,314.96 5,314.96 – 0.68

ins-50-9 – 5,675.45 5,675.45 – 0.66

ins-50-10 – 5,724.62 5,724.62 – 0.65

ins-50-11 – 5,635.41 5,635.41 – 0.68

ins-50-12 – 5,403.72 5,403.72 – 0.72

ins-50-13 – 5,861.04 5,861.04 – 0.71

ins-50-14 – 5,404.58 5,404.58 – 0.72

ins-50-15 – 5,920.14 5,920.14 – 0.67

ins-50-16 – 5,391.8 5,391.8 – 0.7

ins-50-17 – 5,406.67 5,406.67 – 0.71

ins-50-18 – 5,346.13 5,346.13 – 0.71

ins-50-19 – 5,530.46 5,530.46 – 0.71

ins-50-20 – 5,584.8 5,584.8 – 0.65
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Table 5
Our results for ins-100-x with α = 0.5

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-100-1 – 9,060.56 9,086.39 – 7.55

ins-100-2 – 9,479.07 9,505.48 – 7.56

ins-100-3 – 9,318.44 9,353.17 – 7.57

ins-100-4 – 9,975.8 10,018.88 – 7.51

ins-100-5 – 8,739.14 8,795.51 – 7.59

ins-100-6 – 8,714.62 8,746.88 – 7.5

ins-100-7 – 9,475.01 9,533.76 – 7.59

ins-100-8 – 9,362.01 9,449.89 – 7.56

ins-100-9 – 9,499.02 9,554.44 – 7.57

ins-100-10 – 9,759.77 9,781.25 – 7.6

ins-100-11 – 9,544.57 9,570.97 – 7.56

ins-100-12 – 9,559.82 9,601.6 – 7.52

ins-100-13 – 9,411.15 9,484.9 – 7.53

ins-100-14 – 9,198.61 9,338.95 – 7.56

ins-100-15 – 9,469.08 9,509.66 – 7.57

ins-100-16 – 9,141.91 9,219.16 – 7.55

ins-100-17 – 9,494.98 9,543.66 – 7.5

ins-100-18 – 9,223.54 9,253.63 – 7.52

ins-100-19 – 9,734.48 9,792.45 – 7.54

ins-100-20 – 9,466.97 9,536.23 – 7.57

Table 6
Our results for ins-150-x with α = 0.5

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-150-1 – 12,847.44 12,952.77 – 22.26

ins-150-2 – 12,536.4 12,711.55 – 20.91

ins-150-3 – 13,177.79 13,205.59 – 21.35

ins-150-4 – 12,482.99 12,523.83 – 22.97

ins-150-5 – 13,874.35 13,925.38 – 25.25

ins-150-6 – 13,428.54 13,465.47 – 21.32

ins-150-7 – 12,436.1 12,482.01 – 20.95

ins-150-8 – 12,982.57 13,035.8 – 22.29

ins-150-9 – 12,725.95 12,795.25 – 23.05

ins-150-10 – 12,571.01 12,656.57 – 25.17

ins-150-11 – 12,668.12 12,710.78 – 22.84

ins-150-12 – 13,233.53 13,254.91 – 23.37

ins-150-13 – 13,451.53 13,518.38 – 23.06

ins-150-14 – 13,250.7 13,268.47 – 24.25

ins-150-15 – 12,616.63 12,646.25 – 22.97

ins-150-16 – 13,424.2 13,461.36 – 24.75

ins-150-17 – 12,804.89 12,852.46 – 23.7

ins-150-18 – 13,178.89 13,201.46 – 20.89

ins-150-19 – 12,796.92 12,824.38 – 21.43

ins-150-20 – 13,221.89 13,271.57 – 23.35
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Table 7
Our results for ins-30-x with α = 0.75

