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ENERGY REDISTRIBUTION
IN AUTONOMOUS HYBRIDIZATION OF
AGENT-BASED COMPUTING

Abstract Evolutionary multi-agent systems (EMAS) are very good at dealing with diffi-
cult, multi-dimensional problems. Research is currently underway to improve
this algorithm, giving agents even more freedom not only to solve the problem,
but also to make decisions about the behavior of the algorithm. One way is
to hybridize this algorithm with other existing algorithms to create the Hybrid
Evolutionary Multi Agent-System (HEMAS). Unfortunately, such connections
generate problems in the form of unbalanced agent energy levels. One solution
is to use an agent energy redistribution operator. The article presents three
different proposals for such redistribution operators, compared them with each
other and selected the best based on the results of numerous experiments.
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1. Introduction

Despite the increase in computer performance, not all problems can be resolved in
a timely manner. Some problems solved by deterministic algorithms take too long or
are too complicated (adding dozens of cities to the TSP problem is such an example).
However, some problems do not have deterministic solutions. In these and other cases,
novel stochastic methods can help. If other solutions do not meet the assumed goals,
you can use metaheuristics. Their big advantage is that they do not require informa-
tion about the characteristics of the search space. One of the advantages is the ability
to tune the algorithm through the selection of parameters (cf. iRace [11]) or the abil-
ity to combine with other algorithms to create hybrid algorithms (cf. Talbi [17]). We
are still looking for new metaheuristics because it is impossible to find a single method
that will solve all problems with the same accuracy (cf. Wolpert and MacReady [18]).

An example of such an algorithm is EMAS, which has been with us since 1996 [5].
It is a kind of combination of the evolutionary method with the agent paradigm,
resulting in a program in which agents are part of the computational process that
searches the area of search and consists of, among others, decentralized selections,
giving offspring or death. There is no central control, it can all be easily paralleled,
which reduces the computation time. After careful analysis [4, 15], it has become
a solid base for attempts to combine with other ideas, giving some interesting hybrid
algorithms ( [8] and [12]). However, when connecting, one may encounter the problem
of redistributing the energy of agents making their own decisions to use algorithms
that do not use energy ( [9]). This article looks at several solutions to this problem
and carefully examines the best of them.

The article, after reminding how the EMAS algorithm works, describes in de-
tail its hybrid HEMAS along with the problem of energy redistribution. The main
contribution of this paper is proposal of three solutions in the form of Propor-
tional redistribution operator, Ranking redistribution operator and Tournament re-
distribution operator. After experimenting with the parameters for Tournament
redistribution operator, is presented the results of the comparative experiments of
all operators. The next part includes the results of the experiment examining the
influence of the selected operator on the algorithm. At the end is a summary and
plan for further research.

2. Hybrid versions of EMAS

EMAS (evolutionary multi-agent system), may perceived as “proactive” alternative to
classical evolutionary computation techniques [10], hoped by the authors to relieve the
evolutionary metaheuristics from several inconsistencies with the real-life evolution,
such as e.g. lack of global control, and asynchronous reproduction. In this system,
solutions (genotypes) are entrusted to agents, handling and improving their solution
during realization of several types of actions available to them. In this way agents can
reproduce, die or migrate among the islands. The selection mechanism is implemented
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using resources (agents compete for the resources, only a rich agent can reproduce,
the poor agent will die) [5]. During meetings, agent exchange the resources (the
worse one gives a part of its resource to the better one). For the schematic view on
EMAS one can refer to the Figure 1. It is to note, that correctness of the EMAS
as global universal optimizer has been formally proven using Markov Chain based
models, inspired by the theoretical works of Michael Vose [3,4]. EMAS has also many
extensions, e.g. immunological one [1,2] and was applied to solve different single and
multi-criteria problems.

Figure 1. Diagram of Evolutionary Multi Agent Systems

Hybrid Evolutionary Multi Agent-System (HEMAS) is an algorithm built on the
EMAS algorithm with an additional hybridization step. Hybridization step, as shown
in the Figure 2, was placed after dead step, but before the step in which we check
whether the algorithm should be terminated. It is put here because this step can
significantly speed up the completion of the entire algorithm. This step has 3 parts
as described below.

Optimization condition. In this part, we check if the agents are willing to participate
in the hybridization step. This can happen for a variety of reasons. For example, an
agent may not improve his solution for a long time, lose many matches, or for other
reasons. Reasons for participating (as well as refusing to participate) can vary, and
there are plans to investigate this. In this particular solution, it is given the opportu-
nity to participate in this step every 500 cycles of the HEMAS algorithm. Note that
each of the algorithms included in this step may have specific requirements. Failure
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to meet these requirements results in failure to run the given algorithm. If neither of
the algorithms are satisfied, this entire step is skipped until the next possibility. In
this implementation, each of the algorithms used required at least 20 agents willing
to participate to run.
Run optimization algorithms. At this stage, algorithms are run to improve the agents’
performance. All algorithms are run here. There is no limit to the number of algo-
rithms or the length of their operation, however, it is worth choosing the algorithm
values so that they support EMAS and not replace it (let’s limit the number of calls to
the evaluation function, because it depends on how long our HEAMS algorithm will
run). There is no obligation for the algorithms to use agents or energy. Each algo-
rithm can operate in a different way and store values along with solutions (e.g. speed
and direction). We do not require the algorithm to use agents, but if it does not use
agents, one change is required. If an agent is to die and a new agent is to be created,
do the following instead. Change the solution value of a given agent and reset other
parameters (except energy). Proceed with this agent as with a newly created one.
With this solution we do not lose energy and algorithms do not need to know how
to create new agent. This solution uses two algorithms: particle swarm optimization
(PSO) and differential evolution (DE). This combination gives very good results [9],
therefore we continue the chosen direction.
Energy redistribution. At this stage, the main task is to be performed by the energy
redistribution operator. All agents who participated in the previous stage take part
in it. Everyone, regardless of the number or type of algorithms, goes to this one
redistribution operator together. In the following part are described different ways of
distribution and the effect of these operators on the final results.

