
Computer Science • 23(2) 2022 https://doi.org/10.7494/csci.2022.23.2.4204

Önder Çoban

ASSESSMENT OF
NATURE-INSPIRED ALGORITHMS
FOR TEXT FEATURE SELECTION

Abstract This paper provides a comprehensive assessment of basic feature selection (FS)
methods that have originated from nature-inspired (NI) meta-heuristics; two
well-known filter-based FS methods are also included for comparison. The
performances of the considered methods are compared on four balanced high-
dimensional and real-world text data sets regarding the accuracy, the number of
selected features, and computation time. This study differs from existing stud-
ies in terms of the extent of experimental analyses that were performed under
different circumstances where the classifier, feature model, and term-weighting
scheme were different. The results of the extensive experiments indicated that
basic NI algorithms produce slightly different results than filter-based methods
for the text FS problem. However, filter-based methods often provide better
results by using lower numbers of features and computation times.

Keywords nature-inspired algorithms, feature selection, text categorization

Citation Computer Science 23(2) 2022: 179–204

Copyright © 2022 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

179

https://doi.org/10.7494/csci.2022.23.2.4204
https://orcid.org/0000-0001-9404-2583
https://creativecommons.org/licenses/by/4.0/

180 Önder Çoban

1. Introduction

Text categorization (TC) is one of the most effective ways [7,22] of automatically cat-
egorizing documents into predefined sets of classes or categories. Many real-world
applications use TC methods, including sentiment analysis, cyberbully detection,
spam filtering, and authorship classification (to name a few). In classical TC, the
data at hand has a very large number of features – especially when the features are
extracted with the bag-of-words (BoW) model. Therefore, a very high amount of
data volume makes the most of the text-processing applications to deal with high
dimensionality in today’s world [1, 2, 6, 32]. High dimensionality and the presence of
noise significantly degrade the performance of machine-learning (ML) tasks. Due to
the strong interdependence among individual features or the behaviors of combined
features, identifying and extracting patterns or rules in such a situation is extremely
difficult [9]. Moreover, an ML model that is designed by a high-dimensional data set
is difficult to understand and employ [32]. As such, there is a need to work on a subset
of features rather than a complete data set.

Feature selection (FS) is an important step in TC for overcoming the aforemen-
tioned challenges by discovering a subset of features that can effectively represent an
original data set [2, 24]. In other words, FS is a task that involves the extraction
of meaningful information from mountains of data by using a small collection of at-
tributes [32]. Hereby, FS also contributes to enhancing the classification accuracy
by creating an accurate predictive model by reducing over-fitting, computation time,
and storage [24]. Various techniques have been developed in the literature to measure
the quality of discovered feature subsets. Considering the evolution criteria, these
techniques are categorized into three types; namely, filters, wrappers, and embed-
ded methods [5,22,24]. In filter methods, various distance and information measures
are usually used as evolution criteria. Then, the features are ranked based on the
employed importance measure (chi-square, mutual information, and so on) [9]. In
wrapper methods, the performance of a specific learning algorithm is used to measure
the quality of a feature subset. On the other hand, embedded methods are inter-
nally involved during the learning processes [24]. As an instance of wrapper methods,
nature-inspired (NI) algorithms are becoming popular choices for the engineering of
optimization problems [33]. These techniques work without derivatives; thus, they
are suitable for problems with high-dimensional spaces. Besides the optimization
problems, meta-heuristic algorithms have also been used specifically for creating an
optimal set of features.

The use of NI algorithms for FS has, therefore, received considerable attention in
various domains (including healthcare, finance, social and behavioral science, TC, and
so on) [5,32,33]. Examples of NI methods are the genetic algorithm (GA) [18], particle
swarm optimization (PSO) [14], the firefly search algorithm (FS) [36], the artificial
bee colony algorithm (ABC) [16], and so on. From the TC perspective, many studies
have tried to employ [1, 2, 21, 31] or improve [7, 19] NI algorithms when dealing with

Assessment of nature-inspired algorithms for text feature selection 181

text FS. In addition, some studies have proposed new [22] or hybrid methods of NI
algorithms [4, 6, 7, 30] for text FS.

This paper presents an up-to-date comprehensive assessment of NI methods for
FS on text data. For this purpose, two well-known filter methods (namely, chi-square
and mutual information) are compared to major representatives of NI algorithms.
The performances of the considered FS methods are compared by using four high-
dimensional text data sets. To validate their efficacies, selected feature subsets are
used to build classification models under different circumstances. Notice that there
are a few previous studies [1,2,12,30] that have focused on comparing NI algorithms
for text FS; however, these studies were narrower in their scopes and did not consider
the effect of the term-weighting process. As such, this study differs from the existing
studies with respect to the extent of the considered algorithms and extensive experi-
ments that were obtained under different circumstances where the classifiers, feature
models, and weighting schemes were different.

