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Abstract This paper presents an overview of formulations and algorithms that are dedi-

cated to modeling the influence of electromagnetic waves on the human head.

We start from h adaptive approximation of a three-dimensional MRI scan of

the human head. Next, we solve the time-harmonic Maxwell equations with

a 1.8 GHz cellphone antenna. We compute the specific absorption rate used

as the heat source for the Pennes bioheat equation modeling the heat gener-

ated by EM waves inside the head. We propose an adaptive algorithm mixed

with time-stepping iterations where we simultaneously refine the computational

mesh, solve the Maxwell and Pennes equations, and iterate the time steps. We

employ the sparse Gaussian elimination algorithm with the low-rank compres-

sion of the off-diagonal matrix blocks for the factorization of the matrices. We

conclude with the statement that 15 minutes of talking with a 1.8 GHz antenna

with one watt of power results in increased brain tissue temperatures (up to

38.4◦C).

Keywords mesh generation, mesh adaptation, Pennes bioheat equations, time-harmonic

Maxwell equations, sparse factorization, low rank approximation

Citation Computer Science 22(4) 2021: 433–461

Copyright © 2021 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

433

https://doi.org/10.7494/csci.2021.22.4.4251
https://orcid.org/0000-0003-1522-873X
https://orcid.org/0000-0001-7766-6052
https://creativecommons.org/licenses/by/4.0/


434 Barbara G lut, Maciej Paszyński

1. Introduction

In this paper, we present an overview of the adaptive finite element method [4,11,17]

application to the problem of simulations of the influence of an electromagnetic wave

antenna on the biological tissues of the human head.

This is a very challenging and important problem. This problem was solved for an

artificial “plastic” model of the human head in the Ph.D. thesis of Kyungjoo Kim [14].

This problem was also solved in [19] by using an approximated heat source that

represented cellphone radiation based on the results obtained in [14]. The formulation

of a cellphone antenna with equivalent currents was described in [8]. This topic

is subject to intense research [7, 12, 20], which is focused on different locations of

cellphone antennas, its influence on the human heads of adults and children, and the

different kinds of cellphone antennas.

In this paper, we employ the following: (1) L2 projection problem for approx-

imating MRI scan of human head; (2) time-harmonic Maxwell equations modeling

waves emitted by antenna of cellphone; (3) Pennes bioheat-transfer equations. We

combine the following algorithms: (1) h adaptive algorithm employing finite element

method with quadratic basis functions to solve L2 projection problem; (2) hp adaptive

algorithm employing finite element method with hierarchical basis functions to solve

Maxwell problem; (3) time-stepping algorithm using Crank-Nicolson time-integration

scheme; (4) hp adaptive algorithm employing finite element method with hierarchical

basis functions for solving Pennes bioheat problem; (5) low-rank approximation solver

algorithm employing SVD decomposition of off-diagonal matrix blocks.

The time-harmonic Maxwell equation concerns the electromagnetic field propa-

gation on the model of the human head. Its input is the distribution of the materials

of the human head with permeability, permittivity, and conductivity. We assume that

these electromagnetic properties do not depend on the temperature, only on the type

of material. Thus, even if we update the temperature distribution of the human head,

the electromagnetic properties of materials do not change; therefore, the input to the

time-harmonic Maxwell equations remains the same. The elliptic problem concerns

the Pennes bioheat equation. Its input is the material properties, and the right-hand

side is computed based on the electromagnetic wave distribution that is estimated by

the Maxwell equations. The heat transfer is a non-stationary time-dependent phe-

nomenon, while the electromagnetic wave distribution does not change over time in

our model.

The structure of this paper is as follows. We start by introducing three-dimen-

sional finite elements and basis functions, and we illustrate their application on the

problem of computing a projection of the human head based on MRI scan data. This

first section is an illustrative example of how the adaptive algorithm works by us-

ing the two-grid paradigm. The next section focuses on a cellphone antenna model,

with a weak formulation of the time-harmonic Maxwell equations. We comment on

the values of the parameters for modeling the human head. The next section de-

rives the Crank-Nicolson time-stepping algorithm for the heat-transport equations.
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We instantiate the problem for the Pennes bioheat-transfer equations. Finally, we com-

bine these ideas, and we introduce the space-adaptive time-stepping algorithm. Finally,

we summarize the paper with the our conclusions, and in the appendix, we describe

the sparse Gaussian elimination algorithm with the low-rank compression of off-diag-

onal blocks that is utilized for the solution of the encountered systems of equations.

2. Adaptive generation of approximation of human head

based on MRI scan data

This section aims to derive the adaptive algorithm for the approximation of the MRI

scan data of the human head that is presented in Figure 1. The result of the algorithm

is to replace the three-dimensional MRI scan of the human head with the continuous

approximation of the material data, which is more suitable for the finite element

method computations.

Figure 1. MRI scan of head of Maciej Paszyński

This section introduces the hp finite element with hierarchical basis functions (as

was proposed by [3, 4]). We start by defining the one-dimensional hierarchical basis

functions that will be used later on to define the two- and three-dimensional ba-

sis functions by their tensor products:

χ̂1(ξ) = 1 − ξ

χ̂2(ξ) = ξ

χ̂3(ξ) = (1 − ξ)ξ

χ̂p(ξ) = (1 − ξ)ξ(2ξ − 1)p−3 p = 4, 5, ..., 9

(1)

These 1D basis functions are used to define the 2D basis functions over the two-

dimensional finite element that is presented in Figure 2.