Figure 2. Diagram of Hybrid Evolutionary Multi Agent Systems
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3. Energy redistribution in HEMAS

An important aspect in the EMAS algorithm is the energy of the agents. Its quantity
determines whether the agent will be able to reproduce (its solution will be passed
on) or die (its solution will be removed from the pool). The HEMAS hybrid step,
when run for a group of agents, can significantly change agent solutions. It can save
promising solutions or strengthen already good results. All these changes, however,
can be lost if we do not change the amount of energy in the agents. Without this
change, there may be a situation where an agent with a new, better solution, but with
an old energy level, dies before passing on his solution. Unfortunately, the algorithms
used in this step often do not consume energy or have different energy utilization
mechanisms.Therefore, just like w [14], it was necessary to introduce a special way of
combining these algorithms with each other. To prevent interference with the algo-
rithms, we decided not to change them and to solve this problem by using the energy
redistribution operator. However, this goal can be achieved by various methods, hence
this research and article. As mentioned in article [9], agents completing a hybrid step
in HEMAS have energy prior to that step. Therefore, their current amount of energy
is disproportionate to the quality of the solutions they have. This should be fixed
before proceeding with the algorithmic steps. In another case, you may just lose
your changes. To solve this, an energy redistribution mechanism was introduced. It
involves reallocating energy to the agents according to their present state. There are
several different ways to do this. In this article we will try to analyze several different
approaches, compare them with each other and finally choose the best one.

In order to precisely define the proposed redistribution mechanisms, let us as-
sume, that one of agents undergoing the hybridization will be described as: Ag ∋
agi = (ei, gi) where Ag = R+∪{0}×Rd is a set of all possible agents, d is the number
of dimensions of the real-value space (problem domain), ei and gi are energy and
genotype of the i-th agent respectively. Now, the set of agents which will undergo
the hybridization will be described as: 2Ag ⊃ γb = {ag1, . . . , agk}, where k ∈ N, k
is the number of the agents in the set which will undergo the hybridization. Now
a hybridization function will transfer γb into γa: hyb : 2Ag → 2Ag, and a proper
redistribution operator will work on the energy of γa transferring it into energy of γa.

3.1. Proportional redistribution operator

The first way to distribute energy, proposed in the article [9], is to allocate energy to
agents proportionally to their fitnesses. As a result of the operation of this operator,
agents will always have exactly enough energy so that the energy ratio between the
agents corresponds to the ratio of their solutions.

This is resolved as follows:
1. The energy of all agents is summed up. In this way, we obtain an energy bank

that we will use in the next steps. At this point, all agents have 0 energy for the
moment. They do not die, because the death of agents is possible only in dead
steps of the HEMAS algorithm. R ∋ s =

∑k
i=1 ei; agi ∈ γa.
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2. Next, we sum up all fitness values of the agents. R ∋ fitnesses =∑k
i=1 f(gi); agi ∈ γa, where f : Rd → R is the fitness function.

3. Then, we sum proportions. R ∋ proportions =
∑k

i=1
fitnesses

f(gi)
; agi ∈ γa.

4. Finally, we allocate a portion of the energy from s to each agent so that so as to
maintain the ratio of fitness and energy. ∀i, ei = s·fitnesses

f(gi)·proportions , where agi ∈ γa.

3.2. Ranking redistribution operator

Another solution is the ranking operator. It builds a ranking of agents based on their
solutions. Then it allocates energy depending on the ranking position. The agent who
wins the ranking, will take the most energy. The agent in the last place gets her the
least. Energy comes from all agents that are involved in this step of the algorithm. An
important difference that distinguishes this method from the proportional operator
is that with this method, the agents get energy directly proportional to their rank.
Of course, the place in the ranking depends on their solution, but the difference in
energy obtained between agents with very similar solutions may be different than
what they would get in the proportional operator. The differences in the amount of
energy received from place to place are constant. This solution, therefore, does not so
strong promote very good solutions and it does not so strong punish weak solutions.

Let us assume the ranking function r : 2Ag → 2Ag ×N. This function will assign
the rank to each of agents from γa, based on agents’ fitnesses. It will produce the
ranking set: rs = {(ag1, r1), . . . , (agk, rk)}. Now the energy will be set according to
the following equation: ∀i, ei = 2·s·(1+k−ri)

k·(k+1) , where agi ∈ γa.

3.3. Tournament redistribution operator

The most complex operator in action is the last operator discussed here: the tourna-
ment operator. Its operation is based on a series of meetings of two or more agents,
hereinafter referred to as tournaments. Agents do not report to the tournament them-
selves, but are randomly selected from the entire pool of agents taking part in this
step. Only one agent can win each tournament. The winner takes the prize which is
energy. An agent can win a lot of tournaments and get a lot of energy that way. Af-
ter a series of such tournaments, the energy should more reflect the quality of agents’
solutions.

We need the following parameters to implement this operator:
• number of tournaments,
• number of agents in each tournament,
• entry fee to the tournament,
• amount of the prize for winning the tournament.

The first two parameters should be selected experimentally. We’ll do this in 4.3.
Unfortunately, we cannot have a fixed entry fee to the tournament, as agents with
more and less energy can appear here. It is possible that there will be agents who do
not have any energy at the time of joining this step of the algorithm. Therefore, as an
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entry fee to all competitions, we take all energy from the agents. We determine the
size of the prize by dividing the amount of energy from the entry fees by the number
of tournaments. Thus, each tournament will have the same prize.