The novelty of the results of this study lies in the following considerations: (i) em-
ploying basic NI methods without any extensions or improvements paves the way for
them to fall behind classical filter-based methods in terms of their accuracy; and (ii) it
is a better choice to apply both NI and filter-based methods on tf*idf-weighted text
data sets to achieve a better result.

2. Related work

Hundreds of studies exist that focus on evolutionary optimization algorithms. Among
these algorithms, the use of NI methods specifically for FS has attracted the attention
of the research community. This section only focuses on related studies that employ
NI algorithms for text FS.

The published works on this topic are as follows. An improved sine cosine al-
gorithm (SCA) was proposed in [5], where the authors showed that their method
achieved high performance and was useful for the TC task. In [22], a novel multi-
objective algorithm for text FS was proposed that includes two objective functions.
The first objective function measures the relevance between the features and a target
category, while the second one evaluates the inter-correlation of the features. The
authors compared the proposed method against well-known filter methods and con-
cluded that it provided a better performance on benchmark data sets. A new text-FS
method based on the bat algorithm (BAT) was proposed in [7]. This method sim-
ply employs the bat algorithm for FS over feature subsets that are selected with the
help of filter methods. The proposed method improves the classification accuracy as
compared to traditional FS methods. In [23], the authors compared four different
entropy-based measures for TC and proposed a new measure that combined the en-
tropy of a word with its distribution among documents in a collection. A narrow scope
comparison of ant colony optimization (ACO) against information gain (IG) and chi-
square (CHI) for text FS was performed in [2] and [1]. The authors concluded that
ACO outperformed the other two filter methods on a benchmark data set.

182 Önder Çoban

An enhanced binary grey wolf optimizer (GWO) was proposed in [6] for text FS
in Arabic TC tasks. The results and analysis of the authors showed that the proposed
method enhanced the efficacy of the TC task in the Arabic language. A hybrid algo-
rithm of GA and ACO was proposed in [4] for text FS. The authors concluded that the
hybrid method outperformed the ACO, CHI, and IG methods on a benchmark data
set. Another narrow-scope comparison of GA, harmony search (HS), PSO, and simu-
lating annealing for FS was performed with different classifiers for spam classification.
According to the results, FS improved the accuracy – especially when a support vec-
tor machine was used as a classifier. A hybrid GWO and grasshopper optimization
algorithm (GOA) was used to select text features in [30]. The experiments showed
that the hybrid algorithm provided better results than the GOA and GWO when it
is employed with different classification algorithms.

A fine-tuned GOA algorithm with classifiers were used for TC on different multi-
class data sets in [19]. According to the results, it was shown that the used ap-
proach outperformed its state-of-the-art peers. A comparison of traditional and swarm
intelligent-based search methods (i.e., ACO and ABC) was performed for correlation-
based text FS in [21]. The authors concluded that any features that were selected by
using a swarm intelligence search were more robust for classification results. Another
narrow scope comparison was performed in [12] to detect the best feature selector
among the GA, BAT, and GWO methods for sentiment analysis. The experiments
and analysis showed that GA was the most effective method concerning the feature-
reduction percentage, while GWO provided a result that was inferior to that of the
hybrid GA/bat algorithm.

Based on our review of the literature, it can be understood that there are not
any previous studies that have comprehensively assessed major NI algorithms for the
TC task – especially for the effect of the term-weighting phase. As such, this paper
addresses this purpose by performing experiments under different cases where the
feature-representation, evaluation, and FS methods are different.

3. Methods

3.1. Preprocessing

In TC, texts need to be passed through a preprocessing step in order to transform
them into a classification-ready structure. In this study, therefore, simple preprocess-
ing has been applied to the data sets. First, specific steps were applied to keep the
feature characteristics of the data sets (see Section 4 for further details). For the CB
data set, emoticons were encoded to keep them within the content and used as fea-
tures [27]. For TTC, on the other hand, it was provided to prevent the underscore
character, as this data set includes domain-specific multi-terms joined with the un-
derscore character [43].

A vectorizer was employed with a minimum document frequency of 2 and 3 for CB
and TTC, respectively. On the other hand, the benchmark data sets (i.e., R8 and N8)

Assessment of nature-inspired algorithms for text feature selection 183

were preprocessed with a minimum term length of 2 and a minimum document fre-
quency of 3. Additionally, stopword removal and stemming steps (with the help of
Porter Stemmer [29]) were employed with the help of the nltk1 package for only the
bow feature model. Finally, all of the four data sets passed through the common steps
that include removing the numerical values and punctuation as well as lower-casing
content.