436 Barbara G lut, Maciej Paszyński

Figure 2. Two-dimensional finite element with four vertex nodes, four edge nodes,

and one interior node

For the L2 projection and time-harmonic Maxwell problems, we will employ

quadratic basis functions; for the Pennes bioheat equation, we will employ higher-

order basis functions as were proposed by the hp adaptive algorithm. Equation 2 and

Figure 3 define the basis functions over each of the four vertices of the element:

ϕ̂1(ξ1, ξ2) = χ̂1(ξ1)χ̂1(ξ2)

ϕ̂2(ξ1, ξ2) = χ̂2(ξ1)χ̂1(ξ2)

ϕ̂3(ξ1, ξ2) = χ̂2(ξ1)χ̂2(ξ2)

ϕ̂4(ξ1, ξ2) = χ̂1(ξ1)χ̂2(ξ2)

(2)

Next, Equation 3 and Figure 4 define the basis functions over each of the four

edges of the element:

ϕ̂5(ξ1, ξ2) = χ̂3(ξ1)χ̂1(ξ2)

ϕ̂6(ξ1, ξ2) = χ̂2(ξ1)χ̂3(ξ2)

ϕ̂7(ξ1, ξ2) = χ̂3(ξ1)χ̂2(ξ2)

ϕ̂8(ξ1, ξ2) = χ̂1(ξ1)χ̂3(ξ2)

(3)

Equation 4 and Figure 5 define the basis functions over the element’s interior:

ϕ̂9(ξ1, ξ2) = χ̂3(ξ1)χ̂3(ξ2) (4)

In other words, we have basis functions that are constructed as the tensor prod-

ucts of two linear one-dimensional basis functions at each vertex node. We have basis

functions that are constructed as the tensor products of one linear and one quadratic

one-dimensional basis function over each element edge. Finally, we have basis func-

tions that are constructed as the tensor products of two quadratic basis functions over

each element interior.
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Figure 3. Basis functions related to finite element vertices

Figure 4. Basis functions related to finite element edge nodes

Figure 5. Basis function related to finite element interior node



438 Barbara G lut, Maciej Paszyński

This construction can be generalized into three-dimensional finite elements and

into higher-order basis functions. Now, we define the basis functions over the three-

-dimensional hexahedral hp finite element. Equation 5 defines the basis functions over

each of the eight vertices of the element:

ϕ̂1(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂1(ξ3)

ϕ̂2(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂1(ξ3)

ϕ̂3(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂1(ξ3)

ϕ̂4(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂1(ξ3)

ϕ̂5(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂2(ξ3)

ϕ̂6(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂2(ξ3)

ϕ̂7(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂2(ξ3)

ϕ̂8(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂2(ξ3)

(5)

Next, Equation 6 defines the pi− 1 shape functions over each of the twelve edges

of the element:

ϕ̂9,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂1(ξ3) j = 1, ..., p1 − 1

ϕ̂10,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂1(ξ3) j = 1, ..., p2 − 1

ϕ̂11,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂1(ξ3) j = 1, ..., p3 − 1

ϕ̂12,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂1(ξ3) j = 1, ..., p4 − 1

ϕ̂13,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂2(ξ3) j = 1, ..., p5 − 1

ϕ̂14,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂2(ξ3) j = 1, ..., p6 − 1

ϕ̂15,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂2(ξ3) j = 1, ..., p7 − 1

ϕ̂16,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂2(ξ3) j = 1, ..., p8 − 1

ϕ̂17,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂2+j(ξ3) j = 1, ..., p9 − 1

ϕ̂18,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂2+j(ξ3) j = 1, ..., p10 − 1

ϕ̂19,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂2+j(ξ3) j = 1, ..., p11 − 1

ϕ̂20,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂2+j(ξ3) j = 1, ..., p12 − 1

(6)

Here, pi stands for the polynomial order of approximation that was utilized over

the i-th edge. Equation 7 also defines the (pih−1)×(piv−1) shape functions over each

of the six faces of the element:
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ϕ̂21(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂1(ξ3) j = 1, ..., p13h − 1, k = 1, ..., p13v − 1

ϕ̂22(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂2(ξ3) j = 1, ..., p14h − 1, k = 1, ..., p14v − 1

ϕ̂23(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂2+k(ξ3) j = 1, ..., p15h − 1, k = 1, ..., p15v − 1

ϕ̂24(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) j = 1, ..., p16h − 1, k = 1, ..., p16v − 1

ϕ̂25(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂2+k(ξ3) j = 1, ..., p17h − 1, k = 1, ..., p17v − 1

ϕ̂26(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) j = 1, ..., p18h − 1, k = 1, ..., p18v − 1

(7)

Here, pih and piv are the polynomial orders of approximations in the two direc-

tions over the i-th face of the element. Finally, we define the (px−1)×(py−1)×(pz−1)

basis functions over an element interior:

ϕ̂27,ij(ξ1, ξ2) = χ̂2+i(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3)

i = 1, ..., px − 1, j = 1, ..., py − 1, k = 1, ..., pz − 1
(8)

where (px, py, pz) are the polynomial orders of approximation along the x, y, and z

directions.

In order to obtain a smooth approximation of the material data that is suitable

for the finite element method computations, we employ the finite element method

implementing the following L2 projections problem.