Thus, assuming in the simplest case (two-agent tournament) a prize being a part
of the sum of the energy p ∝ s, two agents are randomly selected from the γa: agt
and agu (u, t ∈ N). Now, if f(gt) > f(gu), et ← et + p. Such meetings are performed
until all the energy from s is redistributed.

4. Experimental results

This section presents and discusses the experimental results obtained for HEMAS and
the various energy redistribution operators.

All experiments were done using Prometheus which has 2403 TFlops, runs on
Linux CentOS 7 and which is part of PL-Grid1.

A platform based on jMetal2 was used to run the tests. This platform has some
improvmens done by dr Leszek Siwik. It was used to prepare, inter alia, calcula-
tions [13] and [16]. All implementations of algorithms, problems and other compo-
nents come from this platform and can be found here: https://bitbucket.org/lesiwik/
modelowaniesymulacja2018. JMetal version used was 5.6 and Java 13.0.2.

4.1. Benchmarks

In order to compare the energy redistribution operators, the following problems were
used: Rastrigin, Ackley, Sphere, Schwefel, Griewank. Each of the problems was used
in the following sizes: 100, 300, 500, 1000 and 2000. Additionally, in order to confirm
a wide range of solutions, the algorithm was tested on 24 problems from CEC 2005,
each in three sizes: 10, 30 and 50. All problems are implemented in jmetal [6]. During
the implementation we have leveraged the knowledge gathered while devloping many
computing frameworks, e.g. [7].

4.2. Configuration

Main parameters of the HEMAS algorithm are as follows:
• population size: 50,
• initial agent energy: 10,
• reproduction predicate: energy above 20,
• death predicate: energy equal to 0,
• crossover operator: SBX Crossover, (Distribution Index 5, Crossover Probabil-

ity 1),

1http://www.plgrid.pl/en
2jMetal [6] is an object-oriented Java-based framework aimed at the development, experimenta-

tion, and study of metaheuristics for solving optimization problems. http://jmetal.github.io/jMetal/

https://bitbucket.org/lesiwik/modelowaniesymulacja2018
https://bitbucket.org/lesiwik/modelowaniesymulacja2018
http://www.plgrid.pl/en
http://jmetal.github.io/jMetal/
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• mutation operator: Polynomial Mutation (Distribution Index 10, Mutation Prob-
ability 0.002),

• reproduction energy transfer: 10,
• meet energy transfer: 1,
• hybrid predicate: algorithm calls frequency – every 500 HEMAS cycles.

PSO algorithm parameters:

• max iterations: 3,
• optimization predicate: energy below 3,
• minimal population size: 20.

DE algorithm parameters:

• max iterations: 3,
• optimization predicate: energy above 17,
• minimal population size: 20.

Tournament Redistribute Operator parameters selected was:

• the number of tournaments: 20,
• the size of the tournament groups: 3.

Number of starts of each tested case: 30. End condition: 1000 . . . d (size of the
problem) calls of the evaluation function.

4.3. Selection of parameters
for Tournament Energy Redistribution Operator

Tournament Redistribute Operator parameters tested was:

• the number of tournaments: 5, 10, 20, 50,
• the size of the tournament groups: 2, 3, 5, 10.

The operator was tested on a subset of problems because of the many combina-
tions tested. For this set, 3 problems (Ackley, Rastrigin and Sphere) were selected
in 3 dimensions (100, 300, 500), which gives us 9 test cases. The differences in the
results of individual combinations on Figure 3, Figure 4 and Figure 5 did not differ
significantly from each other. Therefore, further search was abandoned and the follow-
ing parameters were selected: number of tournaments 20 and size of the tournament
groups 3.
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a)

b)

c)

Figure 3. Best fitness values for the selected benchmark functions obtained by HEMAS
with tournament redistribution operator with different parameters:

a) 100-dimensional Ackley function; b) 300-dimensional Ackley function;
c) 500-dimensional Ackley function
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a)

b)

c)

Figure 4. Best fitness values for the selected benchmark functions obtained by HEMAS
with tournament redistribution operator with different parameters:

a) 100-dimensional Rastrigin function; b) 300-dimensional Rastrigin function;
c) 500-dimensional Rastrigin function
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a)

b)

c)

Figure 5. Best fitness values for the selected benchmark functions obtained by HEMAS
with tournament redistribution operator with different parameters:

a) 100-dimensional Sphere function; b) 300-dimensional Sphere function;
c) 500-dimensional Sphere function
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4.4. Compare the redistribution operators

Having selected parameters for the tournament operator, we can proceed to compare
all redistribution operators with each other. We will use the same 9 test cases for test-
ing as in section 4.3. The box-plot with all final results can be compared in Figure 6.

a) b) c)

d) e) f)

g) h) i)

Figure 6. Best fitness values for the selected benchmark functions obtained by HEMAS
with proportional, ranking and tournament redistribution operators:

a) 100D Ackley function; b) 300D Ackley function; c) 500D Ackley function;
d) 100D Rastrigin function; e) 300D Rastrigin function; f) 500D Rastrigin function;

g) 100D Sphere function; h) 300D Sphere function; i) 500D Sphere function
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In each sub-graph, the results of the algorithm with the proportional operator
are on the left, in the middle is the algorithm with the ranking operator, and on
the right are the results of the algorithm with the tournament operator. At first
glance, choosing the best operator is difficult, therefore, the Kruskal-Wallis tests were
used. After analyzing the results, the proportional operator is the most statistically
different from the basic algorithm. Therefore, in further tests, it is the algorithm with
this operator that will be used.

4.5. Comparing the impact of the redistribution operator
on HEMAS algorithm

After an in-depth analysis of the results of the various redistribution operators and
their various parameters, the most promising was selected. Now the time has come
for a detailed comparison of the algorithm version with and without this operator.
Thanks to this, it will be possible to determine whether and what influence the selected
operator has on the final result. First, the HEMAS algorithm was compared with and
without the selected operator on the Ackley, Griewank, Rastrigin, Schwefel and Sphere
problem set, each in five sizes 100 dimensions, 300 dimensions, 500 dimensions, 1000
dimensions and 2000 dimensions.

