
Computer Science • 23(3) 2022 https://doi.org/10.7494/csci.2022.23.3.4356

Yasmina Rahmoune
Allaoua Chaoui

AUTOMATIC BRIDGE
BETWEEN BPMN MODELS
AND UML ACTIVITY DIAGRAMS
BASED ON GRAPH TRANSFORMATION

Abstract Model-driven engineering (MDE) provides the available tools, concepts, and
languages for creating and transforming models. One of the most important
successes of MDE is model transformation; it permits the transformion of models
that are used by one community to equivalent models that can be used by another
one. Moreover, each community of developers has its own tools for verification,
testing, and test-case generation. Hence, a developer of one community who
moves to another community needs a transformation process from the second
community to his/her own community and vice versa. Therefore, the target
community can benefit from the expertise of the source one, and the developers
do not begin from zero. In this context, we propose an automatic transformation
in this paper for creating a bridge between the BPMN and UML communities.
We propose an approach and a visual tool for the automatic transformation of
BPMN models to UML activity diagrams (UML-AD). The proposed approach
is based on meta-modeling and graph transformation and uses the AToM3 tool.
Indeed, we were inspired by the OMG meta-models of BPMN and UML-AD
and implemented versions of both meta-models using AToM3. This latter one
allows for the automatic generation of a visual-modeling tool for each proposed
meta-model. Based on these two meta-models, we propose a graph grammar
that is composed of 58 rules that perform the transformation process. The
proposed approach is illustrated through three case studies.

Keywords MDE, BPMN, business process models, UML-AD, meta-modeling,
graph grammars, models transformation, AToM3

Citation Computer Science 23(3) 2022: 411–445

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

411

https://doi.org/10.7494/csci.2022.23.3.4356
https://creativecommons.org/licenses/by/4.0/


412 Yasmina Rahmoune, Allaoua Chaoui

1. Introduction

A business process model (BPM) describes the business processes of organizations and
modern enterprises. BPM is used to understand information and activities in order to
reach certain goals. For describing BPM, researchers can use different notations such
as BPMN [33], UML-AD [34], Eriksson-Penker’s notation [14], etc.

Recently, the business process model and notation (BPMN) has become one
of the standard graphical modeling languages of business processes. It is used by
business process managers for creating and representing their organizations’ models
(diagrams). BPMN contains a variety of symbols to describe the process in a detailed
and efficient way.

The unified modeling language (UML) is more suitable for software developers
and its supported tools. UML is the de-facto standard for software design; it has been
widely adopted in the industry. The UML activity diagram specifies the dynamic
(behavioral) structure of a system by describing the activities, choices, interactions,
and concurrency of a workflow or a process [6]. The major advantage of the activity
diagram is its simplicity and its ease for understanding the logical flow of a modeled
system [43]. Hence, BPMN and UML are two alternative modeling specifications for
business process models. The communication between these communities allows
for taking benefits from both the tools of business process management and software
development.

In this paper, we propose an automatic approach for transforming BPMN to
UML-AD based on a transformation model of model-driven engineering. Furthermore,
our global objective is to create a bridge between the BPMN and UML communities
and create a framework that permits developers to reuse the existing BPM of the
first notation (BPMN) in the second notation (UML). We propose an automatic
transformation approach and a visual tool that are based on meta-modeling and
graph grammars. To do so, we propose two meta-models that are associated with
BPMN and UML-AD, respectively. Based on these meta-models, we propose a graph
grammar that contains 58 rules that automatically perform the transformation process.
The proposed graph grammar is executed using AToM3 (a tool for multi-formalism
and meta-modeling) [24, 26]. This tool proves its capacity and power for enabling
meta-modeling and transformations of known formalisms [18].

In this work, we focus on the transformation of flow object elements (events,
activities, and gateways) and data elements (data objects, data inputs, data outputs,
data stores, etc.) that were not studied and discussed in the previous works that
addressed the mapping of BPMN and UML-AD.

The principal objectives of this approach are as follows:

• Exploiting the principles and techniques of MDE approaches (such as meta-
modeling and graph grammars) to create a bridge between two different commu-
nities: BPMN and UML-AD. This transformation takes the benefits of both tools
for business process management and software development. This also allows the



Automatic bridge between BPMN models and UML activity diagrams... 413

exchange between these communities. Moreover, the target community (UML)
can use BPMN as a source model even if it is unknown to the community.

• Proposing an automatic visual tool for transforming business process models to
UML activity diagrams. Our tool allows us to re-express and rewrite a business
process model into its equivalent model (UML-AD in this case). BPMN contains
several rich, complex, and non-atomic elements. The proposed tool extracts these
elements and represents them in a UML activity diagram. For example, the
semantics of a message start event in a BPMN is the combination of accepting
a message and starting a process; our tool decomposes this event into three
elements in UML-AD (Initial node, Control Flow, and AcceptCallAction – see
Case Study 3).

• Enabling the existing business process models to benefit from all of UML’s advan-
tages (methods, development tools, and verification) and validation techniques.
Actually, we can check some of the properties (deadlock, incoherence, inconsis-
tencies, etc.) of the target model (UML-AD) by using existing methods such
as the one that was proposed in [36]. This verification provides feedback on
the properties of the source model (BPM modeled in the input). It is notewor-
thy that we use the techniques of MDE for model transformation as well as
their verifications by different specifications such as those that were presented
in [12,13,19,21,32]. Furthermore, we can use generation test cases like those that
were presented in [17].
This paper is organized as follows; Section 2 presents related works, and Section 3

recalls the basic notions of model transformation (meta-modeling, graph grammar and
the AToM3 tool). We present the proposed automatic approach in Section 4, while
Section 5 presents some examples for illustrating our automatic approach. In order to
ensure the correctness of our transformation, we present the verification of the most
important properties in Section 6. In the last section, we give our conclusions and
draw some perspectives from the work.

2. Related works

Over the past decade, much research has been done in the domain of business process
modeling and raised many challenges in modernizing enterprises; BPMN and UML-AD
are the most used notations in this field. In [44], the author reviewed the ability of
representing 21 workflow patterns for describing the behavior of business processes
by BPMN and UML-AD. The author compared the results of the two notations with
respect to the technical ability to represent the patterns as well as their readability.
In [41, 45], the authors studied the suitability of UML 2.0 activity diagrams (ADs) for
business process modeling, and they used workflow patterns (WPs) as an evaluation
framework. They presented all of the proposed groups of WPs as well as their abilities.
They provided a complete evaluation of the capabilities of UML 2.0 ADs, BPMN,
and the business process execution language (BPEL) and showed their strengths and
weaknesses when utilized for business process modeling.



414 Yasmina Rahmoune, Allaoua Chaoui

In [37], UML and BPMN were compared based on their complexity levels; it was
discovered that BPMN had a very high level of complexity as opposed to UML. In [7],
the authors presented the results of a comparison of both notations during the process
of creating an application model by business users; this indicated that an activity
diagram is just as useful as the BPMN model in any case.

