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TOWARDS IMPLEMENTING VIRTUAL DATA
INFRASTRUCTURES –
A CASE STUDY WITH iRODS

Abstract Scientists demand easy-to-use, scalable and flexible infrastructures for sharing,

managing and processing their data spread over multiple resources accessible

via different technologies and interfaces. In our previous work, we developed

the conceptual framework VISPA for addressing these requirements. This pa-

per provides a case study assessing the integrated Rule-Oriented Data System

(iRODS) for implementing the key concepts of VISPA. We found that iRODS

is already well suited for handling metadata and sharing data. Although it does

not directly support provenance information of data and the temporal provi-

sioning of data, basic forms of these capabilities may be provided through its

customization mechanisms, ie rules and micro-services.
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information, data provisioning
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1. Introduction

Scientific discoveries increasingly require the storing and processing of vast amounts

of data owned by international collaborations that need to share different data sets

and analytical tools operating on them. Ensuring reproducibility of scientific results

necessitates provenance information for the complete research lifecycle: from data

taking or simulation to data analysis to publishing and eventually to its long-term

preservation. State-of-the-Art data intensive computing utilizes world-spread storage

and compute resources to implement different types of systems, APIs, programming

models and security infrastructures. Over the last decade, research in Grid computing

essentially followed two approaches to relieve the scientists from learning many of the

resources’ specific details: basic low-level services such as Globus toolkit [6], gLite [3]

or UNICORE [23] and comfortable application specific portals such as MultiDark [13]

or PANGAEA [14]. While the former (i.e., low-level services) provide a high degree

of flexibility for implementing a wide range of scenarios, they typically require a

deep understanding of the underlying concepts, and require many manual operations

for analyzing data, its maintenance and preservation. In contrast, the latter (i.e.,

high-level application specific portals) do not require expert knowledge, but they are

usually limited to very specific use cases.

In [18] we developed VISPA, a conceptual framework of a virtual infrastructure

for storing and processing scientific data. The two key concepts of VISPA are: (1)

views which encapsulate data in specific context and (2) the declarative description

of views. We devised VISPA after studying applications from different scientific do-

mains exhibiting various requirements on the sharing and processing of data. Besides

flexible and dynamic data sharing schemes, the key requirements are to easily incor-

porate different types of resources (eg, clusters, Grids, Clouds, servers, PCs, laptops),

support for different access methods / programming models (eg, flat file I/O, rela-

tional database operations, data parallel computing), and being able to capture the

whole lifecycle of data, that is from data taking over filtering, combining, moving,

analyzing, publishing to its long-term preservation. The key concepts of VISPA are

implemented by a runtime system operating in a feedback loop that retrieves view

descriptions from a store, monitors the state of data storage and processing, and com-

piles operations to let the descriptions eventually conform with the state of the data.

We are not aware of any standard Grid computing toolkit or portal that provides

such a complete data management solution. In the Cracow Grid Workshop series,

research on virtual research infrastructures has seen some attention in recent years,

for example ViroLab [10]. However, most of them focus on orchestrating workflows

of compute activities instead of managing data sets.

This paper evaluates iRODS (Integrated Rule-Oriented Data System) [8] as the

runtime system for implementing the two key concepts mentioned above. Particu-

larly, we evaluated the four key features: (1) core and user metadata, (2) provenance

information, (3) data sharing, and (4) temporal aspects of provisioning data.
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The remainder of the paper is structured as follows. We give an overview of

two studied application scenarios in Section 2. Section 3 briefly introduces the core

ideas of the VISPA framework. Section 4 reviews the core components of iRODS. In

Section 5, we demonstrate how the metadata model of VISPA can be implemented

by iRODS. Thereafter, Section 6 evaluates the implementation of advanced features

of VISPA such as sharing data and temporal aspects of provisioning data. Section 7

discusses related work. We conclude and outline directions of future work in Section 8.

2. Application scenarios

We introduce two application scenarios that led us to develop the conceptual frame-

work of a virtual infrastructure for storing and processing scientific data (VISPA).