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-30-1 5,422.92 4,315.47 4,315.47 –20.42 0.21

ins-30-2 – 3,650.47 3,650.47 – 0.21

ins-30-3 – 3,934.51 3,934.51 – 0.19

ins-30-4 4,562.64 4,093.33 4,093.33 –10.29 0.18

ins-30-5 – 3,639.7 3,639.7 – 0.18

ins-30-6 5,155.67 3,894.79 3,894.79 –24.46 0.19

ins-30-7 – 3,744.96 3,744.96 – 0.22

ins-30-8 – 4,002.47 4,002.47 – 0.21

ins-30-9 – 3,524.27 3,524.27 – 0.19

ins-30-10 4,655.47 4,013.16 4,013.16 –13.80 0.23

ins-30-11 – 3,866.87 3,866.87 – 0.21

ins-30-12 4,671.65 3,540.8 3,540.8 –24.21 0.22

ins-30-13 – 3,680.01 3,680.01 – 0.21

ins-30-14 4,115.54 3,473.46 3,473.46 –15.60 0.18

ins-30-15 – 3,959.72 3,959.72 – 0.19

ins-30-16 – 3,919.45 3,919.45 – 0.18

ins-30-17 – 3,893.27 3,893.27 – 0.21

ins-30-18 – 3,583.23 3,583.23 – 0.19

ins-30-19 4,096.69 3,383.12 3,383.12 –17.42 0.18

ins-30-20 – 4,011.25 4,011.25 – 0.19

Table 8
Our results for ins-40-x with α = 0.75

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-40-2 – 4,782.68 4,782.68 – 0.42

ins-40-3 – 5,382 5,382 – 0.41

ins-40-4 – 4,942.35 4,942.35 – 0.39

ins-40-5 – 5,009.46 5,009.46 – 0.42

ins-40-6 5,643.02 4,921.11 4,921.11 –12.79 0.38

ins-40-7 – 5,164.31 5,164.31 – 0.40

ins-40-8 – 5,464.17 5,464.17 – 0.38

ins-40-9 – 5,672.01 5,672.01 – 0.41

ins-40-10 – 5,665.7 5,665.7 – 0.42

ins-40-11 5,941.67 5,139.66 5,139.66 –13.50 0.41

ins-40-12 – 4,862.79 4,862.79 – 0.42

ins-40-13 – 5,333.96 5,333.96 – 0.4

ins-40-14 – 5,535.54 5,535.54 – 0.41

ins-40-15 – 4,781.72 4,781.72 – 0.41

ins-40-16 – 4,922.74 4,922.74 – 0.42

ins-40-17 – 6,001.77 6,001.77 – 0.43

ins-40-18 – 5,516.58 5,516.58 – 0.41

ins-40-19 6,363.44 5,464.19 5,464.19 –14.13 0.42

ins-40-20 – 5,224.37 5,224.37 – 0.39
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Table 9
Our results for ins-50-x with α = 0.75

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-50-2 – 6,483.58 6,483.58 – 0.72

ins-50-3 – 7,317.84 7,317.84 – 0.68

ins-50-4 – 6,902.98 6,902.98 – 0.65

ins-50-5 – 6,708.91 6,708.91 – 0.68

ins-50-6 – 6,485.7 6,485.7 – 0.69

ins-50-7 – 7,293.44 7,293.44 – 0.67

ins-50-8 – 7,295.72 7,295.72 – 0.71

ins-50-9 – 6,309.42 6,309.42 – 0.66

ins-50-10 – 7,456.7 7,456.7 – 0.69

ins-50-11 – 6,419.1 6,419.1 – 0.69

ins-50-12 – 6,303.54 6,303.54 – 0.68

ins-50-13 – 6,452.13 6,452.13 – 0.66

ins-50-14 – 6,364.6 6,364.6 – 0.69

ins-50-15 – 6,591.04 6,591.04 – 0.66

ins-50-16 – 7,434.25 7,434.25 – 0.69

ins-50-17 – 6,795.34 6,795.34 – 0.71

ins-50-18 – 6,809.74 6,809.74 – 0.68

ins-50-19 – 6,730.15 6,730.15 – 0.69

ins-50-20 – 6,405.47 6,405.47 – 0.72

Table 10
Our results for ins-100-x with α = 0.75

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-100-2 – 11,918.03 12,255.49 – 7.58

ins-100-3 – 12,165.69 12,269.22 – 7.56

ins-100-4 – 12,933.18 13,254.95 – 7.59

ins-100-5 – 12,044.79 12,149.64 – 7.53

ins-100-6 – 12,320.63 12,395.63 – 7.58

ins-100-7 – 13,457.59 13,519.61 – 7.56

ins-100-8 – 12,257.46 12,429.89 – 7.51

ins-100-9 – 12,624.86 12,709.53 – 7.53

ins-100-10 – 12,245.88 12,459.77 – 7.58

ins-100-11 – 13,660.47 13,816.61 – 7.52

ins-100-12 – 12,190.61 12,274.93 – 7.52

ins-100-13 – 11,916.83 12,037.89 – 7.50

ins-100-14 – 11,919.56 12,117.9 – 7.54

ins-100-15 – 13,297.69 13,615.24 – 7.53

ins-100-16 – 12,624.08 12,756.94 – 7.5

ins-100-17 – 11,133.37 11,234.6 – 7.53

ins-100-18 – 13,204.53 13,411.35 – 7.51

ins-100-19 – 12,913.24 13,060.93 – 7.55

ins-100-20 – 12,327.74 12,393.17 – 7.56
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Table 11
Our results for ins-150-x with α = 0.75