Likewise, another study [42] presented a method for translating business models
such as BPMN and DMN (decision model and notation) into a set of consistent UML
models (which can be later used by business analysts and developers for understanding
and implementing the system). As a single-notation design, this allows users to take
advantage of software that supports UML modeling and consistency checking. The
limitation of this method is that, for business users, UML is too technical and complex
in the preparation of models.

In addition, a UML profile is used to extend UML’s general-purpose language.
There has been some research that studied the transformation of BMN to a UML
profile (e.g., [2, 22,28]).

In [22], the author developed a UML profile for an event-driven process chain
(EPC) to facilitate software developers, as a UML activity diagram is close to the
design/model of a software project. EPC is widely used in the industry, but it is not
a standard language. In contrast, BPMN has been an OMG standard since 2005.

In [28], a UML profile for business process modeling was developed to help
software developers view business process modeling in familiar notations. For this
purpose, two perspectives were considered; business perspective (which focused on
goals, deliverables, and customers) and sequence perspectives (which was used to
refine the business perspective).

In [2], the authors proposed a UML profile for business process modeling notation
(UMLPBPMN). Their goal was that a UML model would be accessable to a software
engineer without him/her being forced to master the particulars for understanding
BPMN or relate it with any software requirements. Moreover, the communication
time was significantly reduced, and the understandability and synchronization were
highly increased; this could ultimately boost the productivity of a software product.

Other works have been proposed to translate BPMN to a UML use case diagram.
We can cite the work in [8] where the authors developed an MDA approach (BPMN2UC)
to generate UML use cases that represent the user requirements of an information
system (IS) to bridge the gap between BPMs and information system models.

In [10], the author discussed the importance of this mapping to satisfy business
process requirements and facilitate the alignment among the BP and IT solutions
of building a BPM in business-driven development (BDD). The author claimed that
the translation of BPMN diagrams to UML activity diagrams was required for the
development of systems, because UML had become the de-facto standard modeling
language for object-oriented systems. Besides, UML has rich tools for modeling
software systems and is easier to be read by end users. The author presented the
challenges of defining and implementing this translation. The author proposed the use



Automatic bridge between BPMN models and UML activity diagrams... 415

of the ATLAS Transformation Language (ATL) as a model transformation language
but did not detail the proposal.

In [29], Macek and Richta presented a transformation from BPM to UML activity
diagrams using XSLT (XSL Transformations). They used an extensible markup
language (XML) document as an intermediate notation between BPM and UML-AD.
The authors discussed the need for transforming business process models to UML-ADs
but not to other UML diagrams. They explained the drawbacks of the transformation
of BPM to use case diagrams (presented in [38]) and to class diagrams (presented
in [39]). The disadvantages of this approach consist of the use of intermediate models
and the manual creation of the graphical layout of the AD.

This paper [15] presented a synthetic analysis of BPMN and UML-AD according
to three criteria: the capacity of being readily understandable, the adequacy of the
graphical elements of BPMN and UML AD to represent the real business processes of
an organization, and the mapping to business process execution language (BPEL).

In the previous works, the researchers discussed the necessity for transforming
BPMN to UML diagrams and proposed general ideas (UML-AD, a UML profile, a use
case model) that lacked a complete transformation.

The strong point of our approach is the use of a graph transformation approach
to realize the automatic transformation of BPMN modes to a UML-AD model and
take the primary benefit of the important advantage of graph transformation (which is
graph grammar – it has a mathematical foundation and is a generalization of Chomsky
grammars for graphs [40]). This represents the first advantage of this research. The
second advantage consists of the creation of a visual tool for manipulating a business
process model, an UML-AD model, and their automatic transformation. The third
advantage of our proposal is that the transformation is performed at a high level of
abstraction, as our rules are defined in the meta-model level. Finally, we believe that
the transformation between these two notations can serve as a bridge between the
tools that support the business process management and the UML tools for software
development.

3. Background of model transformation

3.1. Graph transformations

Model transformation is a very important operation in any model-driven approach.
Actually, such transformations assure the translation of operations regarding one or
more models of a given level of abstraction as well as to one or more other models of
the same level (horizontal transformation) or a different level (vertical transformation).
Graph transformation is a particular and well-known type of model transformation.

Generally, graph transformations consist of two steps: meta-modeling and graph
grammar.



416 Yasmina Rahmoune, Allaoua Chaoui

• Meta-modeling techniques are widely used when describing the different kinds
of formalisms that are needed for the specifications and designs of systems. The
definition of meta-models requires the definition of two syntaxes. In the first
syntax, we define the abstract formal syntax to designate the formalism’s entities,
their relationships, their attributes, and the constraints. In the second one, we
define the concrete graphical syntax to represent the graphical appearance of
these entities and their relationships. The advantage of this technique is that
the generated tool accepts only syntactically correct models according to the
formalism definition. For more details, the reader is referred to [25].

• A graph grammar [40] has a mathematical foundation and is a generalization of
Chomsky grammar for graphs. This is a formalism in which the transformation
of graph structures can be modeled and studied.

3.2. Graph grammar

According to Rozenberg [40], a graph grammar is defined as follows:
A graph grammar (G) consists of a set of production rules (P ) and a start

graph (G0). A sequence of direct derivations (p = (G0
p1
=⇒ G1

p2
=⇒ · · · pn

=⇒ Gn))
constitutes a derivation of the grammar (also denoted by G0 =⇒ ∗Gn). The L(G)

language that is generated by grammar G is the set of all graphs Gn such that
G0 =⇒ ∗Gn is a derivation of the grammar.

Graph grammars are composed of production rules, with each rule having graphs
on the left-hand and right-hand sides (LHS and RHS, respectively). The LHS of the
rules are compared with an input graph that is called the host graph. If a match is
found between the LHS of a rule and a sub-graph in the host graph, the rule can be
applied, and the matching sub-graph of the host graph is replaced by the RHS of the
rule. A rewriting system iteratively applies matching rules in the grammar to the host
graph until no more rules can be applied [11]. In our case, AToM3 allows for an order
of rules that is based on a user-assigned priority [27].

3.3. Principle of transformation rules

A graph transformation rule is defined by r = (L, R, K, glue, emb, cond), where

• L: left-side graph;

• R: right-side graph;

• K: subgraph of L;

• glue: occurrence of K (subgraph of L) in R (right-side graph);

• emb: embedding relationship emb that connects vertices of L and those of R;

• cond: set of conditions for applying rule r.