2.1. Constrained Local Universe Simulations

Constrained Local UniversE Simulations (CLUES) are handled through a semi-

automatic workflow (cf. Fig. 1a). The simulations are run on remote HPC resources

and generate 120–150 snapshots each approx. 6.1 TB in size. Today, all snapshots

are copied to one (or more) storage centers which should additionally provide special

resources for post-processing (eg, distributed databases for scalable data analysis or

GPGPU hardware to create video sequences). Some post-processing methods may

only be applied at special resources requiring additional data transfers and even re-

transmissions if the data was removed from the simulation sites.

Today, most data management operations in the CLUES workflow [5] are man-

ually performed by scientists. This results from the following observations: (1) the

involvement of several scientists from different institutes, (2) the distributed process-

ing of simulations at HPC centers, (3) distributed storage of significant amounts of

data products and (4) subsequent post-processing steps.

2.2. Distributed parameter sweep simulations

Parameter sweep studies (PSS) are used to analyze data sets with a large number

of parameter sets. Often scientists use their personal workstation to coordinate the

execution of the PSS and process the results. The analysis itself is performed on par-

allel machines (local or remote SMPs or clusters) and available Grid infrastructures.

Hence, already in the simplest case, data resides on distributed resources. The man-

agement of a PSS gets further complicated if certain “unexpected” events happen,

for example the unavailability of processing resources, the need to partially re-run

executions or the exchange of results with other researchers. As a result, additional

data operations are required to maintain the desired progress of the study and – at

the same time – ensure scientific standards (ie reproducibility).

Figure 1b illustrates the main components of a basic scenario: a personal com-

puter (PC), a set of multi-core servers (SMP) and a storage which holds both the

data to be analyzed and the obtained raw data results. The PC is used for creating

2012/11/21; 18:34 str. 3/13

Towards implementing virtual data infrastructures (...) 23



Preparation of 
simulations
local PCs, remote HPC

Simulations
remote HPC

Post-processing
remote data centers / PCs, clusters & graphics / 

files, DBs, web portals

se
le

ct
 n

ew
 r

an
do

m
 in

iti
al

 c
on

di
tio

ns
Observations

instruments, files, DBs, web portals

Cosmic Microwave 
Background

Prepare Initial 
Conditions

GADGET (low res)
Simulations

Identify Local 
Group (LG)

Merger 
Trees

Halo 
Finder

Halo 
Tracer

Statistics

GADGET (high res)
Simulations

''

%

(

#

!!
&

))

* $ +

"

Visualization

120-150 snapshots
of 6.1 TB each

PC

SMP

① create 
config

② trans
fer c

onfig

④ run 
experiments

⑨ analyze 
results

⑧ trans
fer r

esult
s

⑥  rerun 
experiments

⑤ validate 
results

storage
(digital repository)

③
 o
bt
ai
n 
ra
w 
da
ta

⑦
 u
pl
oa
d 
re
su
lt
s

(a) (b)

Figure 1. Application scenarios: (a) CLUES workflow, (b) parameter sweep simulation.

the configurations of the experiments and analyzing the validated results. The SMP

(or any other parallel machine) is used for executing the experiments, validating their

results and re-running experiments if necessary.

3. Virtual Infrastructure for Storing and Processing Data

The key idea of the VISPA framework is to organize data in views which are declar-

atively described. Views are compiled by the VISPA runtime to data management

operations that are enacted at appropriate resources and times. The results of their

execution is monitored and reflected in adjustment operations to maintain or ob-

tain the desired set of views. We present the main aspects of views, how they are

declaratively described and how they are managed at runtime.

3.1. Main aspects of views

A view encapsulates data in a specific context, which is defined by different categories

(cf. Fig. 3): metadata (core and user defined), provenance, content, permissions,

technology and resource mapping. Views are addressable (by unique identifiers) and

stateful. Their life cycle may involve time periods when they are inactive or active.

Figure 2 illustrates the possible states and allowed state changes. A scientist only has

to declare a view and may use it in its active period. All state changes are managed

by the VISPA runtime (for details on the state changes see [18]).