Given Ω ∋ (x, y, z) → F (x, y, z) ∈ R, find the linear combination∑
i=1,...,Nh

ui
hei(x, y, z) such that

∥F (x, y, z) −
∑

i=1,...,Nh

ui
hei(x, y, z)∥L2 → MIN (9)

Here, {ui}Nh
i=1 are the coefficients, and {ei(x, y, z)}Nh

i=1 ∈ Vh are the basis functions

obtained by gluing together the shape functions that are spread over a given com-

putational mesh covering Ω. The projection problem can be formulated in a weak

form: ∫
Ω

u(x, y, z)v(x, y, z)dxdydz =

∫
Ω

F (x, y, z)v(x, y, z)dxdydz ∀v (10)

and discretized into∫
Ω

uh(x, y, z)v(x, y, z)dxdydz =

∫
Ω

F (x, y, z)v(x, y, z)dxdydz ∀v ∈ Vh (11)

which results in a system of Nh linear equations to solve:∑
i=1,...,Nh

∫
Ω

ui
he

i(x, y, z)vj(x, y, z)dxdydz =∫
Ω

F (x, y, z)vj(x, y, z)dxdydz j = 1, ..., Nh

(12)
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We employ the adaptive mesh refinement procedure following the general hp

adaptive algorithm described in [3,4]. In this case, we only consider h refinement (we

only break the selected elements into eight smaller elements), and we use quadratic

basis functions. In the coarse-mesh problem, we seek approximation uh over a given

computational mesh. In the fine-mesh problem, we seek approximation uh/2 over the

computational mesh that was obtained from the coarse mesh by breaking each element

into eight new elements. The fine-mesh solution is more accurate, but it is more

expensive to compute since we have a larger system of equations to solve in (12). Thus,

our algorithm tries to find the minimal computational mesh that provides a solution

with a given accuracy. We summarized the pseudo-code of the algorithm below.

function adaptive L2projection fem (initial mesh,desired err,coef)

1 coarse mesh = initial mesh

2 repeat

3 u h = solve coarse mesh projection problem

4 fine mesh = copy coarse mesh

5 divide each element K of fine mesh into eight new elements

6 u h/2 = solve fine mesh projection problem

7 max err = 0

8 for each element K of fine mesh do

9 K err = compute relative error on K in L2 norm using u h and u h/2

10 if K err > max err then

11 max err = K err

12 endif

13 enddo

14 adapted mesh = new empty mesh

15 for each element K of coarse mesh do

16 if K err > coeff * max err then

17 execute h refinement of element K

18 add K from coarse to adapted mesh

19 endif

20 enddo

21 coarse mesh = adapted mesh

22 until max err < desired err

The algorithm iteratively breaks the selected finite elements into eight smaller

elements to increase the accuracy of the numerical solution. We focus on a digital

MRI scan data with 29 two-dimensional slices, each one with 532 × 565 pixels. Each

pixel’s intensity is a value within a range of [0, 255]; it is proportional to the mate-

rial’s density (including skull, skin, tissue, and air). The selected slices are presented

in Figure 1. We construct a 3D bitmap out of these and we run the adaptive L2

projection algorithm. The iterations of the algorithm are illustrated in Figures 6–9.
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Figure 6. Coarse mesh, coarse-mesh solution, and relationship between one finite element

and MRI scan data: color bar from blue to red represents values from 0 to 255

Figure 7. Coarse- and fine-mesh solutions: color bar from blue to red

represents values from 0 to 255

Figure 8. Comparison between coarse and fine meshes and resulting optimal mesh:

color bar from blue to red represents values from 0 to 255
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...

Figure 9. Following iterations of head-approximation algorithm and final approximation of

MRI scan of human head, with cellphone antenna location denoted by cross: color bar from

blue to red represents values from 0 to 255

We start from the initial computational mesh with eight finite elements (Line 1

of Algorithm 1). We span 27 basis functions at 27 vertices of 8 elements that are

constructed as the tensor products of 3 one-dimensional linear basis functions. We

also span 66 basis functions at 66 edges of 8 elements that are constructed as the tensor

products of 2 one-dimensional linear basis functions and 1 one-dimensional quadratic

basis function. Next, we span 36 basis functions over 36 faces of 8 elements that

are constructed as the tensor products of 2 one-dimensional quadratic basis functions

and 1 one-dimensional linear basis function. Finally, we span eight basis functions on

eight interiors of the eight elements that are constructed as the tensor products of

three quadratic one-dimensional basis functions. The mesh is illustrated in Figure 6.

It covers half of the human head so that, when we solve the L2 projection problem,

we can see the projection of the cross-section of the human head on one of the faces

of the mesh. We solve the L2 projection problem on this coarse mesh (Line 3 of

Algorithm 1). This mesh is too coarse to resolve the MRI scan data. Thus, we break

each element into eight, which is illustrated in Figure 7 (Line 5 of Algorithm 1). We

have 64 finite elements with basis functions spanning over the element vertices, edges,
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faces, and interiors. We solve the projection problem again – this time resolving

the MRI scan data on the larger mesh (Line 6 of Algorithm 1). Now, we compare the

coarse- and fine-mesh solutions as presented in Figure 8 (Lines 7–12). Namely, we

compute
∥uh−uh/2∥L2

∥uh/2∥L2
=

∫
K
(uh−uh/2)

2dx∫
K
(uh/2)2dx

for each element K from the coarse mesh,

where uh is the coarse-mesh solution over element K, and uh/2 is the fine-mesh

solution projected from the fine mesh over element K. We iterate through the eight

coarse-mesh elements and compute the relative error between the coarse- and fine-

mesh solutions. We store the maximum element error (Line 11 of Algorithm 1).

Since the error is uniformly distributed into eight elements in our example, we decide

to break all of the eight elements to produce the next optimal mesh (Lines 14–21).