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-150-2 – 17,086.84 17,153.01 – 20.91

ins-150-3 – 18,298.93 18,464.18 – 21.35

ins-150-4 – 16,547.86 16,595.89 – 22.97

ins-150-5 – 17,248.65 17,296.95 – 25.25

ins-150-6 – 17,712.47 17,906.1 – 21.32

ins-150-7 – 17,526.23 17,623.58 – 20.95

ins-150-8 – 17,397.08 17,423.55 – 22.29

ins-150-9 – 16,464.06 16,530.44 – 23.05

ins-150-10 – 16,225.31 16,274.28 – 25.17

ins-150-11 – 17,450.13 17,552.88 – 22.84

ins-150-12 – 17,132.49 17,185.51 – 23.37

ins-150-13 – 16,654.95 16,704.26 – 23.06

ins-150-14 – 17,565.19 17,657.84 – 24.25

ins-150-15 – 17,697.85 17,831.64 – 22.97

ins-150-16 – 18,417.19 18,460.34 – 24.75

ins-150-17 – 17,755.1 17,883.79 – 23.71

ins-150-18 – 16,932.19 17,060.23 – 20.89

ins-150-19 – 16,571.58 16,682.76 – 21.43

ins-150-20 – 18,509.04 18,669.14 – 23.35

Table 12
Our results for ins-30-x with α = 1

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-30-1 – 7,568.362 7,568.362 – 0.19

ins-30-2 – 7,639.978 7,639.978 – 0.18

ins-30-3 – 7,253.102 7,253.102 – 0.2

ins-30-4 – 7,180.649 7,180.649 – 0.19

ins-30-5 – 7,231.949 7,231.949 – 0.19

ins-30-6 – 6,656.719 6,656.719 – 0.2

ins-30-7 – 5,784.973 5,784.973 – 0.19

ins-30-8 – 7,396.452 7,396.452 – 0.18

ins-30-9 – 7,081.527 7,081.527 – 0.19

ins-30-10 – 7,164.16 7,164.16 – 0.18

ins-30-11 – 8,250.379 8,250.379 – 0.21

ins-30-12 – 6,746.225 6,746.225 – 0.21

ins-30-13 – 7,105.159 7,105.159 – 0.18

ins-30-14 – 6,499.687 6,499.687 – 0.2

ins-30-15 – 8,739.84 8,739.84 – 0.2

ins-30-16 – 7,812.669 7,812.669 – 0.2

ins-30-17 – 9,027.127 9,027.127 – 0.21

ins-30-18 – 6,518.759 6,518.759 – 0.21

ins-30-19 – 8,521.913 8,521.913 – 0.21

ins-30-20 – 8,406.84 8,406.84 – 0.21
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Table 13
Our results for ins-40-x with α = 1

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-40-1 – 11,730.64 11,730.64 – 0.41

ins-40-2 – 12,041.5 12,041.5 – 0.39

ins-40-3 – 11,571.29 11,571.29 – 0.42

ins-40-4 – 11,922.62 11,922.62 – 0.42

ins-40-5 – 11,296.76 11,296.76 – 0.38

ins-40-6 – 11,635.67 11,635.67 – 0.39

ins-40-7 – 11,326.47 11,326.47 – 0.38

ins-40-8 – 11,625.75 11,625.75 – 0.4

ins-40-9 – 17,797.43 17,797.43 – 0.38

ins-40-10 – 12,859.52 12,859.52 – 0.41

ins-40-11 – 14,354.51 14,354.51 – 0.4

ins-40-12 – 10,198.71 10,198.71 – 0.38

ins-40-13 – 13,391.86 13,391.86 – 0.39

ins-40-14 – 12,604.11 12,604.11 – 0.41

ins-40-15 – 13,146.88 13,146.88 – 0.39

ins-40-16 – 10,972.01 10,972.01 – 0.41

ins-40-17 – 11,334.91 11,334.91 – 0.42

ins-40-18 – 13,012.16 13,012.16 – 0.41

ins-40-19 – 11,238.14 11,238.14 – 0.39

ins-40-20 – 11,814.5 11,814.5 – 0.39

Table 14
Our results for ins-50-x with α = 1

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-50-1 – 14,106.51 14,106.51 – 0.66