3.2. Declarative description of a view’s content

As early as in the 1970ies, Shu et al. [22] developed EXPRESS to explore the idea

of using high-level non-procedural languages for defining data (DEFINE) and for
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Figure 2. A view’s life cycle begins in the state declared and ends in the state cleanup.

data restructuring (CONVERT). VISPA follows this idea to let scientists declara-

tively describe the target state of the virtual data infrastructure. In a feedback loop,

VISPA’s runtime system compares the current state of the data infrastructure with

the described target and compiles necessary operations to maintain the desired data

accessibility.
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Figure 3. Overview of the main categories for declaratively describing views.

Figure 3 illustrates the different categories to describe a view (see [18] for a

detailed description). A description of a view answers the four main questions:

• What is the content of a view?

• Who may access the data?

• How is the data accessed?

• When and where needs the data be accessible?

3.3. Runtime System for Managing the Views

Figure 4 illustrates the main components of the VISPA runtime system. Scientists

use a graphical user interface (GUI) or command line interface (CLI) to declaratively

describe the views and observe the status of the virtual data infrastructure. The
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Query component enables the automatic retrieval of metadata for a data set specified

by its URL in the category Resource Mapping. Hence, scientists may be relieved

from repeated and cumbersome manual inputs of existing information. The Identity

Management System provides information about the identity of users to which a

scientist may wish to grant certain data access capabilities. All views are stored in

the View Description Store (VDS).

4. iRODS: The integrated Rule-Oriented Data System

The integrated Rule-Oriented Data System (iRODS) is a distributed, highly customiz-

able system for managing data. In the following, we briefly introduce iRODS’ data

and the metadata model, its main architectural components, and its capabilities for

customizing its behavior. Further details are revealed in sections 5 and 6.

iRODS logically organizes data in files and collections (of files and/or collections).

Hence, collections are hierarchically structured. Both, files and collections are allo-

cated to resources (hosted on storage servers) and are described by metadata. System

metadata covers information such as creation time, logical and physical path, size,

and access control lists. Arbitrary attribute-value-unit triples may be used to capture

user metadata. Data may be replicated to several resources.

Figure 5 shows the four architectural components of iRODS. Data sets managed

by iRODS are split into zones, each being served by a single metadata catalog (iCAT)

and one to many data servers. Data may be stored on different types of resources

such as traditional file servers, relational databases and storage provided as a service

(eg Amazon S3 [1, 24]).
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Figure 5. Architectural components of iRODS.

The client provides interfaces to the users and interacts with the other components

to manipulate data and metadata as well as controlling the system’s behavior via

the rule engine.

The iCAT stores all metadata about the data, their hierarchical organization in

collections, information about users and resources. It serves as the first contact

to users for querying and locating data.

The server encapsulates the actual data storage. Servers host resources to which

data is allocated. After obtaining the actual storage location of data from an

iCAT, the client accesses the data directly at servers.

The rule engine provides a means to automatically execute maintenance operations

and to customize the behavior of an iRODS environment. It allows us to execute

rules that may manipulate data and metadata.

The behavior of iRODS is implemented by rules which are defined by developers

(for iRODS basic behavior), by administrators (to customize a whole installation),

and even users (to implement specific use cases). Rules may be invoked manually or

automatically triggered by events such as uploading a file or an expiring timer. The

core functionality – operations for manipulating data and metadata – available to rules

is encoded in micro-services. There exists an extensive list of built-in micro-services

as well as an API for adding new special-purpose micro-services.

5. Implementing VISPAs data and metadata model

We demonstrate the implementation of VISPAs data and metadata model with

iRODS. In this study, we solely consider the access model file system in the cate-

gory Technology of VISPAs model (cf. Fig. 3). Other access models such as relational

databases are subject to future work.

5.1. Mapping core and user metadata

Table 1 shows the mapping of core metadata. User metadata in VISPA is simply

mapped to (attribute-value-unit) triples in iRODS. The optional unit is not used.

Other system metadata in iRODS such as permissions and physical locations of

data is not part of the core metadata in VISPA. However, the setting permissions

is relatively simple and briefly discussed in Section 6.1. Arbitrary user metadata
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Table 1

Mapping of core metadata in VISPA to iRODS.