Namely, we iterate through the eight elements of the coarse mesh, and we check if the

element local relative error is greater than coeff=33 percent of the maximum error. In

this case, this happens for all of the elements; so, we break all elements of the coarse

mesh (in Line 17 of Algorithm 1). This mesh becomes the coarse mesh for the next

iteration (Line 21 of Algorithm 1). The convergence of the algorithm is stopped

when the relative error is less than 1 percent (Line 22 of Algorithm 1). The optimal

meshes and the solutions generated in the particular iterations of the algorithm are

illustrated in Figure 9. The final mesh is presented in Figure 9. The cross in this figure

represents the assumed location of the cellphone antenna (presented in Figure 10).

This continuous smooth approximation of the human head will be used for the finite

element method computations presented in the following sections.

Figure 10. Modeling antenna by boundary conditions and equivalent current

3. Time-harmonic Maxwell equations

This chapter presents an overview of the time-harmonic Maxwell equations in the

weak form that were utilized for the solution of the problem of the propagation of

the electromagnetic waves as generated by the cellphone antenna. From the Maxwell

problem results, we are particularly interested in the heat source qSAR that is gen-

erated from the cellphone antenna (as computed from the time-harmonic Maxwell

equations).
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We now focus on the time-harmonic Maxwell equations:

∇×
( 1

µ
∇×E

)
− (ω2ε− ωσ)E = −iωJ imp over Ω (13)

where we seek E – electric field intensity. For the time-harmonic Maxwell equations,

we assume that

E(x, t) = Re(E(x)eiωt) (14)

(the electromagnetic field oscillates over time; at each point in space, the complex

number codes the amplitude and length of the wave). We introduce µ permeabil-

ity, ε permittivity, σ conductivity, J imp – impressed current of the electric field, ω

frequency. For weak formulation

∇×
( 1

µ
∇×E

)
− (ω2ε− iωσ)E = −iωJ imp over Ω (15)

we multiply by the test functions from functional space V = H(curl,Ω) = {F ∈ L2 :

∇× F ∈ L2} to get∫
Ω

∇×
( 1

µ
∇×E

)
◦ F dx−

∫
Ω

(ω2ε− iωσ)E ◦ F dx =

−
∫
Ω

iωJ imp ◦ F dx ∀ F ∈ V over Ω

(16)

We integrate by parts∫
Ω

(∇×E) ◦ F dx =

∫
Ω

E ◦ (∇× F )dx +

∫
Γ

(n×E)F tds over Ω (17)

where F t = F − (F ◦ n)n is the tangent component.∫
Ω

( 1

µ
∇×E

)
◦ (∇× F )dx +

∫
Γ

(
n× (

1

µ
∇×E)

)
F tdS

−
∫
Ω

(ω2ε− iωσ)E ◦ F dx = −
∫
Ω

iωJ imp ◦ F dx ∀ F ∈ V over Ω

(18)

We introduce the Dirichlet boundary conditions on the ΓD boundary denoted in

Figure 10:

n× E = 0 on ΓD (19)

where n denotes the versor normal to the boundary, and the Neumann boundary

conditions on the ΓN boundary as denoted in Figure 10.

n× 1

µ
(∇× E) = ωJ imp

S on ΓN (20)

J imp
S denotes the impressed surface current. On the boundary of the domain, we

introduce the perfectly matching layer (PML) trick, which allows for for closure of the



Overview of adaptive and low-rank approximation algorithms . . . 445

computational domain. More details in PML can be found in [15]. This represents

the layer that absorbs the electromagnetic waves:∫
Ω

( 1

µ
∇×E

)
◦ (∇× F )dx−

∫
Ω

(ω2ε− iωσ)E ◦ F dx =

−
∫
Ω

iωJ imp ◦ F dx +

∫
ΓN

iωJ imp
S dS ∀ F ∈ V over Ω

(21)

We utilize the dimensionless formulation; namely, we scale all the quantities according

to the following: ε0 – electric permeability of air (8.854 · 10−12 F/m); µ0 – magnetic

permeability of air (4.0pi · 10−7 H/m); εr = ε
ε0

relative electric permittivity; εδ = σ
ωε0

relative resistivity; µr = µ
µ0

relative magnetic permittivity k0 = ω
√
ε0µ0, Z0 =

√
µ0

ε0
.

We get ∫
Ω

( 1

µrµ0
∇×E

)
◦ (∇× F )dx−

∫
Ω

(ω2ε− iωσ)E ◦ F dx =

−
∫
Ω

iωJ imp ◦ F dx +

∫
ΓN

iωJ imp
S dS ∀ F ∈ V over Ω

(22)

with

µr =
µ

µ0
, εr =

ε

ε0
, εδ =

σ

ωε0
(23)

We multiply by µ0∫
Ω

( 1

µr
∇×E

)
◦ (∇× F )dx−

∫
Ω

(
ω2εµ0 − iωσµ0

)
E ◦ F dx =

−
∫
Ω

iωµ0J
imp ◦ F dx +

∫
ΓN

iωµ0J
imp
S dS ∀F ∈ V over Ω

(24)

we use k0 = ω
√
ε0µ0, Z0 =

√
µ0

ε0
and k0Z0 = ω

√
ε0µ0

√
µ0

ε0
= ωµ0 to get∫

Ω

1

µr
∇×E ◦ ∇ × F dx−

∫
Ω

(ω2εµ0 − iωσµ0)E ◦ F dx =

−
∫
Ω

ik0Z0J
imp ◦ F dx +

∫
Ω

ik0Z0J
imp
S ◦ F dx ∀F ∈ V over Ω

(25)