Automatic bridge between BPMN models and UML activity diagrams... 417

3.4. Application of rules

Applying rule r = (L, R, K, glue, emb, cond) to GRAPH G produces resulting
GRAPH H. The provided graph H can be obtained from the original graph G through
the following five steps:

1. choose occurrence of left-side graph L in G;
2. check application conditions according to cond;
3. remove occurrence of L (up to K) from G as well as dangling arcs, which are all

arcs that have lost their sources and/or destinations – this provides context graph
D of L;

4. paste context graph D and right-side graph R by following occurrence of K in D
and R – this is construction of disjunction union of D and R and, for each point
in K, identify corresponding point in D with corresponding point in R;

5. embed right-side graph into context graph of L following embedding relation-
ship emb.

The application of r on a graph G to provide a graph H is called a direct derivation
from G to H through r; this is denoted by G =⇒ H.

The main idea of graph transformations is the rule-based modification of the
graphs. Figure 1 shows the general principle of applying a rule to a graph.

Figure 1. Principle of application of rule [20]



418 Yasmina Rahmoune, Allaoua Chaoui

The use of graph transformations has some advantages over an implicit represen-
tation [27]; it is an abstract, declarative, high-level representation. This enables the
exchange, re-use, and symbolic analysis of the transformation model. The theoretical
foundations of graph rewriting systems may assist in proving the correctness and
convergence properties of the transformation tool.

3.5. AToM3

In AToM3, we can use either the entity-relationship or the UML class diagram meta-
formalisms for meta-modeling. A meta-formalism can be used to define formalisms as
well as other meta-formalisms; in addition, meta-models can be provided with textual
constraints that are expressed as OCL or Python code [27].

Additionally, AToM3 allows us to define visual languages by means of meta-
models. Model manipulation can be expressed as either Python programs or by means
of attribute graph grammars. AToM3’s graph rewriting processor can be configured to
work in the single or double pushout approaches [40].

In our contribution, we have realized the transformation of BPMN models to
UML-AD models by a combination of meta-modeling and graph grammar using the
AToM3 tool.

4. Proposed approach

In this section, we present our automatic approach as well as the visual tool that is
proposed for transforming the business process models that are created by BPMN
into their equivalent UML activity diagrams. This transformation enables us to create
a bridge between these two standards.

We start our contribution by proposing the correspondences between the most
elements of BPMN 2.0.2 and UML Activity Diagram 2.5 (as shown in Table 1).

Table 1
Correspondences between BPMN and UML-AD

Description
in BPMN

Graphical
representation

Description
in UML-AD

Graphical
representation

Start Event indicates
where particular pro-
cess will start

Initial Node is control
node that acts as start-
ing point for executing
activity

Message Start Event
– message arrives from
participant and trig-
gers start of process

Following group (Initial
Node, Control Flow, and
Accept Call Action)



Automatic bridge between BPMN models and UML activity diagrams... 419

Table 1 cont.

End Event indicates
where process will end

Final Node is control
node at which flow in ac-
tivity stops (activity fi-
nal)

Message End Event
finishes process and
sends message to par-
ticipant

Following group (Send
Signal Action, Control
Flow, and Flow Final
Node)

Link Intermediate
Events (throw) is
mechanism for connect-
ing two sections of pro-
cess – it is used for
throwing

Connector is used for
connecting two sections
of activity diagram – it is
employed for throwing

Link Intermediate
Events (catch) is
mechanism for connect-
ing two sections of pro-
cess – it is used for
catching

Connector is used for
connecting two sections
of activity diagram – it is
employed for catching

Parallel Split gate-
way (AND-Split)

Fork Node is control
node that splits flow into
multiple concurrent flows

Synchronization
gateway (AND-Join)

Join Node is control
node that synchronizes
multiple flows

Simple Merge gate-
way (OR-Join)

Merge Node is control
node that brings multi-
ple flows together with-
out synchronization

Exclusion Choice
gateway (OR-Split)

Decision Node is con-
trol node that chooses be-
tween outgoing flows



420 Yasmina Rahmoune, Allaoua Chaoui

Table 1 cont.

Description
in BPMN

Graphical
representation

Description
in UML-AD

Graphical
representation

Activity is generic
term for work that
company performs in
process – activity can
be atomic

Action is executable ac-
tivity node that is funda-
mental unit of executable
functionality in activity

Sub-Process is com-
pound activity that is
included within pro-
cess or choreography

Sub-Activity is set of
actions and control node
using control and data
flow

Intermediate Event
«Throwing» signal and
message

SendSignalAction

Intermediate Event
«Catching» signal and
message

AcceptCallAction

Timer Intermediate
Event

Time Event
generating

Data Object pro-
vides information
about which activities
required to be per-
formed and/or what
they produce

Object Node is used to
hold value-containing ob-
ject tokens during course
of execution of activity

Data Object Collec-
tion can represent col-
lection of objects

Central Buffer Node
acts as buffer between in-
coming object flows and
outgoing object flows



Automatic bridge between BPMN models and UML activity diagrams... 421

Table 1 cont.

Data Input and Data
Output provide same
information for pro-
cesses

Activity Parameter
Node accepts input
to activity or provides
output from activity

Data Store provides
mechanism for activi-
ties to retrieve or up-
date stored informa-
tion that will persist
beyond scope of pro-
cess

Data Store Node is
central buffer node that
holds its object tokens
persistently while its ac-
tivity is executing

Data Object is as-
sociated with inputs
of activities (tasks) –
data association is used
to move data between
them

Action Pin is used to de-
fine data values that are
passed out of and into
action – input pin pro-
vides value to action

Data Object is asso-
ciated with outputs
of activities (tasks) –
data association is used
to move data between
them

Action Pin is used to de-
fine data values that are
passed out of and into ac-
tion – output pin con-
tains results from this ac-
tion

Data Object is associ-
ated directly with ac-
tivity (task)

Value Pin provides
value by evaluating value
specification; e.g., this
may be used as simple
way to specify constant
inputs to action

4.1. Overview of proposed approach

The proposed approach is based on a combination of meta-modeling and graph
grammars. First, we were inspired by the OMG meta-models and redefined two meta-
models for the basic category of business process models (source models) and UML
activity diagrams (target models). We present these last meta-models in UML class
diagrams by using the AToM3 meta-tool, which allows us to generate a visual-modeling
tool for each proposed formalism.



422 Yasmina Rahmoune, Allaoua Chaoui

Second, we propose a graph grammar that contains 58 rules that automatically
perform transformations of business process models to UML-ADs. This graph grammar
is the core of our work.

Furthermore, we define for each rule:

• the left and right sides,

• initialization,

• pre and post-conditions,

• actions.

These last three items are expressed in Python [35].

In this study, we have only focused on the transformations of BPMs to UML-ADs
at the meta-model level and used model-to-model transformation, as the two parts of
our rules are graphical models. We will describe these in detail and show some rules
later. Figure 2 provides an overview of the proposed approach.

Figure 2. Overview of proposed approach

4.2. Business process meta-model

We have proposed the meta-model that is shown in Figure 3, which contains 28 classes
that are linked by 3 association and inheritance relationships. In this meta-model, we
have taken the most used elements into account.