In Table 1, 2, 3 and 4 can be found median, mean, standard deviation, maxi-
mum and minimum of all 30 runs for all problems and sizes. In each table, on top
are HEMAS results and on bottom are results from HEMAS with the Proportional
operator. In Table 1 it can be read that the HEMAS results for Ackley problems
at all magnitudes are weaker than those obtained by HEMAS with the Proportional
operator. It is similar with the solutions to the Griewank problem (still Table 1), here
also the results of the algorithm with the operator are much better than the results of
the algorithm without the operator. The same table show the results from the Ras-
trigin problem. In the case of the 100 dimensions Rastrigin problem, it can be seen
that the better part of the algorithm’s results without the operator coincides with the
weaker part of the algorithm’s results with the operator. For size 300 dimensions and
500 dimensions, HEMAS with operator results better than HEMAS without operator.
For the size of 1000 dimensions, the results start to be similar and for the size of 2000
dimensions the operator can see that he negatively influenced the final results. For all
five versions of the Schwefel problem, no significant differences can be seen between
the solutions of both versions of the algorithm. The greatest profit from the use of
the operator can be seen in the results of the Sphere problems. In each of the five
cases, the operator helped significantly.

Due to the above, it was decided to study the algorithms on a wider set of prob-
lems. For this purpose, issue set from IEEE Congress on Evolutionary Computation
2005 (CEC2005) was used. Each of the 24 problems was solved in 3 sizes: 10 dimen-
sions, 30 dimensions and 50 dimensions. In each of the tables, HEMAS algorithm
is on the top and HEMAS algorithm with the redistribution operator on the bot-
tom. Table 2 shows the results from the first eight problems. You will notice that the
results for first problem are better for the operator version of HEMAS. The remaining
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seven problems were resolved in a similar way. From Tables 3 and 4, where there are
problems 9 to 24, the results for problems 15, 16, 17, 21 and 22 in the 30 dimensions
and 50 dimensions sizes stand out, where the algorithm with the operator gave weaker
results. The above problems have thoroughly analyzed the version of the algorithm on
very difficult cases, thanks to which it was found that the algorithm does not always
work perfectly for problem sizes between 30 and 50. Of course, one cannot expect
any algorithm to solve all problems equally well.

Table 1
Results of HEAMS with operator and without operator for tested problems

HEMAS without redistribute operator
Mean Median SD Minimum Maximum

Ackley 100 2.62 · 10−1 2.61 · 10−1 4.21 · 10−2 1.79 · 10−1 3.65 · 10−1

Ackley 300 2.91 · 10−1 2.80 · 10−1 4.86 · 10−2 2.36 · 10−1 4.75 · 10−1

Ackley 500 3.47 · 10−1 3.17 · 10−1 9.64 · 10−2 2.30 · 10−1 6.23 · 10−1

Ackley 1000 5.01 · 10−1 4.55 · 10−1 1.96 · 10−1 2.90 · 10−1 1.20

Ackley 2000 5.40 · 10−1 5.12 · 10−1 1.55 · 10−1 2.78 · 10−1 9.14 · 10−1

Griewank 100 8.67 · 10−1 8.78 · 10−1 9.79 · 10−2 6.86 · 10−1 1.03

Griewank 300 1.02 1.01 6.66 · 10−2 8.64 · 10−1 1.17

Griewank 500 1.07 1.09 1.13 · 10−1 8.82 · 10−1 1.54

Griewank 1000 1.28 1.25 1.07 · 10−1 1.11 1.53

Griewank 2000 1.96 1.54 1.49 1.37 9.79

Rastrigin 100 5.45 5.23 1.96 1.74 9.40

Rastrigin 300 1.49 · 101 1.49 · 101 3.66 7.27 2.33 · 101

Rastrigin 500 2.59 · 101 2.49 · 101 6.74 1.71 · 101 4.57 · 101

Rastrigin 1000 6.05 · 101 5.30 · 101 2.14 · 101 3.55 · 101 1.1 · 102

Rastrigin 2000 2.01 · 102 1.83 · 102 9.79 · 101 9.42 · 101 5.55 · 102

Schwefel 100 5.28 · 103 5.40 · 103 6.29 · 102 3.92 · 103 6.28 · 103

Schwefel 300 1.62 · 104 1.64 · 104 9.04 · 102 1.39 · 104 1.81 · 104

Schwefel 500 2.82 · 104 2.83 · 104 1.18 · 103 2.53 · 104 3.04 · 104

Schwefel 1000 5.59 · 104 5.60 · 104 1.16 · 103 5.32 · 104 5.84 · 104

Schwefel 2000 1.15 · 105 1.15 · 105 3.17 · 103 1.06 · 105 1.21 · 105

Sphere 100 6.71 · 10−3 6.55 · 10−3 1.73 · 10−3 3.67 · 10−3 1.13 · 10−2

Sphere 300 2.15 · 10−2 2.14 · 10−2 2.60 · 10−3 1.61 · 10−2 2.61 · 10−2

Sphere 500 3.45 · 10−2 3.46 · 10−2 3.23 · 10−3 2.60 · 10−2 4.18 · 10−2

Sphere 1000 7.16 · 10−2 7.08 · 10−2 5.77 · 10−3 6.24 · 10−2 8.79 · 10−2

Sphere 2000 1.43 · 10−1 1.39 · 10−1 1.46 · 10−2 1.27 · 10−1 2.12 · 10−1

HEMAS with Proportional Operator
Mean Median SD Minimum Maximum

Ackley 100 1.66 · 10−1 1.63 · 10−1 2.68 · 10−2 1.14 · 10−1 2.22 · 10−1

Ackley 300 1.30 · 10−1 1.28 · 10−1 8.79 · 10−3 1.09 · 10−1 1.51 · 10−1

Ackley 500 1.21 · 10−1 1.24 · 10−1 8.17 · 10−3 1.01 · 10−1 1.32 · 10−1

Ackley 1000 1.22 · 10−1 1.22 · 10−1 4.61 · 10−3 1.12 · 10−1 1.30 · 10−1

Ackley 2000 1.03 · 10−1 1.03 · 10−1 8.04 · 10−3 8.00 · 10−2 1.19 · 10−1
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Table 1 (cont.)