and εδ = σ
ωε0∫

Ω

1

µr
∇×E ◦ ∇ × F dx + −

∫
Ω

k20(εr − iεσ)E ◦ F dx =

−
∫
Ω

ik0Z0J
imp ◦ F dx +

∫
Ω

ik0Z0J
imp
S ◦ F dx ∀F ∈ V over Ω

(26)
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Next, we introduce the dimensionless quantities: x := x
a , a – characteristic spatial

scale a = 1 m; ω := k0a – frequency, E := E
E0

, E0 – characteristic intensity of vector

electric field; J imp := aZ0

E0
J , J imp

S := Z0

E0
JS . After this scaling, we have ω = 3.77

(which relates to the 1.8 GHz frequency):∫
Ω

1

µr
∇×E ◦ ∇ × F dx + −

∫
Ω

ω2(εr − iεσ)E ◦ F dx =

− iω

∫
Ω

J imp ◦ F dx + iω

∫
Ω

J imp
S ◦ F dx ∀F ∈ V over Ω

(27)

In the domain of the human head, we distinguish different materials by looking at the

values of the projected functions. In the original bitmap, the pixel intensity varies for

the tissue, air, and bones. The monochromatic bitmap varies from 0 to 255 per pixel.

We define the air area for pixels where the intensity is less than or equal to 1. We

define the bones for pixel intensities that are between 1 to 240. Finally, we define the

skull for pixel intensities that are greater than 240. The material data is defined as

ϵr = ϵσ = 1 for the air, ϵr = 43.54, ϵσ = 11.51 for the tissue, and ϵr = 15.56; ϵσ = 4.31

for the skull. The cellphone antenna is modeled in the following way. We put on

inside the area marked in gray J imp
s = (0, 1, 0), zero Dirichlet b.c. on ΓD. Having

the solution (electromagnetic field E), we can calculate qSAR as average energy per

unit volume 1
2σ∥E∥2, where ∥E∥2 denotes the squared L2 norm of the electric field

intensity, and σ denotes the conductivity of the tissue. The definition of qSAR follows

the one that was presented in the Ph.D. dissertation of Kyungjoo Kim (see [14],

p. 121). More details on the time-harmonic Maxwell equations can be found at [1,9,18].

We will solve the time-harmonic Maxwell equations using the finite element method

and the complex version of the multi-frontal solver [5, 6, 10, 16], augmented with the

low-rank compression of the off-diagonal blocks. Next, we will compute the qSAR,

and we plug it in as the heat source for the heat-transfer problem.

4. Heat transfer with Pennes bioheat equations

and Crank-Nicolson time-integration scheme

This chapter aims to derive a weak formulation of the Pennes bioheat equations with the

Crank-Nicolson time-integration scheme, which is suitable for the adaptive processing

with the hp finite element method. We will also define the model parameters based on

the continuous approximation of the MRI scan data of the human head. As the heat

source, we employ the qSAR that was generated from the cellphone antenna (as com-

puted from the time-harmonic Maxwell equations). The term qSAR is computed based

on the distribution of the electromagnetic waves (as computed by the time-harmonic

Maxwell equation). This does not change over time, and we treat it as the forcing term.

We employ the Crank-Nicolson time-integration scheme since this is an uncon-

ditionally stable scheme and the time-step size there is not restricted by the CFL

condition.
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We start from the heat-transfer problem:

∂u

∂t
= ∇ · (k∇u) + ru + f (28)

where u(x, t) denotes the temperature scalar field at point x and time moment t,

k(x, t) is the heat conduction (assumed to be isotropic and equal in all directions at

a given point x, and constant in time t), and r(x, t) corresponds to the relaxation

(cooling) effects due to the presence of the vascular system in the human head. We

assume that both parameter fields are constant over time. We employ the Crank–

Nicolson time-integration scheme with time step ∆t:

ut+1 − ut

∆t
= ∇ · (k∇u∗) + ru∗ + ft where u∗ =

ut+1+ut

2
(29)

ut+1 − ut

∆t
=

1

2
[∇ · (k∇ut+1) + ∇ · (k∇ut)] + r

1

2
(ut + ut+1) + ft (30)

ut+1 −
1

2
∆t (∇ · (k∇ut+1) + lut+1) = ut +

1

2
∆t[∇ · (k∇ut)] + ∆t[rut + ft] (31)

We multiply by test functions v and integrate to obtained the Galerkin method “in

space”: ∫
Ω

(
(1 − r∆t)ut+1 −

1

2
∆t (∇ · (k∇ut+1))

)
vdx =

∫
Ω

(
ut +

1

2
∆t[∇ · (k∇ut)] + ∆t[rut + ft]

)
vdxt ∀ v ∈ V

(32)

where

V = H0(Ω) =
{
f : Ω → R :

∫
Ω

|f2| + |∇f2|dx < ∞} (33)

We integrate by parts∫
Ω

(1 − r∆t)ut+1vdx +
1

2
∆t

∫
Ω

(k∇ut+1) · ∇vdx− 1

2
∆t

∫
Γ

(k∇ut+1) · ndS =

∫
Ω

utvdx +
1

2
∆t

∫
Ω

(k∇ut) · ∇vdx− 1

2
∆t

∫
Γ

(k∇ut) · ndS + ∆t

∫
Ω

[rut + ft]vdx

(34)

and we assume that the computational domain is large enough to assume the zero

Neumann boundary conditions (k∇ut) · n = k ∂ut

∂n = 0 to get∫
Ω

(1 − r∆t)ut+1vdx +
1

2
∆t

∫
Ω

(k∇ut+1) · ∇vdx =

∫
Ω

utvdx +
1

2
∆t

∫
Ω

(k∇ut) · ∇vdx + ∆t

∫
Ω

[rut + ft]vdx

(35)
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Particularly in the first time step,∫
Ω