From this meta-model, we used AToM3 to automatically generate a visual-
modeling environment for manipulating BPMs (as shown in Figure 4). It contains
a set of buttons that allow the user to manipulate (create, edit, etc.) business process
models that conform to the above-presented meta-model in a graphical manner.



Automatic bridge between BPMN models and UML activity diagrams... 423

Figure 3. Proposed business process meta-model

Figure 4. Generated tool for business process models

4.3. Activity diagram meta-model

We have proposed the meta-model presented in Figure 5, which contains 17 classes
that are linked by 6 association and inheritance relationships.



424 Yasmina Rahmoune, Allaoua Chaoui

Figure 5. Proposed activity diagram meta-model

From this meta-model, we used AToM3 to automatically generate a visual-
modeling environment for manipulating UML-ADs (as shown in Figure 6). This
contains a set of buttons that allow the user to manipulate (create, modify, etc.) the
activity diagrams that conform to the above-presented meta-model in a graphical
manner.

Figure 6. Generated tool for UML activity diagrams



Automatic bridge between BPMN models and UML activity diagrams... 425

After creating these two meta-models and generating their visual environments
with AToM3, we propose a graph grammar, which contains a set of rules for accom-
plishing this transformation.

4.4. Proposed graph grammar

Graph grammars have a mathematical foundation and are a generalization of Chomsky
grammars for graphs [40]. One of the advantages of a graph grammar is that it
facilitates the graphical manipulation of model transformations.

There are many definitions of a graph grammar; in [5], it was defined by a triplet
– GG = (P, S, T), where

P: set of rules (our proposed graph grammar),
S: initial graph (BPM source model),
T: set of symbols (all elements of BPMN and UML-AD that are defined in both

of our meta-models).

Each r rule (r ∈ P ) has graphs on the left-hand and right-hand sides (LHS and
RHS). In the transformation process, the LHS rules are evaluated against an input
graph that is called the host graph. If a matching is found between the LHS of a rule
and a subgraph of the host graph, the rule can then be applied.

In this respect, we have proposed a graph grammar that enables us to transform
the most frequently used elements of BPMN. The graph grammar includes a set of
rules that cover flow objects (events, activities, and gateways) and data (data objects,
data inputs, data outputs, etc.). These rules are applied in ascending order, where
each rule has a priority (number). Giving a priority for each rule and coordinating all
of the proposed rules is considered to be the main challenge when proposing a graph
grammar.

In addition, each rule in our graph grammar may have an initialization, condition,
and action; these instructions are described in the Python language. The initialization,
the condition and the action of Rule 1 will be presented later in Table 6. Table 2
contains our proposed graph grammar. For each rule, we have presented its LHS, RHS,
and priority.

Table 2
Our proposed graph grammar (BPMN2UML-AD)

Rule 1: Sub-Process2Sub-
Activity (Priority 1):

Rule 2: DataIn-
Put2ActParameterNode (Priority 2):

LHS and RHS of Rule 1 LHS and RHS of Rule 2



426 Yasmina Rahmoune, Allaoua Chaoui

Table 2 cont.

Rule 3: DataOut-
Put2ActParameterNode (Priority 3):

Rule 4: Start2InitialNodee (Priority 4):

LHS and RHS of Rule 3 LHS and RHS of Rule 4

Rule 5: StartMsg2Initial/AcceptCallAction
(Priority 5):

Rule 6: Activity2Action (Priority 6):

LHS and RHS of Rule 5 LHS and RHS of Rule 6

Rule 7: Start2ActivityLink (Priority 7): Rule 8: Parallel(And-
Split)2ForkNode (Priority 8):

LHS and RHS of Rule 7 LHS and RHS of Rule 8

Rule 9: Act2ParallelLink (Priority 9): Rule 10: Parallel2ActLink (Priority 10):

LHS and RHS of Rule 9 LHS and RHS of Rule 10

Rule 11: Synchronization(And-
Join)2JoinNode (Priority 11):

Rule 12: Act2SynchLink (Priority 12):

LHS and RHS of Rule 11 LHS and RHS of Rule 12



Automatic bridge between BPMN models and UML activity diagrams... 427

Table 2 cont.

Rule 13: Synch2ActLink (Priority 13): Rule 14: Xor(OR-
Split)2DecisionNode (Priority 14):

LHS and RHS of Rule 13 LHS and RHS of Rule 14

Rule 15: Act2XorLink (Priority 15): Rule 16: Xor2ActLink (Priority 16):

LHS and RHS of Rule 15 LHS and RHS of Rule 16

Rule 17: Xor2SynchLink (Priority 17): Rule 18: SimpleMerge(OR-
Join)2MergeNode (Priority 18):

LHS and RHS of Rule 17 LHS and RHS of Rule 18

Rule 19: Act2MergeLink (Priority 19): Rule 20: Xor2MergeLink (Priority 20):

LHS and RHS of Rule 19 LHS and RHS of Rule 20

Rule 21: Synch2MergeLink (Priority 21): Rule 22: Merge2ActLink (Priority 22):

LHS and RHS of Rule 21 LHS and RHS of Rule 22



428 Yasmina Rahmoune, Allaoua Chaoui

Table 2 cont.

Rule 23: End2FinalNode (Priority 23): Rule 24: Act2EndLink (Priority 24):

LHS and RHS of Rule 23 LHS and RHS of Rule 24

Rule 25: EndMs-
gEvent2SendSignalAction&FinalNode

(Priority 25):

Rule 26: Act2EndMsgEventLink
(Priority 26):

LHS and RHS of Rule 25 LHS and RHS of Rule 26

Rule 27: Synch2EndMsgEventLink
(Priority 27):

Rule 28: DataOb-
ject2ObjectNode (Priority 28):

LHS and RHS of Rule 27 LHS and RHS of Rule 28

Rule 29: Delete Act2Act linked
by DataObject (Priority 29):

Rule 30: Activity2DataObjectLink
(Priority 30):

LHS and RHS of Rule 29 LHS and RHS of Rule 30

Rule 31: DataOb-
ject2ActivityLink (Priority 31):

Rule 32: DataObject2PinOut (Priority 32):

LHS and RHS of Rule 31 LHS and RHS of Rule 32



Automatic bridge between BPMN models and UML activity diagrams... 429

Table 2 cont.