VISPA iRODS Remark

id DATA ID –

status user attribute

VISPA STATUS

The internal persistent variable DATA STATUS is not used to

not compromise the semantics of iRODS.

ctime DATA CREATE TIME –

in VISPA is modelled as key-value-pairs. Hence, any user metadata can be easily

mapped to iRODS user metadata which have the form attribute-value-unit (AVU).

The unit of iRODS is only optional and not used in our mapping.

5.2. Provenance information

The off-the-shelf iRODS does not support provenance information yet. However,

the relationships between views may be modelled by additional user attributes. For

capturing provenance information, two aspects must be covered: (1) what views were

the source of a view, and (2) what operation was performed on these views. The

former may be implemented by an attribute named source views which store a list

of all view ids that are a source for this view. The latter is captured by an attribute

named init op which holds any built-in operation given as a keyword (eg copy,

change permission), a user-defined function (eg name of a script that was executed

on all sources), or a descriptive string (eg to describe the relationship between complex

views). As built-in operations and user-defined functions may be parametrized such

information must also be stored (see the discussion on linking software executions to

data sets in [26]). Hence, the value of the attribute init op may be the name of

a built-in operation or user defined function (UDF) executed without any parameter.

If parameters need to be specified the value is an id of another view that corresponds

to the operation or the UDF and gives parameters as user attributes (eg param1,

param2,. . . ).

5.3. Discussion

iRODS supports a hierarchical file system-like organization of files and collections.

This feature may be useful for efficient recursive operations such as changing the access

permissions of large views. Because, VISPA allows more flexible layered structures of

views, it may not always be possible to organize the data hierarchically.

VISPA supports provenance information between views. Because such informa-

tion is not modelled in iRODS, we propose to use two user defined attributes for

them. This information can be used to traverse the data dependency graph. An issue

for future work is the assessment of the performance and usability of our approach.

Although, iRODS uses relational databases for storing the metadata a user cannot

change the schema for efficiently storing and querying the information. Moreover, the
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provided SQL-like interface does only support very basic queries, which would require

an iterative procedure to reconstruct very deep provenance graphs.

6. Data sharing and temporal aspects of data provisioning

Advanced features include the sharing of data across iRODS zones and temporal as-

pects of provisioning data. Sharing is a very important requirement of contemporary

science. Employing two or more zones for sharing reflects the observation that scien-

tists belong to different administrative domains each potentially managing their own

zone. Provisioning data at requested times enables the flexible management of the

available resources for storing and transferring data.

6.1. Sharing data across zones

Setting up a federation of two zones A and B in iRODS is straightforward. Essentially,

in zone A one must create a new remote zone pointing to B by specifying the host

name and port of the remote iCAT, and vice versa. Additionally, accounts for the

remote users need to be created. The name of the account is augmented by the name

of the zone. Thus a scientist only needs a single account but could have different roles

(eg administrator, user) in different zones.

If two scientists want to share data, they simply have to grant appropriate access

permissions to each other. iRODS provides a simple command (ichmod) to change

the access permissions of files and collections. Hence, VISPA only needs to wrap this

command for a command-line interface or integrate it into a graphical user interface.

Because the iRODS command may be used recursively on nested collections it is

efficient to store nested views in hierarchically nested collections. Otherwise, changing

the permissions of a view with several levels of sub-views would require to issue the

ichmod command several times up to the number of sub-views of the view.

6.2. Temporal aspects of provisioning data

Provisioning data for a given (future) period of time may not be efficiently performed

manually. Such an approach will lead to data provided too late (ie delaying activities

that require the data) or too early at the expense of blocking scarce resources. There-

fore, VISPA lets a user simply declare the temporal requirements and the runtime

issues the necessary operations at appropriate times. The temporal requirements can

be just a start time, a start time plus a duration or a sequence of multiple intervals.

iRODS does not

support such temporal aspects out of the box. However, by means of iRODS’

delayed execution services rules may be executed at a specified time. We can exploit

this feature to make data available during given periods of time.