(1 − r∆t)u1vdx +
1

2
∆t

∫
Ω

(k∇u1) · ∇vdx =

=

∫
Ω

u0vdx +
1

2
∆t

∫
Ω

(k∇u0) · ∇vdx + ∆t

∫
Ω

[ru0 + f0]vdx

(36)

where u0 is a given initial configuration. We introduce bilinear form b(ut+1, v) and the

form l(ut, v) that has a sub-form l1(v) that is linear with respect to the v argument

as well as the sub-form l2(vt, v) that is bilinear:

b(ut+1, v) = l(ut, v) ∀ v ∈ V

b(ut+1, v) =

∫
Ω

ut+1vdx +
1

2
∆t

∫
Ω

(k∇ut+1) · ∇vdx− ∆t

∫
Ω

rut+1dx

l(ut, v) = l1(v) + l2(ut, v)

l1(v) =

∫
Ω

ftvdx

l2(ut, v) =

∫
Ω

utvdx +
1

2
∆t

∫
Ω

(k∇ut) · ∇vdx + ∆t

∫
Ω

rutvdx

(37)

The above problem is satisfied for all ∀ v ∈ V , so it is also fulfilled for the

particularly selected basis functions. We take the space that was defined by the basis

functions that span over the finite elements of adaptive mesh V ⊃ Vh = span{ei},

where ei are the global basis functions that were obtained by gluing together the

element local basis functions (also called the shape functions) that were defined over

the vertices, edges, faces, and interiors of the elements. In this space, we seek the

solution to ut ≈
∑

i a
t
ie

t
i, u

t+1 ≈
∑

i a
t+1
i et+1

i . We also test with basis functions from

this space:

b(ut+1, v) = l1(v) + l2(ut, v) ∀ v ∈ V

b
(∑

i

at+1
i et+1

i , ej

)
= l1

(
ej

)
+ l2

(∑
i

atie
t
i, ej

)
∀ ej ∈ Vh∑

i

at+1
i b(et+1

i , ej) = l1(ej +
∑
i

atil2(eti, ej) ∀ ej ∈ Vh

(38)

We end up with the following system of linear equations: b(et+1
1 , e1) . . . b(et+1

N , e1)

. . . . . .

b(et+1
1 , eN ) . . . b(et+1

N , eN )


at+1
1

. . .

at+1
N

 =


l1(e1) +

∑
i a

t
il2(eti, e1)

. . .

l1(e1) +
∑

i a
t
il2(eti, eN )

 (39)
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For the simulations of the heating of the human head, we transform the equa-

tions into the Pennes bioheat equation. Assuming thermal conductivity k as well

as metabolism qm, perfusion Wbcb, and the heat source from the cellphone qSAR

(obtained by post-processing the Maxwell solution), we solve the Pennes bioheat

equations:

ρc
∂u

∂t
= ∇ · (K∇u) + Wbcb (ua0 − u) + qm + qSAR in Ω (40)

This section presents our algorithm for the simultaneous simulations of Maxwell equa-

tions and Pennes equations with the Crank-Nicolson scheme, where k is the thermal

conductivity (here, it is scaled by ρ density and c specific heat), qm is the metabolism,

Wb is the blood-flow rate, cb is the blood’s specific heat capacity, and ua0 is the core

body temperature. Namely, we define convection term k(x, t) = K(x,t)
ρc , and we define

reaction term r(x, t) = −Wbcb
ρc and f(x, t) = Wbcbua0+qm+qSAR

ρc . The values of the

parameters are summarized in Table 1. They are selected according to the type of

tissue, as suggested by the L2 projection of the MRI scan data of the human head.

We also assume that the air is located (where the intensity of the bitmap is ≤ 1),

the skin or brain (tissue in general) (where the intensity is within a range of [1, 240]),

and the skull (where the intensity is ≥ 240). The equations will be solved by using

the multi-frontal solver [5, 6, 10, 16] augmented with the low-rank compression of the

off-diagonal blocks (see Appendix).

Table 1
Material data used in simulation

Material Air Brain Skull

ρ 1.16 1039 1645

C 1006 3700 1300

K 0.02 0.57 0.4

qm 0 7100 590

Wbcb 0 40,000 3300

ua0 30 36.6 36.6

5. Space-adaptive time-stepping algorithm for simulation of

heating of human head

This section presents the algorithm for simultaneous simulations of the Maxwell and

Pennes equations using the Crank-Nicolson scheme. We utilize two versions of the

three-dimensional hp-adaptation algorithm [4] with hexahedral finite elements: one

implementing the Maxwell equations, and the other implementing the Pennes equa-

tions. In every adaptive iteration and every time step, we utilize the multi-frontal

direct solver [5,6] implemented in the MUMPS library [2,13] augmented with the low-

-rank compression of the off-diagonal blocks. We start with the generation of the

globally continuous h adaptive approximation of the MRI scan of the human head
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using the L2 projection algorithm described in Section 2. We keep the adaptive mesh

as the reference for the human head material data.

We start again from an initial mesh. We solve the Maxwell equation with the

assumed cellphone source antenna and the material data that is read from the L2

projection of the MRI scan data that is measured at the Gauss integration points.

Next, we run one iteration of the hp-adaptivity for the Maxwell equations. The code

selects the optimal hp refinements and executes them over the selected elements.