Rule 33: DataObject2PinIn (Priority 33): Rule 34: PinOut2PinInLink (Priority 34):

LHS and RHS of Rule 33 LHS and RHS of Rule 34

Rule 35: DeleteDataObject (Priority 35): Rule 36: Activity2ActivityLink
(Priority 36):

LHS and RHS of Rule 35 LHS and RHS of Rule 36

Rule 37: CollectionDataOb-
ject2CentralBuffer (Priority 37):

Rule 38: DataS-
tore2DataStoreNode (Priority 38):

LHS and RHS of Rule 37 LHS and RHS of Rule 38

Rule 39: Activity/DataStoreBidi-
rectionalLink (Priority 39):

Rule 40: Activity2DataStoreLink
(Priority 40):

LHS and RHS of Rule 39 LHS and RHS of Rule 40

Rule 41: DataS-
tore2ActivityLink (Priority 41):

Rule 42: DataIn-
Put2ActivityLink (Priority 42):

LHS and RHS of Rule 41 LHS and RHS of Rule 42



430 Yasmina Rahmoune, Allaoua Chaoui

Table 2 cont.

Rule 43: Activity2DataOutPutLink
(Priority 43):

Rule 44: DeleteStart (Priority 44):

LHS and RHS of Rule 43 LHS and RHS of Rule 44

Rule 45: DeleteStartMs-
gEvent (Priority 45):

Rule 46: DeleteActivity (Priority 46):

LHS and RHS of Rule 45 LHS and RHS of Rule 46

Rule 47: DeleteEnd (Priority 47): Rule 48: DeleteEndMs-
gEvent (Priority 48):

LHS and RHS of Rule 47 LHS and RHS of Rule 48

Rule 49: DeleteParallel(And-
Split) (Priority 49):

Rule 50: DeleteSynchronization(And-
Join) (Priority 50):

LHS and RHS of Rule 49 LHS and RHS of Rule 50

Rule 51: DeleteExclusiveChoice(OR-
Split) (Priority 51):

Rule 52: DeleteSimpleMerge(OR-
Join) (Priority 52):

LHS and RHS of Rule 51 LHS and RHS of Rule 52



Automatic bridge between BPMN models and UML activity diagrams... 431

Table 2 cont.

Rule 53: DeleteDataStore (Priority 53): Rule 54: DeleteCollection-
DataObject (Priority 54):

LHS and RHS of Rule 53 LHS and RHS of Rule 54

Rule 55: DeleteDataInPut (Priority 55): Rule 56: DeleteDataOutPut (Priority 56):

LHS and RHS of Rule 55 LHS and RHS of Rule 56

Rule 57: DeleteActEvent (Priority 57): Rule 58: DeleteSub-Process (Priority 58):

LHS and RHS of Rule 57 LHS and RHS of Rule 58

The main challenge that is encountered in the part of a data object transformation
is the existence of two representations of a single piece of data between the activities
in UML-AD. The result of the transformation of the example that is shown in part a
of Figure 7 is provided in parts b and c of Figure 7.

Figure 7. Data object in BPMN (a); object node (b); and data input
and output pin in UML-AD (c)



432 Yasmina Rahmoune, Allaoua Chaoui

In our graph grammar, we have dealt with all of the element representations in
UML-AD such as the object node, data input, and output pin. So, we have allowed
the user to choose the desired notation in the target model.

• First case: if the user desires to use a data input pin and a data output pin
notations (Fig. 7c), he/she can click the “DataPin” button. As a result, Rules 29
and 30 are automatically deactivated.

• Second case: if the user desires to use an object node between activities (Fig. 7b),
he/she must click the “ObjectNode” button. As a result, Rules 31 through 35 are
automatically deactivated.

Discussion

“Expressive power” refers to the language ability to present different kinds of process
constructs, patterns, and situations that appear in business processes. This aspect
should be considered when analyzing the representation power of BPMN and UML
AD (in particular, the complexity of the graphical symbols that are used to represent
the real business processes of an organization). In many cases, BPMN and UML-AD
use similar symbols to describe business processes; however, there are elements of
business processes that can be modeled in BPMN that use only one symbol, where
their representations in UML-AD require groups of symbols.

5. Case studies

The goal of this section is to illustrate the transformation process and the execution
of our proposed graph grammar that transforms source business process models to
target UML-AD models.

In order to present and test the proposed rules, we chose three examples that
contained most of the elements that are studied in our contribution. The first example
contained only flow object elements, while the second example included certain data
elements such as Data Inputs, Data Outputs, and Data Store. The third model was
comprised other data elements like Message Start Event, Message End Event, and
Data Object.

To test our transformation, we followed the three well-known levels of testing:
unit testing, integration testing, and system testing. In addition to the testing, we
performed the verification of the transformation itself in the following section.

5.1. First case study

We focused on the transformation of flow object elements (events, activities, and
gateways) and their corresponding elements in the control part of UML-AD. Table 3
shows some steps of the transformation of the travel-booking process to an activity
diagram. This was the first version of our tool that contained only control flow (in the
first version of our tool, we proposed only 44 rules).



Automatic bridge between BPMN models and UML activity diagrams... 433

Table 3
Some steps of transformation of travel booking process to UML-AD

Invoking transformation rule After execution of Rule 3 seven times

After execution of Rule 5 After execution of Rule 6

After execution of Rule 10 After execution of Rule 15



434 Yasmina Rahmoune, Allaoua Chaoui

Table 3 cont.

After execution of Rule 43 two times After execution of last step

In the following case studies, we focused on the transformation of data elements
(data object, data input, data output, database, etc.) and their corresponding elements
in a UML activity diagram. After enriching and enhancing our visual-modeling
environment and the graph grammar that was proposed in the first case study, we
have illustrated the execution of the added transformation rules.

5.2. Second case study

We chose a simple example of a so-called create-offer process ; this was a sub-process
of the car-purchasing process [9]. In Table 4, we present the transformation of the
preceding process to a corresponding UML activity diagram by our tool step by step.
We only selected some figures of this transformation, as it would occupy a large amount
of space.

Table 4
Some steps of transformation of Create Offer process to UML-AD

Create Offer process in BPMN created by our proposed tool



Automatic bridge between BPMN models and UML activity diagrams... 435

Table 4 cont.

After execution of Rule 2 one time

After execution of Rule 4 one time

After execution of Rule 6 six times

After execution of Rule 43 one time



436 Yasmina Rahmoune, Allaoua Chaoui

Table 4 cont.

After execution of Rule 46 six times

After execution of last Rule 58 one time

In this case study, we have illustrated the transformation of certain elements
such as data inputs and data outputs to an activity parameter node in UML-AD
and have specified the name as well as the type of data (input or output). For this
reason, Rule 2 was executed two times for the data input (Driver’s License, Finance
From, and Appraisal From). Thereafter, Rule 3 was executed one time for the data
output (offer documents). Moreover, the inputs and outputs served as place holders
for the data requirements that indicated important information. We also presented
the transformation of a data store and its name in this example.

5.3. Third case study
We chose a purchase-order process; we selected this process because it contains some
important elements that have not been studied previously (such as Message Start
Event, Message End Event, and Data Object). This process was composed of several
activities. We used abbreviations in order to reduce our source model during the
transformation: A – Receive Order; B – Fill Order; C – Ship Order; D – Send Invoice;
E – Make Payment; F – Accept Payment; and G – Close Order. In this process model,
the first activity was to receive a requested order. If the order was accepted and all of
the required information was filled out, the payment was accepted, and the order was
shipped. Figure 8 illustrates the purchase-order-process example that was created by
our tool.