3.2. Feature extraction and term weighting

This step converts the text data into a term-document matrix where the rows and
columns represent documents and extracted features, respectively. In classic TC, texts
(or documents) are converted into the term-document matrix by extracting word-
level and character-level features. In this study, bow features were used as word-level
features, while tri-grams were used as character-level features. The bow model took
each word as a separate feature, whereas the character-level model considered each
subsequent string with a length of n as a new feature [8]. Upon completion of the
feature extraction, an important intermediate step (namely, term weighting) was used
to assign a weight to each of the extracted features. In the TC field, this process was
used to determine the importance of a feature for classifying the texts into two or
more predefined categories. In this study, well-known and unsupervised weighting
schemes (namely, term frequency [tf], binary, and term frequency-inverse document
frequency [tf · idf]) were used to assign weights to the features. These methods were
formulated as follows [8]:

Wtf (c, d) = tf(c, d) (1)

Wbinary(c, d) =

{
1 if tf(c, d) ≥ 1

0 otherwise
(2)

Wtf ·idf (c, d) = tf(c, d) · log N

df(c)
(3)

where c represents a term observed in document d, while N is the total number of
documents and df(c) is the document frequency of term c.

The main reason for using different weighting schemes is to observe the behaviors
of the FS algorithms (especially the NI ones) according to the selected-weighting
method. This is because mapping the genes to the absence of features affects the
performances of the NI algorithms. Additionally, term weighting has a direct effect on
both the inner and outer evaluation phases for wrapper-based FS methods. Therefore,
this investigation is one of the main contributions of this study, as there has not been
any previous work that has focused on this issue. In this study, the evopreprocess
library was used to employ the NI algorithms for text FS. Notice that this library uses
a self-adaptation mechanism where only one gene is used to encode the genes for FS.

As can be seen in Figure 1, the mapping gene is obtained from the genotype and
adapted during the evolution process (depending on the data set at hand).

1https://www.nltk.org/

https://www.nltk.org/

184 Önder Çoban

Figure 1. Example self-adaptation with mapping gene in evopreprocess [17] for encoding
phase of NI feature selectors

3.3. Feature-selection algorithms

A feature (i.e., an attribute) is an important characteristics of a data set. FS is
a process of selecting a meaningful subset of features with respect to the optimization
problem. Formally, the objective of FS is to extract a minimal subset of m features
(t1, t2, t3, . . ., tm) from an original data set with n features (t1, t2, t3, . . ., tn),
where m < n [32]. This section presents a brief description of the filter-based and
wrapper-based FS algorithms that were used in this study.

3.3.1. Filter methods

Filter-based FS methods eliminate redundant features based on several criteria such
as document frequency, term frequency, gini index, and so on. Among the filter-based
methods, the most widely used ones are chi-square and mutual information [7, 35].
As such, these two filter-based methods were used in this study to make comparisons
with the NI methods. The following two sub-headings present brief descriptions of
the aforementioned methods.

Chi-square: From the FS perspective, chi-square (CHI) is used to measure how
a term is independent from a category [35,42]. Using a two-way contingency table of
a term t and a category c, this is formulated as follows [42]:

χ2(t, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
(4)

where A and C represent the numbers of instances that belong to category c and
with/without term t, respectively. Similarly, B and D represent the number of in-
stances that do not belong to category c and with/without term t, respectively. Fi-
nally, N is the total number of documents.

Mutual information: Mutual information (MI) takes its maximum value if
there is a strong dependence between a term and a class. In TC, the MI value of
a term t with respect to a class c is computed as follows [35,42]:

MI(t, c) = log
A×N

(A+ C)× (A+B)
(5)

where A is the number of times that t and c co-occur, B is the number of times that
t occurs without c, C is the number of times that c occurs without t, and N is the
total number of documents [42].

Assessment of nature-inspired algorithms for text feature selection 185

3.3.2. NI meta-heuristics

There are numerous NI algorithms – more than a hundred different algorithms and
variants are estimated to exist [38]. As it is not possible to include even a good
fraction of these algorithms, we used algorithms in this study that were particularly
considered to be major representatives – those that are based on swarm intelligence.
This subsection presents the major characteristics of these algorithms instead of their
fully detailed descriptions and mathematical backgrounds.