At this point, we dump out the computational mesh from the Maxwell code and

dump it into the Pennes equation code. We solve the one-time step of the Pennes

equations with Crank-Nicolson. We use the hp-refined mesh that was generated by

the Maxwell code with the qSAR that was obtained by post-processing the solution

of the Maxwell equations and with the material data that was scaled according to

the L2 projections of the MRI scan data that was measured at the Gauss integration

points. We execute one iteration of the hp-adaptivity. We dump out the mesh from

the projection code. Now, we dump the mesh into the Maxwell code and proceed

with the second iterations of the hp-adaptivity for the Maxwell code. At the same

time, the Pennes equation and Maxwell solutions are read by another instance of the

code that is executed in the next process. This starts the next iteration of the Pennes

equation in the next time step. The general idea of the algorithm can be summarized

in the following pseudo-code:

1 generate initial mesh

2 coarse mesh = initial mesh

3 time step = MYRANK

4 do iteration of self-adaptive hp-FEM for time step

5 if time step is not 0 then

6 receive previous coarse mesh solution from processor MYRANK-1

(including Maxwell and Pennes solutions)

7 else

8 previous coarse mesh solution = initial solution

(including Maxwell and Pennes solutions)

9 endif

10 project previous coarse mesh solution into coarse mesh

(including Maxwell and Pennes solutions)

11 coarse mesh solution = solve coarse mesh problem

(including Maxwell and Pennes equations)

12 send coarse mesh solution into processor MYRANK+1

(including Maxwell and Pennes solutions)

13 generate fine mesh

14 if time step is not 0 then

15 receive previous fine mesh solution from processor MYRANK-1

(including Maxwell and Pennes solutions)

16 else
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17 previous fine mesh solution = initial solution

(including Maxwell and Pennes solutions)

18 endif

19 project previous fine mesh solution into fine mesh

(including Maxwell and Pennes solutions)

20 fine mesh solution = solve fine mesh problem

(including Maxwell and Pennes equations)

21 send fine mesh solution into processors MYRANK+1

(including Maxwell and Pennes solutions)

22 make decision about optimal refinements

(H1 norm for Pennes and Hcurl norm for Maxwell)

23 generate optimal mesh from coarse mesh

24 coarse mesh = optimal mesh

26 enddo

We design our algorithm to enable the concurrent execution of several Maxwell-

and Pennes-equation solvers in particular time steps. The sends and receives com-

municate by dumping out and dumping in mesh files with solutions. Our algorithm

can execute the coarse-mesh computations for the Maxwell and Pennes equations on

Core 1 in Time Step 1. After obtaining the coarse-mesh solution, we can proceed

with the fine-mesh solutions on Core 1 in Time Step 2 and the coarse-mesh solutions

for both the Maxwell and Pennes equations on Core 2 in Time Step 2. Next, Core 1

can execute the optimization algorithm, selecting the optimal hp refinements of the

mesh on Core 1 in Time Step 1, Core 2 can execute the fine-mesh solutions for both

problems in Time Step 2, and Core 3 can start with the coarse-mesh solution in Time

Step 3.

We present some snapshots from the execution of our algorithm. We employ the

low-rank multi-frontal solver that is implemented in the MUMPS library [2,13]. First,

we present the execution times for the sequence of the fine-mesh problems that are

generated by the hp-adaptive algorithm for the Maxwell equations in Figure 11.

We follow the hp adaptive algorithm described in [4]. The horizontal axis presents

the number of degrees of freedom for the fine-mesh problems. The vertical axis

presents the execution times for the fine-mesh solvers. We compare the traditional

multi-frontal solver and the low-rank approximation solver to deliver the linear com-

putational cost. Second, we present the execution times for the sequence of fine meshes

that are generated by the hp-adaptive solver for one-time step iteration of the Pennes

equations in Figure 12. The structure of the figure is identical to the one that was

generated for the Maxwell equations. Notice that we have a system of three equa-

tions for the Maxwell equations and one equation for the one time-step of the Pennes

equation; therefore, the Maxwell problems are larger.
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Figure 11. Reduction of computational cost for Maxwell equation; comparison of standard

multi-frontal solver and low-rank solver (increasing mesh dimensions correspond

to mesh-adaptation procedure)

Figure 12. Reduction of computational cost for Pennes bioheat problem; comparison of

standard multi-frontal solver and low-rank solver (increasing mesh dimensions correspond

to mesh-adaptation procedure)

Third, we present the snapshots from the real part components, the imaginary

part components, and the absolute value of the electromagnetic field that is generated

by our cellphone antenna model in Figures 13–19. Fourth, we present the snapshots

of the hp-adaptive grids where we solve the Pennes equations with the qSAR obtained

from the post-processing of the Maxwell equation solution in Figures 20–22.



Overview of adaptive and low-rank approximation algorithms . . . 453

Figure 13. Cross-section of mesh in OXY plane; real part of x-component of electromagnetic

field generated by cellphone antenna

Figure 14. Cross-section of mesh in OXY plane; real part of y-component of electromagnetic

field generated by cellphone antenna

Figure 15. Cross-section of mesh in OXY plane; real part of z-component of electromagnetic

field generated by cellphone antenna
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Figure 16. Cross-section of mesh in OXY plane; real part of x-component of electromagnetic

field generated by cellphone antenna

Figure 17. Cross-section of mesh in OXY plane; real part of y-component of electromagnetic

field generated by cellphone antenna

Figure 18. Cross-section of mesh in OXY plane; real part of z-component of electromagnetic

field generated by cellphone antenna
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Figure 19. Cross-section of mesh in OXY plane; absolute value of z-component of electro-

magnetic field generated by cellphone antenna

Figure 20. Cross-section of mesh in OYZ plane presenting initial mesh for Pennes equation;

light-blue color represents quadratic polynomials on finite element edges and faces

Figure 21. Cross-section in OYZ plane of two exemplary meshes generated by hp adaptive

algorithm for solution of Pennes equation: dark-blue represents linear polynomials;

light-blue represents quadratic polynomials on finite element edges and faces;

green represents cubic polynomials on selected finite element edges and faces;

brown represents fourth-order polynomials
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Figure 22. Cross-section of refined mesh in OXY plane and solution to Pennes equation

(temperature distribution after 600 seconds of cellphone usage): red corresponds

to maximum temperature of 38.4◦C; light-blue corresponds to 36.6◦C

From our numerical results, it follows that a 10-minute (600-second) exposure to

cellphone radiation implies up to a 2◦C increase in the temperature of the brain in

the range close to the cellphone (compare Figure 22).