ins-50-2 – 15,379.81 15,379.81 – 0.69

ins-50-3 – 14,673.36 14,673.36 – 0.66

ins-50-4 – 15,568.05 15,568.05 – 0.69

ins-50-5 – 18,326.42 18,326.42 – 0.7

ins-50-6 – 15,658.96 15,658.96 – 0.69

ins-50-7 – 16,049 16,049 – 0.67

ins-50-8 – 14,314.39 14,314.39 – 0.7

ins-50-9 – 17,116.64 17,116.64 – 0.68

ins-50-10 – 15,602.31 15,602.31 – 0.66

ins-50-11 – 16,023.11 16,023.11 – 0.7

ins-50-12 – 16,622.5 16,622.5 – 0.71

ins-50-13 – 13,123.83 13,123.83 – 0.68

ins-50-14 – 15,487.54 15,487.54 – 0.66

ins-50-15 – 16,834.38 16,834.38 – 0.71

ins-50-16 – 18,836.45 18,836.45 – 0.66

ins-50-17 – 15,876.96 15,876.96 – 0.65

ins-50-18 – 17,389.61 17,389.61 – 0.69

ins-50-19 – 15,744.37 15,744.37 – 0.68

ins-50-20 – 17,926.06 17,926.06 – 0.66
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Table 15
Our results for ins-100-x with α = 1

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-100-1 – 27,057.58 27,057.58 – 7.6

ins-100-2 – 31,577.52 31,577.52 – 7.52

ins-100-3 – 31,368.54 31,865.88 – 7.53

ins-100-4 – 35,170.95 36,844.13 – 7.5

ins-100-5 – 29,465.04 29,465.04 – 7.5

ins-100-6 – 33,834.39 33,834.39 – 7.51

ins-100-7 – 31,232.81 31,564.27 – 7.53

ins-100-8 – 34,686.89 34,686.89 – 7.57

ins-100-9 – 32,528.43 32,528.43 – 7.59

ins-100-10 – 31,729.91 31,729.91 – 7.57

ins-100-11 – 28,907.83 28,907.83 – 7.51

ins-100-12 – 29,973.64 29,973.64 – 7.51

ins-100-13 – 30,783.42 31,725.25 – 7.52

ins-100-14 – 36,420.11 36,420.11 – 7.58

ins-100-15 – 30,665.7 32,796.53 – 7.6

ins-100-16 – 34,633.73 34,633.73 – 7.58

ins-100-17 – 35,676.21 35,676.21 – 7.53

ins-100-18 – 36,236.66 36,236.66 – 7.6

ins-100-19 – 27,781.99 27,781.99 – 7.56

ins-100-20 – 34,543.9 34,543.9 – 7.52

Table 16
Our results for ins-150-x with α = 1

Instances Init.Sol
SKEWED-GVNS

Best.Sol Aver.Sol Gap1 Time

ins-150-1 – 51,935.16 51,935.16 – 25.21

ins-150-2 – 51,619.08 51,619.08 – 23.17

ins-150-3 – 51,128.4 51,128.4 – 20.79

ins-150-4 – 45,907.51 45,907.51 – 22.34

ins-150-5 – 49,550.98 49,550.98 – 22.43

ins-150-6 – 50,172.08 51,424.18 – 21.37

ins-150-7 – 54,480.96 54,480.96 – 20.81

ins-150-8 – 48,266.6 49,162.37 – 22.85

ins-150-9 – 52,480.74 52,480.74 – 21.51

ins-150-10 – 54,577.25 54,824.7 – 22.11

ins-150-11 – 59,166.86 59,166.86 – 21.64

ins-150-12 – 49,901.4 49,901.4 – 23.19

ins-150-13 – 52,308.1 52,308.1 – 22.79

ins-150-14 – 60,906.43 60,906.43 – 21.01

ins-150-15 – 52,200.39 52,200.39 – 24.96

ins-150-16 – 51,574.42 51,574.42 – 22.75

ins-150-17 – 49,579.06 49,579.06 – 22.41

ins-150-18 – 47,973.87 47,973.87 – 20.61

ins-150-19 – 50,491.7 51,272.83 – 24.95

ins-150-20 – 52,295.16 52,539.81 – 21.69
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Table 17
Difference of objective function between two problems