Automatic bridge between BPMN models and UML activity diagrams... 437

Figure 8. Purchase-order process example

In Table 5, we present the transformation of this process to a corresponding
UML activity diagram by our tool step by step. We have selected some figures of this
transformation.

Table 5
Some steps of transformation of purchase-order process to UML-AD

After execution of Rule 5 one time

After execution of Rule 6 one time



438 Yasmina Rahmoune, Allaoua Chaoui

Table 5 cont.

After execution of Rule 6 seven times

After execution of Rule 36 two times

After execution of Rule 46 seven times

After execution of Rule 52



Automatic bridge between BPMN models and UML activity diagrams... 439

6. Verification and testing of proposed approach

To prove the transformation approaches, there are several methods: a theoretical case
study, a practical case, or an automatic tool that ensures the model’s transformation.
In our approach, we have proven our rules by a developed tool that was tested on
several cases studies.

Recently, several works have focused on the verification of model transformation
[1, 3, 4, 23, 31]. Actually, model transformations have a variety of properties that
are needed to ensure their correctness, such as termination, confluence, syntactic
correctness, and others [30]. Termination and confluence properties are important
requirements for practical applications of model transformations; they guarantee that
a model transformation always terminates and produces a unique result [23].

In order to check our proposed approach, we have discussed and established the
verification of the important properties.

6.1. Termination

The termination property refers to Turing’s halting problem; it guarantees the existence
of target model(s) or must ensure that a model transformation will end.

In our transformation approach, we used a global variable named “Visited” in the
AToM3 tool. This is a Boolean variable; its initial value is false (Visited = 0). The
use of this variable allows us to avoid infinite loops during the transformation (the
execution of the same rule on the same element).

For more detail, each rule in the grammar may feature initialization, condition,
and action. The following instructions (described in the Python language) give the
initialization, condition, and action of Rule 1.

Table 6
Basic instructions used in AToM3

Initialization for node in graph.listNodes[’SubProcess’]:node.Visited = 0
Condition node = self.getMatched(graphID,self.LHS.nodeWithLabel(1)) return

node.Visited == 0
Action node = self.getMatched(graphID,self.LHS.nodeWithLabel(1))

node.Visited = 1

After the execution of each rule of the source model, all of the visited elements
change their values to “true” (Visited = 1 – see Table 6). At the end of the transfor-
mation, no rule can be executed.

The use of the “Visited” variable ensures the visit and transformation of all of
the elements of the source model. In addition, our rules ensure the transformation
of all elements (studied elements) and their links to the source model. At the end of
the transformation process of the model source, all of the elements have been deleted
(and only the target model remains).

Consequently, we have deduced that the termination property is verified.



440 Yasmina Rahmoune, Allaoua Chaoui

6.2. Confluence (determinism)

The determinism property refers to the notion of confluence; it ensures that the
transformations always produce the same result (target model).

In our transformation, we have proposed a graph grammar that contains 58 rules.
Each rule has a priority (see Table 2); this priority is invariant and very important
in the transformation process, as these rules will be applied in ascending order until
no more rules are applied. This is one of the reasons for using a graph grammar in
AToM3.

The graph grammar in AToM3 consists of an initial action, a set of rules, and
a final action:

• The initial action specifies the actions to be executed before the rules.
• The rules are ranked according to a priority in order to guide the choice of the

rule to apply. For any iteration, all of the rules are tested in the ascending order
of their priorities. Each rule may also have additional conditions of application
and the actions to perform (for example, for Rule 1 – see Table 6).

• The final action specifies the actions to be carried after the application of the
rules.
Each time we execute the transformation of the source model, the transformation

follows the same predefined rule order (priority); this ensures repeating the same
steps and generating the same target model. Hence, the use of priorities ensures the
confluence property in our proposed graph transformation.

6.3. Syntactic correctness

For the syntactic correctness of the process of transformation, we were inspired by
the definitions and propositions that were proposed in [23]. This property can be
guaranteed by the theoretical foundation of graph rewriting systems. These systems
try to iteratively apply rules that are defined in the graph grammar. These rules
specify the visual correspondence between the elements in the source and target models
at the meta-model level. Thus, the target models are syntactically correct; all of the
new elements that are created by the RHS (right-hand sides) of the rules conform to
the target meta-model (the syntactic correctness property is verified).

7. Conclusion

Model transformation is one of the most important advantages of the MDE approach.
This allows for exchanges between different communities and can be used to transform
the models of one community to equivalent models that can be used by the other
one. In this paper, we have proposed a transformation approach for creating a bridge
between the BPMN and UML-AD communities. To this end, we have proposed an
approach and a visual-modeling tool that are based on graph transformation, and we
have used the AToM3 tool. This approach allows for the transformation of business



Automatic bridge between BPMN models and UML activity diagrams... 441

process models to UML activity diagrams; it is based on the transformation of flow
objects and data elements (data object and data flow).

We used UML class diagram formalism as a meta-formalism for the two proposed
meta-models: the first one was for BPMN (source model), and the second for UML-AD
(target model). Then, we proposed a graph grammar that contained 58 rules using
the AToM3 tool and illustrated this transformation with three examples.

To make this practical, we plan to develop exporters and importers for loading
actual BPMN models that are developed by BPMN editors, transform them, and store
their equivalent UML-AD versions in a syntax that is accepted by UML tools.

We also plan to transform the rest of the elements of BPMN to UML-AD and
enrich the target model semantically by using a UML profile approach. In addition,
we will check our proposed graph grammar by using one of the techniques for verifying
model transformation (such as the GROOVE tool – GRaphs for Object-Oriented
VErification) [16].

References

[1] Ab Rahim L., Whittle J.: A survey of approaches for verifying model trans-
formations, Software & Systems Modeling, vol. 14(2), pp. 1003–1028, 2015.
doi: 10.1007/s10270-013-0358-0.

[2] Amjad A., Haq S.U., Abbas M., Arif M.H.: UML Profile for Business Process Mod-
eling Notation. In: 2021 International Bhurban Conference on Applied Sciences
and Technologies (IBCAST), pp. 389–394, 2021.

[3] Amrani M., Combemale B., Lúcio L., Selim G.M., Dingel J., Le Traon Y.,
Vangheluwe H., Cordy J.R.: Formal Verification Techniques for Model Transfor-
mations: A Tridimensional Classification, Journal of Object Technology, vol. 14(3),
pp. 1–43, 2015. doi: 10.5381/jot.2015.14.3.a1.