6. Conclusions

We presented an overview of the formulations and adaptive algorithms that are ded-

icated to modeling the electromagnetic waves’ influence on the human head. Our

simulations used the MRI scan data of the second author. We derived the time-

-harmonic Maxwell equations and the non-stationary heat-transfer equations (both in

their weak forms). For the former, we employed the Crank-Nicolson time-integration

scheme. We employed the MUMPS solver for the resulting systems’ solution with the

low-rank compression of blocks and fast factorizations. We concluded that 15 minutes

of exposure to a 1.8 GHz antenna of one watt of power increases the brain tissue tem-

perature to up to 38.4◦C. Future work will include replacing the multi-frontal solver

by an alternating direction solver, incorporating the direction-splitting procedure for

the time-harmonic Maxwell equations and heat-transfer equations.

Acknowledgements

This work is supported by National Science Center, Poland – Grant No. 2017/26/M/

ST1/ 00281.



Overview of adaptive and low-rank approximation algorithms . . . 457

Appendix: Fast solver based on Singular Value Decomposition

Each matrix A ∈ Rn×m can be decomposed:

A = UΣV T

where U ∈ Rn×n, UT = U−1, V ∈ Rm×m, V T = V −1 (orthogonal matrix), where

Σ ∈ Rn×m are the singular values matrices, σi are the singular values

Σ =



σ1

σ2

. . .

σr

0
. . .

0


r = rank(A) = number of linearly independent rows. Each matrix A ∈ Rn×m is

orthogonally equivalent to diagonal matrix. For example:

A =

u1

u2

u3

u4



σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4



[

v1
][

v2
][

v3
][

v4
]


where A ∈ R4×4, U ∈ R4×4, V ∈ R4×4, σi =
√
λi are root of singular values λi of

square matrix AAT , where ui ∈ R4×1 are eigenvectors of AAT (left singular values of

A), vi ∈ R4×1 are eigenvectors of ATA (right singular values of A); e.g.,




1

2

3

4




5

6

7

8




9

10

11

12




13

14

15

16





1 0 0 0

0 0.5 0 0

0 0 0.000002 0

0 0 0 0.0000001




[
1 2 3 4

][
5 6 7 8

][
9 10 11 12

][
13 14 15 16

]


Now, we can assume ϵ = 0.00001, and we drop the singular values that are less

than ϵ together with the corresponding rows and columns.


1

2

3

4




5

6

7

8





1 0 0 0

0 0.5 0 0

0 0 0 0

0 0 0 0

[[
1 2 3 4

][
5 6 7 8

]]

We can remove the singular value matrix and just multiply the rows.
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


1

2

3

4




5

6

7

8


[ [

1 2 3 4
][

0.5 · 5 0.5 · 6 0.5 · 7 0.5 · 8
]]

We obtain the compression of matrix A by a sequence of rank-1-updates. The
SVD decomposition of the matrix of size N costs O(N3), so we can apply this algo-
rithm for small blocks of the global matrix.


1

2

3

4



5

6

7

8


[ [

1 2 3 4
][

2.5 3 3.5 4
]] =


1 · 1 + 5 · 2.5 1 · 2 + 5 · 3 1 · 3 + 5 · 3.5 1 · 4 + 5 · 4
2 · 1 + 6 · 2.5 2 · 2 + 6 · 3 2 · 3 + 6 · 3.5 2 · 4 + 6 · 4
3 · 1 + 7 · 2.5 3 · 2 + 7 · 3 3 · 3 + 7 · 3.5 3 · 4 + 7 · 4
4 · 1 + 8 · 2.5 4 · 2 + 8 · 3 4 · 3 + 8 · 3.5 4 · 4 + 8 · 4


The low-rank r compression of two matrices of dimension n×m and m×l reduces

the cost of multiplication from O(nml) to O(srl). Here, r and s are the numbers of

rows and columns, respectively, after the compression. Namely, r is the number

of singular values that are larger than ϵ in the first matrix, and s is the number of

singular values that are larger than ϵ in the second matrix. This reduction is presented

in Figure 23. It can be generalized to blocked matrices (see Figure 24).

For the large-matrix processing, the off-diagonal blocks are low-rank compressed.

Having the matrix A ∈ RN×N decomposed into blocks A(k, l) ∈ Rn×n (where the

off-diagonal blocks are compressed by the low-rank compression SVD algorithm), we

can employ the low-rank multi-frontal solver that is implemented in the MUMPS

library [2, 13]. The benefits from the low-rank approximation solver are obvious; it

delivers a linear O(N) computational cost solution in the Maxwell problem as well as

in every time step of the Crank-Nicolson time-integration scheme. We illustrate this

benefit for both problems in Figures 11–12.

Figure 23. Benefit from multiplication of low-rank compressed matrices
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Figure 24. Recursive generalization of multiplications of low-rank compressed matrices
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