Griewank 100 4.66 · 10−1 4.60 · 10−1 8.35 · 10−2 2.99 · 10−1 6.12 · 10−1

Griewank 300 4.54 · 10−1 4.55 · 10−1 8.53 · 10−2 3.21 · 10−1 6.55 · 10−1

Griewank 500 4.81 · 10−1 4.76 · 10−1 6.95 · 10−2 3.26 · 10−1 6.74 · 10−1

Griewank 1000 5.84 · 10−1 5.62 · 10−1 5.97 · 10−2 4.89 · 10−1 7.05 · 10−1

Griewank 2000 5.22 · 10−1 5.47 · 10−1 1.09 · 10−1 1.81 · 10−1 7.22 · 10−1

Rastrigin 100 1.61 1.60 9.91 · 10−1 4.57 · 10−1 4.87

Rastrigin 300 2.91 2.69 1.16 1.57 6.44

Rastrigin 500 6.07 6.12 1.54 3.20 9.53

Rastrigin 1000 4.50 · 101 4.61 · 101 9.65 2.63 · 101 6.35 · 101

Rastrigin 2000 5.19 · 102 5.28 · 102 5.47 · 101 4.14 · 102 6.16 · 102

Schwefel 100 5.05 · 103 5.21 · 103 6.12 · 102 3.79 · 103 6.04 · 103

Schwefel 300 1.59 · 104 1.60 · 104 7.74 · 102 1.42 · 104 1.73 · 104

Schwefel 500 2.76 · 104 2.78 · 104 1.34 · 103 2.43 · 104 3.06 · 104

Schwefel 1000 5.67 · 104 5.65 · 104 1.95 · 103 5.25 · 104 6.29 · 104

Schwefel 2000 1.15 · 105 1.15 · 105 2.54 · 103 1.09 · 105 1.20 · 105

Sphere 100 2.91 · 10−3 2.76 · 10−3 7.18 · 10−4 1.85 · 10−3 5.24 · 10−3

Sphere 300 6.30 · 10−3 6.33 · 10−3 6.93 · 10−4 4.73 · 10−3 7.56 · 10−3

Sphere 500 1.04 · 10−2 1.02 · 10−2 1.25 · 10−3 8.17 · 10−3 1.30 · 10−2

Sphere 1000 2.29 · 10−2 2.29 · 10−2 1.43 · 10−3 2.02 · 10−2 2.55 · 10−2

Sphere 2000 3.38 · 10−2 3.56 · 10−2 7.70 · 10−3 1.82 · 10−2 4.72 · 10−2

Table 2
Results of HEAMS with operator and without operator for CEC problems (1–8)

HEMAS without redistribute operator
Mean Median SD Minimum Maximum

CEC_1 10 −4.50 · 102 −4.50 · 102 1.46 · 10−1 −4.50 · 102 −4.49 · 102

CEC_1 30 −4.49 · 102 −4.49 · 102 3.34 · 10−1 −4.50 · 102 −4.48 · 102

CEC_1 50 −4.49 · 102 −4.49 · 102 4.50 · 10−1 −4.50 · 102 −4.48 · 102

CEC_2 10 −3.94 · 102 −4.06 · 102 4.00 · 101 −4.46 · 102 −2.45 · 102

CEC_2 30 4.78 · 103 4.65 · 103 1.84 · 103 1.06 · 103 9.48 · 103

CEC_2 50 2.09 · 104 2.05 · 104 4.62 · 103 1.35 · 104 3.05 · 104

CEC_3 10 1.32 · 106 1.08 · 106 8.63 · 105 1.99 · 105 3.57 · 106

CEC_3 30 1.62 · 107 1.51 · 107 6.63 · 106 5.82 · 106 3.39 · 107

CEC_3 50 3.54 · 107 3.72 · 107 1.06 · 107 1.78 · 107 5.69 · 107

CEC_4 10 −3.47 · 102 −3.56 · 102 7.04 · 101 −4.38 · 102 −1.56 · 102

CEC_4 30 1.42 · 104 1.40 · 104 4.96 · 103 5.41 · 103 2.54 · 104

CEC_4 50 5.68 · 104 5.58 · 104 1.36 · 104 2.53 · 104 8.15 · 104

CEC_5 10 −2.52 · 102 −2.71 · 102 5.90 · 101 −3.06 · 102 −4.96 · 101

CEC_5 30 7.41 · 103 7.94 · 103 1.87 · 103 3.16 · 103 1.06 · 104

CEC_5 50 1.89 · 104 1.89 · 104 2.73 · 103 1.29 · 104 2.39 · 104

CEC_6 10 8.92 · 102 5.38 · 102 1.16 · 103 4.12 · 102 6.50 · 103

CEC_6 30 1.50 · 103 9.15 · 102 2.16 · 103 6.50 · 102 1.26 · 104

CEC_6 50 1.19 · 103 1.15 · 103 2.96 · 102 8.02 · 102 2.44 · 103
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Table 2 (cont.)
HEMAS without redistribute operator