on selected instances with α = 1

Instances SBDP SBDP-RC diff%

ins-30-1 3,065.37± 7,568.36 59.50

ins-30-2 3,186.74± 7,639.98 58.29

ins-30-3 3,103.10± 7,253.10 57.22

ins-30-4 3,195.08± 7,180.65 55.50

ins-40-1 4,229.21± 11,730.60 63.95

ins-40-2 4,229.21± 12,041.50 64.88

ins-40-3 4,031.50± 11,571.30 65.16

ins-40-4 4,223.01± 11,922.60 64.58

ins-50-1 5,780.46± 14,106.50 59.02

ins-50-2 5,287.84± 15,379.80 65.62

ins-50-3 5,365.22± 14,673.40 63.44

ins-50-4 5,388.70± 15,568.10 65.39

ins-100-1 9,056.89± 27,057.60 66.53

ins-100-2 9,285.91± 31,577.50 70.59

ins-100-3 8,684.86± 31,368.50 72.31

ins-100-4 8,801.22± 35,171.00 74.98

ins-150-1 12,932.36± 51,935.20 75.10

ins-150-2 11,876.05± 51,619.10 76.99

ins-150-3 12,793.13± 51,128.40 74.98

ins-150-4 12,866.01± 45,907.50 71.97

± The values were the best solutions for SBDP, but they

were infeasible solutions for SBDP-RC

From Tables 2 through 16, the construction step quickly gave good feasible so-

lutions when the constraint was not tight (α = 0.5). However, since the constraint

became tight (the values of α were 0.75 and 1), the construction phase could not find

feasible solutions in some cases. Even for the large instances (from 50 to 150 ver-

tices), the construction failed to reach feasible solutions with all values of α. This

implies that the construction was not good for instances with tight constraints as well

as large sizes. On the other hand, the improvement phase reached feasible solutions

in all cases. Moreover, in the cases where the construction phase obtained feasible

solutions, the average difference of the post phase compared with the construction

phase was quite obvious. The average gap value was large and significant. The pro-

posed algorithm was the first metaheuristic algorithm for the problem; therefore, it

is impossible to compare it directly to other algorithms. Nevertheless, our algorithm

produces feasible solutions for instances with 150 vertices – even in the case of tight

constraints. It is a significant improvement when reaching feasible solutions for large

instances is NP-hard.

The difference in the objective function between SBDP-RC and C-mTSP on the

selected instances is described in Table 17. The average difference was very large
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when the constraint was tight. This indicates that the resource constraint also af-

fected the solution quality strongly. Moreover, the best solutions for C-mTSP were

infeasible solutions for SBDP-RC. Obviously, the good methods for C-mTSP or mTRP

could not be easily applied to solve SBDP-RC; therefore, developing the algorithm

for SBDP-RC is necessary. To show the efficiency of our algorithm for some variants

of SBDP-RC, we implemented our algorithm on mTRP and mTRP-DC instances

(Tables from 18 through 20). The experimental results in Table 14 show that our

algorithm’s performance was good for mTRP-DC when the optimal solutions for the

instances with 80 vertices could be found in a short computation time. To the best

of our knowledge, the algorithms in [2, 11] failed to reach optimal solutions in many

cases. On average, our Gap1 (1.29) was better than their Gap1 (1.43). When com-

pared to Ban et al.’s (VNS) [4], Ezzine et al.’s (EA) [17], and N. Guilln’s (NGA) [16]

algorithms for mTRP instances, our solutions outperformed VNS [4] and EA [17] in

all cases while being comparable to N. Guilln’s solutions (Tab. 19). Moreover, our

algorithm received optimal solutions for the problem with up to 76 vertices. In the ca-

pacitiated cumulative vehicle-routing problem (CCVRP) [9], our algorithm obtained

the known best solutions in most of the instances (Tab. 20). The results were compara-

ble with the proposed algorithms for CCVRP in terms of solution quality and running

time. The comparison was very valuable, as these algorithms are considered to be the

best metaheuristic algorithms for mTRP, mTRP-DC, or CCVRP in the literature.