[4] Amrani M., Syriani E., Wimmer M., Bill R., Gogolla M., Hermann F., Lano K.:
Report on the Third Workshop on Verification of Model Transformations (VOLT
2014). In: Proceedings of the Third International Workshop on Verification of
Model Transformations co-located with Software Technologies: Applications and
Foundations (STAF 2014), pp. 1–9, 2014.

[5] Andries M., Engels G., Habel A., Hoffmann B., Kreowski H.J., Kuske S., Plump D.,
Schürr A., Taentzer G.: Graph transformation for specification and programming,
Science of Computer Programming, vol. 34(1), pp. 1–54, 1999.

[6] Bào N.Q.: A proposal for a method to translate BPMN model into UML activity
diagram. In: 13th International Conference on Business Information Systems,2010.

[7] Birkmeier D.Q., Klöckner S., Overhage S.: An Empirical Comparison of the Usabil-
ity of BPMN and UML Activity Diagrams for Business Users. In: P.M. Alexan-
der, M. Turpin, J.P. van Deventer (eds.), 18th European Conference on In-
formation Systems, ECIS 2010, Pretoria, South Africa, June 7–9, 2010, 2010.
http://aisel.aisnet.org/ecis2010/51.

https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.1007/s10270-013-0358-0
https://doi.org/10.5381/jot.2015.14.3.a1
https://doi.org/10.5381/jot.2015.14.3.a1
https://doi.org/10.5381/jot.2015.14.3.a1
http://aisel.aisnet.org/ecis2010/51
http://aisel.aisnet.org/ecis2010/51
http://aisel.aisnet.org/ecis2010/51


442 Yasmina Rahmoune, Allaoua Chaoui

[8] Bouzidi A., Haddar N., Abdallah M.B., Haddar K.: Deriving use case models from
BPMN models. In: 2017 IEEE/ACS 14th International Conference on Computer
Systems and Applications (AICCSA), pp. 238–243, 2017.

[9] Business Analysis Guidebook: The car purchasing process. https://en.wikibooks.
org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools.

[10] Cibrán M.A.: Translating BPMN Models into UML Activities. In: Business
Process Management Workshops. BPM 2008, Lecture Notes in Business In-
formation Processing, vol. 17, pp. 236–247, Springer, Berlin–Heidelberg, 2008.
doi: 10.1007/978-3-642-00328-8_23.

[11] Dörr H.: Efficient Graph Rewriting and Its Implementation, Lecture Notes in
Computer Science, vol. 922, Springer Science & Business Media, Berlin, Heidelberg,
1995. doi: 10.1007/BFb0031909.

[12] Elmansouri R., Hamrouche H., Chaoui A.: From UML Activity Diagrams to
CSP Expressions: A Graph Transformation Approach using Atom3 Tool, IJCSI
International Journal of Computer Science Issues, vol. 8(2), pp. 368–374, 2011.

[13] Elmansouri R., Meghzili S., Chaoui A.: A UML 2.0 Activity Diagrams/CSP
Integrated Approach for Modeling and Verification of Software Systems, Computer
Science, vol. 22(2), 2021. doi: 10.7494/csci.2021.22.2.3478.

[14] Eriksson H.E., Penker M.: Business Modeling with UML: Business Patterns at
Work, New York, NY: John Wiley & Sons, 2000.

[15] Geambaşu C.V.: BPMN vs. UML activity diagram for business process modeling,
Accounting and Management Information Systems, vol. 11(4), pp. 934–945, 2012.

[16] GROOVE: GRaphs for Object-Oriented Verification, home page, 2015. http:
//groove.cs.utwente.nl/.

[17] Hettab A., Kerkouche E., Chaoui A.: A Graph Transformation Approach for
Automatic Test Cases Generation from UML Activity Diagrams. In: C3S2E’15:
Proceedings of the Eighth International C* Conference on Computer Science &
Software Engineering, pp. 88–97, 2015.

[18] Kerkouche E., Chaoui A., Bourennane E.B., Labbani O.: A UML and Colored
Petri Nets Integrated Modeling and Analysis Approach using Graph Transforma-
tion, Journal of Object Technology, vol. 9(4), pp. 25–43, 2010. doi: 10.5381/jot.
2010.9.4.a2.

[19] Kerkouche E., Elmansouri R., Chaoui A., Khalfaoui K.: An Automatic Approach
to Verify Business Process Models Using INA Petri Nets Analyzer, International
Journal of Computer and Information Technology, vol. 3(4), pp. 706–711, 2014.

[20] Kerkouche E., Khalfaoui K., Chaoui A.: A rewriting logic-based semantics and
analysis of UML activity diagrams: a graph transformation approach, Inter-
national Journal of Computer Aided Engineering and Technology, vol. 12(2),
pp. 237–262, 2020.

https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://en.wikibooks.org/wiki/Business_Analysis_Guidebook/Requirement_Gathering_Tools
https://doi.org/10.1007/978-3-642-00328-8_23
https://doi.org/10.1007/978-3-642-00328-8_23
https://doi.org/10.1007/BFb0031909
https://doi.org/10.7494/csci.2021.22.2.3478
https://doi.org/10.7494/csci.2021.22.2.3478
https://doi.org/10.7494/csci.2021.22.2.3478
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2
https://doi.org/10.5381/jot.2010.9.4.a2


Automatic bridge between BPMN models and UML activity diagrams... 443

[21] Kerkouche E., Khalfaoui K., Chaoui A., Aldahoud A.: UML Activity Diagrams
and Maude Integrated Modeling and Analysis Approach Using Graph Transfor-
mation. In: ICIT 2015. 7th International Conference on Information Technology,
pp. 515–521, 2015. doi: 10.15849/icit.2015.0093.

[22] Korherr B., List B.: A UML 2 Profile for Event Driven Process Chains. In: Re-
search and Practical Issues of Enterprise Information Systems, IFIP International
Federation for Information Processing, vol. 205, pp. 161–172, Springer, Boston,
2006. doi: 10.1007/0-387-34456-X_16.

[23] Küster J.M.: Definition and validation of model transformations, Software &
Systems Modeling, vol. 5(3), pp. 233–259, 2006. doi: 10.1007/s10270-006-0018-8.

[24] Lara de J.: A Tool for Multi-formalism and Meta-Modeling, home page, 2003.
http://atom3.cs.mcgill.ca/.

[25] Lara de J., Guerra E.: Towards the Uniform Manipulation of Visual and Tex-
tual Languages in AToM3. In: Proceedings of III Jornadas de Programación y
Lenguajes. Universidad de Alicante, Alicante, Noviembre 12–14, 2003, 2003.

[26] Lara de J., Vangheluwe H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Fundamental Approaches to Software Engineering. FASE 2002,
Lecture Notes in Computer Science, vol. 2306, pp. 174–188, Springer, Berlin–
Heidelberg, 2002. doi: 10.1007/3-540-45923-5_12.