Mean Median SD Minimum Maximum
CEC_7 10 3.20 · 102 3.12 · 102 5.89 · 101 1.80 · 102 4.08 · 102

CEC_7 30 1.92 · 103 1.92 · 103 1.02 · 102 1.70 · 103 2.11 · 103

CEC_7 50 3.06 · 103 3.08 · 103 7.82 · 101 2.80 · 103 3.14 · 103

CEC_8 10 −1.19 · 102 −1.19 · 102 9.70 · 10−2 −1.20 · 102 −1.19 · 102

CEC_8 30 −1.19 · 102 −1.19 · 102 5.46 · 10−2 −1.19 · 102 −1.19 · 102

CEC_8 50 −1.19 · 102 −1.19 · 102 3.83 · 10−2 −1.19 · 102 −1.19 · 102

HEMAS with Proportional Operator
Mean Median SD Minimum Maximum

CEC_1 10 −4.50 · 102 −4.50 · 102 1.30 · 10−1 −4.50 · 102 −4.49 · 102

CEC_1 30 −4.50 · 102 −4.50 · 102 5.52 · 10−1 −4.50 · 102 −4.47 · 102

CEC_1 50 −4.49 · 102 −4.50 · 102 4.44 −4.50 · 102 −4.25 · 102

CEC_2 10 −4.06 · 102 −4.09 · 102 2.60 · 101 −4.44 · 102 −3.35 · 102

CEC_2 30 4.13 · 103 4.11 · 103 1.35 · 103 1.91 · 103 7.60 · 103

CEC_2 50 1.87 · 104 1.83 · 104 4.57 · 103 9.42 · 103 3.19 · 104

CEC_3 10 1.28 · 106 1.09 · 106 8.52 · 105 2.21 · 105 3.93 · 106

CEC_3 30 1.48 · 107 1.46 · 107 4.07 · 106 6.73 · 106 2.39 · 107

CEC_3 50 3.73 · 107 3.72 · 107 1.23 · 107 1.69 · 107 6.51 · 107

CEC_4 10 −3.60 · 102 −3.87 · 102 7.24 · 101 −4.36 · 102 −1.91 · 102

CEC_4 30 1.90 · 104 1.84 · 104 6.75 · 103 7.69 · 103 3.14 · 104

CEC_4 50 5.91 · 104 5.84 · 104 1.09 · 104 3.90 · 104 8.08 · 104

CEC_5 10 −2.37 · 102 −2.65 · 102 9.07 · 101 −3.06 · 102 1.50 · 102

CEC_5 30 7.40 · 103 7.81 · 103 1.86 · 103 3.15 · 103 1.06 · 104

CEC_5 50 1.89 · 104 1.89 · 104 2.78 · 103 1.29 · 104 2.39 · 104

CEC_6 10 1.21 · 103 5.57 · 102 1.88 · 103 4.30 · 102 8.31 · 103

CEC_6 30 2.25 · 103 8.39 · 102 4.16 · 103 5.89 · 102 1.62 · 104

CEC_6 50 1.30 · 103 1.05 · 103 8.38 · 102 7.35 · 102 4.36 · 103

CEC_7 10 3.14 · 102 3.01 · 102 6.55 · 101 1.80 · 102 4.19 · 102

CEC_7 30 1.90 · 103 1.92 · 103 9.02 · 101 1.74 · 103 2.05 · 103

CEC_7 50 3.05 · 103 3.08 · 103 7.37 · 101 2.85 · 103 3.16 · 103

CEC_8 10 −1.19 · 102 −1.19 · 102 1.12 · 10−1 −1.20 · 102 −1.19 · 102

CEC_8 30 −1.19 · 102 −1.19 · 102 6.05 · 10−2 −1.19 · 102 −1.19 · 102

CEC_8 50 −1.19 · 102 −1.19 · 102 4.15 · 10−2 −1.19 · 102 −1.19 · 102

Table 3
Results of HEAMS with operator and without operator for CEC problems (9–16)

HEMAS without redistribute operator
Mean Median SD Minimum Maximum

CEC_9 10 −3.30 · 102 −3.30 · 102 4.48 · 10−1 −3.30 · 102 −3.28 · 102

CEC_9 30 −3.29 · 102 −3.29 · 102 8.59 · 10−1 −3.30 · 102 −3.26 · 102

CEC_9 50 −3.28 · 102 −3.28 · 102 1.25 −3.30 · 102 −3.24 · 102

CEC_10 10 −3.11 · 102 −3.13 · 102 8.32 −3.27 · 102 −2.81 · 102

CEC_10 30 −2.41 · 102 −2.43 · 102 1.46 · 101 −2.63 · 102 −2.09 · 102

CEC_10 50 −1.49 · 102 −1.42 · 102 4.52 · 101 −2.49 · 102 −4.98 · 101
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Table 3 (cont.)