Table 18
Average experimental results for mTRP with distance constraint [2]

Instances
VNS [2] skewed-GVNS

Gap1 Time Gap1 Time

pr1002 40 x 0.28 0.47 0.00 0.38

brd14051 40 x 0.26 0.45 0.00 0.34

fnl4461 40 x 0.26 0.35 0.00 0.29

d15112 40 x 0.30 0.80 0.00 0.36

nrw1379 40 x 0.47 0.81 0.00 0.74

pr1002 50 x 0.54 0.77 0.00 0.77

brd14051 50 x 0.63 0.90 0.00 0.71

fnl4461 50 x 0.59 0.75 0.00 0.71

d15112 50 x 0.44 0.46 0.00 0.72

nrw1379 50 x 0.54 0.72 0.00 0.73

pr1002 60 x 4.75 1.99 0.53 1.16

brd14051 60 x 3.65 1.83 0.66 1.17

fnl4461 60 x 2.69 1.64 0.48 1.12

d15112 60 x 3.60 2.02 0.56 1.16

nrw1379 60 x 4.21 1.88 0.63 1.12

pr1002 70 x 3.67 2.82 0.88 1.16

brd14051 70 x 3.59 3.07 0.50 1.15

fnl4461 70 x 0.62 2.84 3.82 1.16

d15112 70 x 0.69 2.53 2.73 1.16
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Table 18 cont.

nrw1379 70 x 0.64 2.64 4.53 1.11

pr1002 80 x 0.68 9.25 3.87 3.58

brd14051 80 x 0.57 10.47 3.32 3.56

fnl4461 80 x 0.73 9.11 4.05 3.59

d15112 80 x 0.41 8.99 2.86 3.57

nrw1379 80 x 0.95 11.04 3.06 3.53

aver 1.43 3.14 1.29 1.40

Table 19
Results of our algorithm as compared to previous algorithms

in mTRP instances [4, 16,17]

Instances VNS [4] EA [17] NGA [16]
skewed-GVNS

Best.Sol Time

E30k3 2,108.26 – – 2,097.30 0.26

E30k4 2,623.65 – – 2,595.11 0.25

E51k5 2,623.65 3,320.00 2,209.64* 2,209.64 0.42

E76k10 2,786.07 4,094.00 2,310.09* 2,310.09 0.84

E76k14 2,201.13 3,762.00 2,005.40* 2,005.40 0.76

E76k15 2,400.17 – – 2,377.50 0.83

E101k8 – 6,383.00 – 4,051.47 2.57

E101k14 – 5,048.00 – 3,288.53 2.78

P40k5 1,793.14 – 1,537.79* 1,537.79 0.31

P45k5 2,336.43 – 1,912.31* 1,912.31 0.35

P50k7 1,878.81 – 1,547.89* 1,590.47 0.68

Note that: * symbol ’*’ is the optimal value

Table 20
Results of our algorithm as compared to previous algorithms

in CCVRP instances [9, 16]

Instance CCVRP
skewed-GVNS

Best.Sol Time

CMT1 2,230.35 2,230.35 1.80

CMT2 2,391.63 2,391.63 6.22

CMT3 4,045.42 4,045.42 18.87

CMT4 4,987.52 4,987.52 84.14

CMT5 5,809.59 5,838.32 287.40

CMT11 7,314.55 7,314.55 21.10

CMT12 3,558.92 3,558.92 15.41
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To compare their time complexity, two perspectives can be considered as follows:

• Theoretical time complexity: the time complexity of skewed-GVNS is mainly

to explore neighborhoods in RVNS. In RVNS, the 3-opt consumes more time

than the other neighborhoods. Assume that, when k is its maximum number

of runs in skewed-GVNS, the proposed algorithm requires O(k × level max ×
IterMax × O(n3))×O(n3) times (n is the number of vertices). The theoretical

time complexity of skewed-GVNS is O(n3) times. In [4], Ban et al. showed

that their algorithm required O(k1 ×Tsol× |Rl| × |Rh|). In the worst case when

Tsol = O(n) and |Rl| and |Rh| = n, their algorithm required O(n3). In [17], they

converted k -TRP to TRP by using a k -means clustering algorithm. They then

solved each sub-problem by applying an integer linear programming formulation.

The approach consumed a great deal of time for large instances; therefore, the

approach was not suitable for the problem with large sizes. Finally, in [16], their

algorithm that was based on VNS required O(n2) for 2-opt and Tsol = O(n) for

calculating the cost of a neighboring solution. Their time complexity was the

same as that of skewed-GVNS.