The rule that performs the necessary operations just requires information about

the input data and the location to where the output data is stored. Although that

addition is straight forward, it also has a drawback. Until the data operation is
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finished, iRODS has no information about the data. Especially, users may not see

the data if they query the system.

6.3. Discussion

Sharing of data is easily enabled employing iRODS’ federation capabilities. The ba-

sic scheme introduced above may be even extended by exploiting the rule system to

replicate and synchronize shared data to achieve improved performance/fault toler-

ance and provide consistent data content, respectively. Because, iRODS requires fully

qualified host names (ie with a DNS entry), configuration must adapt at each partner

zone if one member changes its name. Particularly for mobile machines (eg laptops,

virtual machines) that aspect requires manual operation.

Albeit temporal provisioning of data is not explicitly supported it may be imple-

mented by exploiting iRODS’ delayed execution service. A drawback of that approach

is that the data available in the future is not known to iRODS’ iCAT until the delayed

operation has been performed. Alternatively, one could register the data with iRODS

but do not provision the data immediately. This, however, leads to an inconsistent

state between the iCAT and the storage, resulting in access failures at clients. In the

future, we will explore two approaches for solving that issue: (1) using compound

resources (eg similar to the combination of a cache and an archival system), and (2)

integrating VISPA’s data life cycle management (cf. Fig. 2) into iRODS. The latter,

however, would require us to update all command-line tools and APIs of iRODS and

make the users aware of this change.

7. Related work

Fedora [11] is a framework to build digital repositories for managing and sharing

digital objects based on the abstractions proposed by Kahn and Wilensky [9]. Fedora

uses RDF [17] for representing metadata and thus readily supports core and user

metadata as well as provenance information in VISPA. In [12], Marciano et al. studied

an integration of Fedora and iRODS. They found that both systems can be integrated

to provide interoperability between digital repositories, especially wrt. data sharing.

Integrating policies for managing the runtime behavior requires, however, additional

research. Over the past decade, many projects have implemented data management

and processing environments fitted to the specific needs of their domain. For example,

the climate community developed the Generation N Data Management System [4]

built upon the Globus toolkit [6] to implement work spaces and timely provisioning

of data that is negotiated by a broker. Similarly, MyLEAD [15] extends the Globus

Toolkit metadata catalog to let Geo scientists explore huge volumes of atmospheric

data. The DataFinder [20] is interfaced with UNICORE [23] to allow organizing data

and associate metadata with it.

At a more abstract, technology-agnostic level digital repositories are being devel-

oped in the arts and humanities domain to manage data products and their relation-

ships [2, 16]. The emphasis of such repositories is on modeling the semantics of data
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and curating research results. Furthermore, repositories may be federated to support

global collaboration and interdisciplinary research.

At file storage level, distributed file systems such as the network file sys-

tem (NFS) [19] enable access to files from different nodes and also the easy sharing of

files among users. Environments demanding high-performance file access are typically

build upon parallel file systems such as Lustre [21] and Ceph [25]. Wide-area net-

work file systems such as XtreemFS [7] must cope with slow or unreliable components

causing excess delays or network partitioning.

8. Conclusion and future directions

Science is increasingly based on exploiting digital information not only of huge volumes

like for LHC experiments, but maintained by various systems with different interfaces

at remote locations and owned by different stakeholders. Today, already basic tools

exist to manually construct a virtual infrastructure for managing and processing

the data. The main issues with the current modus operandi are the required level

of understanding of the basic technology and the lack of automation. VISPA is a

conceptual framework for letting scientists focus on the use of their data, but let the

runtime system take care of all the technology details and the execution of operations

to implement the needed virtual infrastructure. iRODS provides a sound basis for

implementing the key concepts of VISPA. Although it does not support provenance

data explicitly, one may utilize metadata with specific attributes. Data sharing is

enabled through iRODS’s federation capability. Temporal aspects of provisioning

data may be implemented by exploiting the delayed execution service for rules.

Future work is related to aspects which we think need improvements or require

different approaches. These are: (1) the efficient support of provenance informa-

tion, (2) the enhanced support for mobile machines, and (3) the better integration of

temporal provisioning of data.
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