CEC_11 10 9.57 · 101 9.57 · 101 1.40 9.32 · 101 9.88 · 101

CEC_11 30 1.18 · 102 1.17 · 102 2.49 1.13 · 102 1.23 · 102

CEC_11 50 1.43 · 102 1.43 · 102 4.24 1.34 · 102 1.49 · 102

CEC_12 10 1.01 · 103 4.54 · 102 1.42 · 103 −4.20 · 102 5.65 · 103

CEC_12 30 4.59 · 104 3.92 · 104 2.50 · 104 7.31 · 103 1.00 · 105

CEC_12 50 1.98 · 105 1.74 · 105 1.27 · 105 5.04 · 104 5.67 · 105

CEC_13 10 4.62 · 103 4.62 · 103 6.31 · 10−1 4.62 · 103 4.62 · 103

CEC_13 30 1.15 · 104 1.15 · 104 1.06 · 102 1.12 · 104 1.16 · 104

CEC_13 50 3.01 · 104 3.01 · 104 2.40 · 102 2.92 · 104 3.03 · 104

CEC_14 10 −2.96 · 102 −2.96 · 102 2.63 · 10−1 −2.97 · 102 −2.96 · 102

CEC_14 30 −2.87 · 102 −2.87 · 102 3.44 · 10−1 −2.88 · 102 −2.86 · 102

CEC_14 50 −2.78 · 102 −2.78 · 102 5.99 · 10−1 −2.79 · 102 −2.77 · 102

CEC_15 10 3.70 · 102 5.24 · 102 2.08 · 102 1.20 · 102 7.03 · 102

CEC_15 30 1.29 · 102 1.20 · 102 2.57 · 101 1.20 · 102 2.63 · 102

CEC_15 50 1.31 · 102 1.22 · 102 2.47 · 101 1.20 · 102 2.39 · 102

CEC_16 10 2.61 · 102 2.49 · 102 2.78 · 101 2.20 · 102 3.17 · 102

CEC_16 30 1.86 · 102 1.21 · 102 1.55 · 102 1.20 · 102 6.55 · 102

CEC_16 50 1.22 · 102 1.20 · 102 4.39 1.20 · 102 1.38 · 102

HEMAS with Proportional Operator
Mean Median SD Minimum Maximum

CEC_9 10 −3.30 · 102 −3.30 · 102 9.53 · 10−2 −3.30 · 102 −3.29 · 102

CEC_9 30 −3.29 · 102 −3.30 · 102 2.42 −3.30 · 102 −3.21 · 102

CEC_9 50 −3.23 · 102 −3.29 · 102 1.33 · 101 −3.30 · 102 −2.75 · 102

CEC_10 10 −3.09 · 102 −3.11 · 102 8.74 −3.24 · 102 −2.80 · 102

CEC_10 30 −2.45 · 102 −2.46 · 102 1.37 · 101 −2.72 · 102 −2.1 · 102

CEC_10 50 −1.24 · 102 −1.26 · 102 6.43 · 101 −2.42 · 102 3.85 · 101

CEC_11 10 9.56 · 101 9.55 · 101 1.55 9.31 · 101 9.97 · 101

CEC_11 30 1.19 · 102 1.19 · 102 3.17 1.13 · 102 1.24 · 102

CEC_11 50 1.45 · 102 1.44 · 102 5.51 1.37 · 102 1.55 · 102

CEC_12 10 1.74 · 103 1.17 · 103 2.88 · 103 −3.95 · 102 1.33 · 104

CEC_12 30 4.63 · 104 4.24 · 104 2.02 · 104 1.70 · 104 8.58 · 104

CEC_12 50 1.78 · 105 1.52 · 105 9.01 · 104 6.27 · 104 4.44 · 105

CEC_13 10 4.62 · 103 4.62 · 103 3.50 · 10−1 4.62 · 103 4.62 · 103

CEC_13 30 1.15 · 104 1.15 · 104 1.15 · 102 1.12 · 104 1.16 · 104

CEC_13 50 3.01 · 104 3.02 · 104 2.45 · 102 2.93 · 104 3.03 · 104

CEC_14 10 −2.96 · 102 −2.96 · 102 3.84 · 10−1 −2.97 · 102 −2.95 · 102

CEC_14 30 −2.87 · 102 −2.87 · 102 3.36 · 10−1 −2.88 · 102 −2.86 · 102

CEC_14 50 −2.78 · 102 −2.78 · 102 4.82 · 10−1 −2.79 · 102 −2.77 · 102

CEC_15 10 3.30 · 102 2.76 · 102 1.93 · 102 1.20 · 102 5.54 · 102

CEC_15 30 4.30 · 102 4.39 · 102 1.09 · 102 1.73 · 102 6.86 · 102

CEC_15 50 4.52 · 102 4.49 · 102 9.50 · 101 2.17 · 102 5.72 · 102

CEC_16 10 2.60 · 102 2.53 · 102 2.20 · 101 2.19 · 102 3.02 · 102

CEC_16 30 3.51 · 102 3.27 · 102 1.11 · 102 1.46 · 102 5.49 · 102

CEC_16 50 3.68 · 102 3.66 · 102 6.05 · 101 1.43 · 102 4.90 · 102
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Table 4
Results of HEAMS with operator and without operator for CEC problems (17–24)