• Time complexity by CPU times: because our skewed-GVNS and the [4, 16, 17]

algorithms were run on computers with different configurations, comparing their

running times was done relatively. Our running time grew quite moderately when

compared to NGA [16], while it was the same as with the one of VNS [4] and

better than the one of EA [17].

4. Discussions

A metaheuristic is a good approach for solving optimization problems with large sizes

when it can produce a good solution quickly. Skewed-GVNS [13] is a popular scheme

that succeeds in solving optimization problems [2, 4, 5, 14]; it is not a new method in

the literature. However, to apply it to a specific problem, we have to answer many

open questions:

• How can we use and combine neighborhoods with exploring and exploiting a good

solution space?

• How many neighborhoods can be used to balance solution quality with running

time?

• How do we escape the local optima?

• How do we escape from very large valleys?

Therefore, many algorithms have been developed on VNS variants in the literature;

however, their solution qualities are different. Applying VNS variants and popular

techniques to solve the problem successfully is our contribution in this work.

A good metaheuristic must balance between exploitation and exploration. Ex-

ploration generates diverse solutions to explore a search space, while exploitation

focuses on searching in a good local region by exploiting it. To do this, the proposed

algorithm brings the insertion heuristic (RVNS) and perturbation schemes together.
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Moreover, two characteristics have been integrated into the proposed algorithm; the

role of each component is summarized as follows:

• The initial solution is created based on the insertion heuristics scheme in the

construction phase.

• The post phase improves the initial solution. In this phase, RVNS ensures the ex-

ploitation by investigating various neighboring solutions. The algorithm accepts

a solution that is worse than the current one, which drives the search to escape

huge valleys. In addition, the search is adjusted by using the penalty function.

Therefore, though the search is enlarged, it is not far from the feasible regions

that are explored.

• Shaking is used to move the search to completely new solution spaces, hoping to

find better solutions.

The experimental results showed the good performance of the proposed algorithm.

Summarily, there are three ways to use our algorithm:

• The first option is to run the construction phase. This way is the fastest; however,

it cannot reach any feasible solution when the constraint is tight in many cases.

This way should be used since the constraint is not tight.

• The second option is to run the proposed algorithm with one iteration. This way

is the best choice for trading off the quality of the solution and running time.

• The last option is to run the proposed algorithm with 50 iterations. The way is

the best choice for solution quality; however, it consumes much time for instances

with large sizes.

Moreover, the algorithm reaches optimal values for those instances with 80 customers

in an acceptable amount of time. It also obtains better solutions than the algo-

rithms in [2,4,17] in many cases, while it is comparable with other algorithms [9,16].

The experimental results indicate that the algorithm can be applied well for various

problems.

5. Conclusions

We propose a metaheuristic algorithm to solve the SBDP-RC problem. The con-

struction phase creates an initial solution, while the post phase develops it. The

experimental results showed that the proposed algorithm can reach optimal solutions

for problems with 80 customers. Additionally, our algorithm gives better solutions

than previous algorithms in many cases. Finally, we suggest three ways to use the

algorithm effectively. However, the running time does not meet practical applications;

therefore, this will be our focus in future research.

6. Appendix

The representation of the solution that we use here is an array of l integer strings

(l is the number of vehicles). The sequence of each number in the string is the order
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of visiting these customers. In Figure 1, we have a representation of a solution as

follows:
T = (R1, R2, R3)

R1 = (v0, v2, v5, v8, v11, v0)

R2 = (v0, v1, v4, v7, v10, v0)

R3 = (v0, v3, v6, v9, v12, v0)
Here, we give three solutions for ins-30-1 with three different α values (0.5, 0.75, 1):
α = 0.5

W (T ) = 3367.16

R1 = 0-9-11-16-21-22-23-25-15-24-17-12-14-29-18-19

R2 = 0-2-1-27-5-6

R3 = 0-7-4-28-8-10-13-26-20-3

α = 0.75

W (T ) = 4315.47

R1 = 0-4-14-17-25-23-22-15-24-11-16-21-13-10-5-26-6-20-3

R2 = 0-8-27-1-2

R3 = 0-7-28-12-18-29-19-9

α = 1

W (T ) = 7568.36

R1 = 0-18-21-17-15-25-9-12-2-7-8-24

R2 = 0-10-26-6-27-29

R3 = 0-4-1-11-22-13-19-20-23-5-16-3-14-28
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