[27] Lara de J., Vangheluwe H.: Using AToM3 as a Meta-CASE Tool. In: Proceedings
of 4th International Conference on Enterprise Information Systems ICEIS 2002.
Universidad de Castilla-La Mancha. Ciudad Real, April 3–6, 2002, 2002.

[28] List B., Korherr B.: A UML 2 Profile for Business Process Modelling. In: Perspec-
tives in Conceptual Modeling. ER 2005, pp. 85–96, Lecture Notes in Computer
Science, vol. 3770, Springer, Berlin–Heidelberg, 2005. doi: 10.1007/11568346_10.

[29] Macek O., Richta K.: The BPM to UML activity diagram transformation using
XSLT. In: Proceedings of the Dateso 2009 Annual International Workshop on
DAtabases, TExts, Specifications and Objects, pp. 119–129, 2009.

[30] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: On the Verification of UML
State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL.
In: 2017 IEEE International Conference on Information Reuse and Integration
(IRI), pp. 419–426, IEEE, 2017. doi: 10.1109/IRI.2017.63.

[31] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: Verification of Model Transfor-
mations Using Isabelle/HOL and Scala, Information Systems Frontiers, vol. 21(1),
pp. 45–65, 2019.

[32] Meghzili S., Chaoui A., Strecker M., Kerkouche E.: An Approach for the Trans-
formation and Verification of BPMN Models to Colored Petri Nets Models, Inter-
national Journal of Software Innovation (IJSI), vol. 8(1), pp. 17–49, 2020.

[33] OMG: Business Process Model and Notation, 2013. http://www.omg.org/spec/
BPMN/2.0.2/.

https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.15849/icit.2015.0093
https://doi.org/10.1007/0-387-34456-X_16
https://doi.org/10.1007/0-387-34456-X_16
https://doi.org/10.1007/s10270-006-0018-8
https://doi.org/10.1007/s10270-006-0018-8
http://atom3.cs.mcgill.ca/
http://atom3.cs.mcgill.ca/
https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/11568346_10
https://doi.org/10.1007/11568346_10
https://doi.org/10.1109/IRI.2017.63
https://doi.org/10.1109/IRI.2017.63
https://doi.org/10.1109/IRI.2017.63
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/


444 Yasmina Rahmoune, Allaoua Chaoui

[34] OMG: Documents Associated With Unified Modeling Language™ (UML®) Version
2.5, 2015. http://www.omg.org/spec/UML/2.5/.

[35] Python Software Foundation: Python (python language) home page. https:
//www.python.org/.

[36] Rahmoune Y., Chaoui A., Kerkouche E.: A Framework for Modeling and Analysis
UML Activity Diagram using Graph Transformation, Procedia Computer Science,
vol. 56, pp. 612–617, 2015. doi: 10.1016/j.procs.2015.07.261.

[37] Recker J., Zur Muehlen M., Siau K., Erickson J., Indulska M.: Measuring method
complexity: UML versus BPMN. In: Proceedings of the Fifteenth Americas Confer-
ence on Information Systems, pp. 1–9, Association for Information Systems, 2009.

[38] Rodríguez A., Fernández-Medina E., Piattini M.: Analysis-Level Classes from
Secure Business Processes Through Model Transformations. In: Trust, Privacy
and Security in Digital Business. TrustBus 2007, Lecture Notes in Computer
Science, vol. 4657, pp. 104–114, Springer, Berlin–Heidelberg, 2007. doi: 10.1007/
978-3-540-74409-2_13.

[39] Rodríguez A., Fernández-Medina E., Piattini M.: CIM to PIM Transformation:
A Reality. In: Research and Practical Issues of Enterprise Information Systems II,
IFIP International Federation for Information Processing, vol. 255, pp. 1239–1249,
Springer, Boston, 2008. doi: 10.1007/978-0-387-76312-5_50.

[40] Rozenberg G.: Handbook of Graph Grammars and Computing by Graph Transfor-
mation, vol. 1, World Scientific, 1997.

[41] Russell N., van der Aalst W.M.P., ter Hofstede A.H.M., Wohed P.: On the
Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In:
Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling, vol. 53,
pp. 95–104, Australian Computer Society, Inc., 2006.

[42] Suchenia A., Łopata P., Wiśniewski P., Stachura-Terlecka B.: Towards UML
representation for BPMN and DMN models. In: MATEC Web of Conferences,
vol. 252, EDP Sciences, 2019.

[43] Swain R.K., Panthi V., Behera P.K.: Generation of test cases using activity
diagram, International Journal of Computer Science and Informatics, vol. 4(1),
pp. 35–44, 2013. doi: 10.47893/IJCSI.2014.1171.

[44] White S.A.: Process Modeling Notations and Workflow Patterns, Workflow
Handbook, vol. 2004, pp. 265–294, 2004.

[45] Wohed P., van der Aalst W.M.P., Dumas M., ter Hofstede A.H.M., Russell N.:
On the Suitability of BPMN for Business Process Modelling. In: Business Pro-
cess Management. BPM 2006, Lecture Notes in Computer Science, vol. 4102,
pp. 161–176, Springer, Berlin–Heidelberg, 2006. doi: 10.1007/11841760_12.

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1016/j.procs.2015.07.261
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-3-540-74409-2_13
https://doi.org/10.1007/978-0-387-76312-5_50
https://doi.org/10.1007/978-0-387-76312-5_50
https://doi.org/10.1007/978-0-387-76312-5_50
https://doi.org/10.47893/IJCSI.2014.1171
https://doi.org/10.47893/IJCSI.2014.1171
https://doi.org/10.47893/IJCSI.2014.1171
https://doi.org/10.1007/11841760_12
https://doi.org/10.1007/11841760_12


Automatic bridge between BPMN models and UML activity diagrams... 445

Affiliations

Yasmina Rahmoune
Department of Computer Science, Assia Djebar Teacher Training School of Constantine,
Constantine, Algeria, MISC Laboratory, Abdelhamid Mehri Constantine2 University,
Constantine, Algeria, yasmina.rahmoune@univ-constantine2.dz

Allaoua Chaoui
University Constantine 2-Abdelhamid Mehri, MISC Laboratory, Department of Computer
Science and Its Applications, Faculty of Ntic, Constantine, Algeria,
allaoua.chaoui@univ-constantine2.dz

Received: 28.06.2021
Revised: 14.10.2021
Accepted: 04.04.2022

yasmina.rahmoune@univ-constantine2.dz
allaoua.chaoui@univ-constantine2.dz

	Introduction
	Related works
	Background of model transformation
	Graph transformations
	Graph grammar
	Principle of transformation rules
	Application of rules
	AToM3

	Proposed approach
	Overview of proposed approach
	Business process meta-model
	Activity diagram meta-model
	Proposed graph grammar

	Case studies
	First case study
	Second case study
	Third case study

	Verification and testing of proposed approach
	Termination
	Confluence (determinism)
	Syntactic correctness

	Conclusion 