HEMAS without redistribute operator
Mean Median SD Minimum Maximum

CEC_17 10 2.72 · 102 2.71 · 102 1.80 · 101 2.38 · 102 3.06 · 102

CEC_17 30 1.81 · 102 1.22 · 102 1.03 · 102 1.21 · 102 5.54 · 102

CEC_17 50 1.34 · 102 1.22 · 102 5.16 · 101 1.21 · 102 3.96 · 102

CEC_18 10 9.04 · 102 9.81 · 102 1.96 · 102 4.37 · 102 1.09 · 103

CEC_18 30 7.25 · 102 7.23 · 102 7.55 · 101 4.29 · 102 8.80 · 102

CEC_18 50 7.03 · 102 7.16 · 102 1.06 · 102 1.88 · 102 8.09 · 102

CEC_19 10 9.49 · 102 9.91 · 102 1.14 · 102 5.57 · 102 1.08 · 103

CEC_19 30 7.03 · 102 7.13 · 102 1.06 · 102 2.87 · 102 8.92 · 102

CEC_19 50 7.60 · 102 7.50 · 102 5.39 · 101 6.92 · 102 9.52 · 102

CEC_20 10 8.81 · 102 9.73 · 102 2.16 · 102 3.20 · 102 1.06 · 103

CEC_20 30 7.48 · 102 7.39 · 102 4.52 · 101 6.78 · 102 9.04 · 102

CEC_20 50 7.05 · 102 7.19 · 102 7.38 · 101 4.45 · 102 8.46 · 102

CEC_21 10 1.28 · 103 1.27 · 103 2.88 · 102 6.64 · 102 1.63 · 103

CEC_21 30 6.41 · 102 5.23 · 102 2.46 · 102 4.87 · 102 1.28 · 103

CEC_21 50 8.32 · 102 7.89 · 102 2.85 · 102 5.14 · 102 1.35 · 103

CEC_22 10 1.19 · 103 1.16 · 103 6.64 · 101 1.13 · 103 1.32 · 103

CEC_22 30 1.18 · 103 1.19 · 103 9.72 · 101 9.86 · 102 1.42 · 103

CEC_22 50 1.16 · 103 1.14 · 103 1.17 · 102 9.93 · 102 1.42 · 103

CEC_23 10 1.13 · 103 1.17 · 103 1.91 · 102 5.28 · 102 1.41 · 103

CEC_23 30 1.22 · 103 1.21 · 103 1.08 · 102 9.77 · 102 1.46 · 103

CEC_23 50 1.24 · 103 1.25 · 103 1.40 · 102 9.41 · 102 1.50 · 103

CEC_24 10 5.01 · 102 4.60 · 102 1.04 · 102 4.60 · 102 7.72 · 102

CEC_24 30 5.06 · 102 4.79 · 102 1.03 · 102 4.17 · 102 8.23 · 102

CEC_24 50 1.17 · 103 1.25 · 103 2.31 · 102 6.54 · 102 1.42 · 103

HEMAS with Proportional Operator
Mean Median SD Minimum Maximum

CEC_17 10 2.70 · 102 2.69 · 102 1.94 · 101 2.38 · 102 3.18 · 102

CEC_17 30 4.62 · 102 4.33 · 102 1.04 · 102 1.80 · 102 7.07 · 102

CEC_17 50 5.1 · 102 5.14 · 102 6.03 · 101 3.1 · 102 6.27 · 102

CEC_18 10 8.45 · 102 9.63 · 102 2.47 · 102 3.14 · 102 1.08 · 103

CEC_18 30 7.42 · 102 7.78 · 102 1.23 · 102 2.28 · 102 8.60 · 102

CEC_18 50 9.26 · 102 9.05 · 102 8.12 · 101 7.45 · 102 1.13 · 103

CEC_19 10 9.19 · 102 9.73 · 102 1.73 · 102 3.67 · 102 1.08 · 103

CEC_19 30 7.54 · 102 7.59 · 102 7.98 · 101 3.97 · 102 8.70 · 102

CEC_19 50 8.48 · 102 8.67 · 102 1.16 · 102 4.18 · 102 1.03 · 103

CEC_20 10 9.26 · 102 9.83 · 102 1.44 · 102 4.97 · 102 1.07 · 103

CEC_20 30 7.50 · 102 7.52 · 102 9.01 · 101 3.38 · 102 9.17 · 102

CEC_20 50 8.83 · 102 8.92 · 102 8.23 · 101 6.26 · 102 1.08 · 103

CEC_21 10 1.22 · 103 1.24 · 103 2.98 · 102 6.61 · 102 1.60 · 103

CEC_21 30 9.15 · 102 8.75 · 102 1.22 · 102 6.31 · 102 1.22 · 103

CEC_21 50 1.07 · 103 1.07 · 103 1.55 · 102 8.83 · 102 1.30 · 103

CEC_22 10 1.18 · 103 1.16 · 103 5.19 · 101 1.12 · 103 1.32 · 103



Energy redistribution in autonomous hybridization of agent-based computing 363

Table 4 (cont.)

CEC_22 30 1.35 · 103 1.35 · 103 6.98 · 101 1.19 · 103 1.54 · 103

CEC_22 50 1.34 · 103 1.35 · 103 6.15 · 101 1.20 · 103 1.45 · 103

CEC_23 10 1.10 · 103 1.1 · 103 1.34 · 102 7.76 · 102 1.36 · 103

CEC_23 30 1.24 · 103 1.25 · 103 1.12 · 102 1.03 · 103 1.40 · 103

CEC_23 50 1.27 · 103 1.29 · 103 1.22 · 102 1.01 · 103 1.49 · 103

CEC_24 10 5.47 · 102 4.60 · 102 1.93 · 102 4.60 · 102 1.16 · 103

CEC_24 30 5.94 · 102 4.91 · 102 2.36 · 102 4.71 · 102 1.18 · 103

CEC_24 50 1.17 · 103 1.24 · 103 2.46 · 102 6.22 · 102 1.48 · 103

4.6. Discussion of the results

For most problems, you can see a large or significant positive effect of the redis-
tribution operator. For some problems you cannot see the difference and only for
individual cases the operator does not have a positive effect on the final result. Since
the operation of the operator is not long, it does not use the evaluation function, so
in our case it does not affect the duration of the entire algorithm. Therefore, one
should assume the correct way is to use the algorithm along with this operator. The
analysis of various operators did not reveal new areas of interest to be investigated,
so this part of the research can be considered finished.

5. Conclusion

At the beginning of the article, the tournament energy redistribution operator was
introduced. The results of the experiments showed that neither the number of tour-
naments nor the number of agents per tournament significantly influenced the final
results. So we selected 20 tournaments with 3 agents each as the best ones for further
comparison.

We then compared the tournament energy redistribution operator (with the pa-
rameters just selected), the ranking energy redistribution operator, and the propor-
tional energy redistribution operator. The results obtained from the experiments
showed that the proportional energy redistribution operator is the best.

That is why it was thoroughly tested in the last part of the research. The series of
tests shows that the algorithm with the proportional redistribution operator performs
much better compared to the algorithm without the operator. Therefore, in future
research related to adding new algorithms of its hybrid or the analysis of algorithm
selection methods by agents, the version of the algorithm with this operator will be
used.
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