The bat algorithm (BAT) [41] uses frequency-tuning and the echo-location
behavior of bats. It also uses pulse-emission rate r and loudness A to control the
positions and velocities of the bats at each time step t as follows [33,37,41]:

vti = vti + (x∗ − xt−1
i)

fi︷ ︸︸ ︷
(fmin + (fmax − fmin)β) and xt

i = xt−1
i + vti (6)

where β ∈ [0, 1] is a random number that is drawn from uniform distribution so that
frequency fi can vary between fmin and fmax. x∗ is the position of the current global
best bat. For each bat, alpha (0 < α < 1) and gamma (γ > 0) parameters are used
to update the loudness and pulse emissions as follows [33,37]:

Ai = αAt−1
i and rti = r0i (1− eγ(t−1)) (7)

After updating the global and local fitness, the position of each bat is also updated
as [33] xnew = xold + ϵA

′

t, where the ϵ parameter takes random values between −1
and +1. The reader is advised to check [41] for more details about the mathematical
background of the bat algorithm.

The grey wolf algorithm (GWO) [26] was developed based on the social in-
telligence of grey wolf packs in leadership and hunting. In the social hierarchy of
grey wolves, the most powerful is the alpha wolf (α), which guides the whole group,
while the second-strongest is the beta wolf (β), which takes the lead of the group when
the alpha is ill, dead, or is not among the pack [3, 10]. The delta (δ) and omega (ω)
wolves have less power and domination than the alpha and beta wolves. The alpha,
beta, and delta wolves in GWO represent the first-, second-, and third-best solutions,
respectively, while the omega wolf represents the rest of the candidate solutions [26].
Formally, the mathematical model of GWO is comprised of three main components:
namely, encircling, hunting, and attacking their prey. The following equation is used
in the encircling-the-prey component [26]:

X⃗(t+ 1) = X⃗p(t)− A⃗ · |C⃗ · X⃗p(t)− X⃗(t)| (8)

where A⃗ = 2a⃗ · r⃗1− a⃗ and C⃗ = 2 · r⃗2 are the coefficient vectors, while X⃗p and X⃗ are the
position vectors of the prey and grey wolves, respectively. The r⃗1 and r⃗2 components
are random vectors that are within a range of [0, 1], whereas a⃗ is a vector whose
values are decreased from 2 to 0 during the course of the iterations. In the hunting

186 Önder Çoban

component, the three best solutions (α, β, and δ) are retained, and the other candidate
solutions (ω) are forced to update their positions accordingly as follows [3, 10,26]:

X⃗(t+ 1) = (X⃗1 + X⃗2 + X⃗3)/3 (9)

where X⃗1 = X⃗α(t)− A⃗1 · |C⃗1 · X⃗α − X⃗|, X⃗2 = X⃗β(t)− A⃗2 · |C⃗2 · X⃗β − X⃗|, and
X⃗3 = X⃗δ(t)− A⃗3 · |C⃗3 · X⃗δ − X⃗|. Attacking the prey component is expressed based
on a⃗ and is linearly reduced as a⃗ = 2− t(2/T), where t and T are the current iteration
and the maximum number of iterations, respectively [3,10]. The reader is advised to
check [26] for more details about the GWO algorithm.

The sine cosine algorithm (SCA) [25] is based on sine and cosine functions –
it updates its solutions at each iteration as follows [5, 25]:

X(i, j)t+1 =

{
X(i, j)t + r1 · sin(r2) · |r3P (j)t −X(i, j)t| if r4 < 0.5

X(i, j)t + r1 · cos(r2) · |r3P (j)t −X(i, j)t| if r4 ≥ 0.5
(10)

where X(i, j)t and P (j)t are the position of the current solution and the position of the
best individual i in the jth dimension at the tth iteration, respectively [5]. r1, r2, r3,
and r4 are random variables from which r1 is a control variable that is used to guide
the next position’s region as r1 = a− t∗a/T , where t is the current iteration, T is the
maximum number of iterations, and a is a constant. The reader is advised to check [25]
for further details and the mathematical background of the SCA algorithm.

The artificial bee colony algorithm (ABC) [16] was developed by inspiring
the intelligent foraging behavior of honey bees. This algorithm consists of three
groups of bees: employed bees, onlookers, and scouts. In the ABC algorithm, the
position and nectar content of a food source represent a possible solution and its
fitness, respectively. Each food source is exploited by one employed bee; therefore,
the number of employed bees is equal to the number of food sources [11]. A scout is
a bee whose food source has been abandoned. An onlooker bee selects a food source
using its fitness as follows [11,16]:

pi =
fiti∑SN
i=1 fiti

(11)

where fiti and SN are the fitness value of solution i (food source) and the number of
solutions (food sources), respectively. Then, candidate solution Vi = [vi1, vi2, . . . , viD]

is created from the old one Xi = [xi1, xi2, . . . , xiD] as follows [11,16]:

vi,j = xi,j + ϕi,j(xi,j − xk,j) (12)

where k ∈ {1, 2, . . . , SN} is a randomly selected variable (different from i), D is
the number of variables of the objective function, and ϕ is a random variable that
is within a range of [–1, 1]. If a new candidate solution is of higher quality than
an old one, it replaces the old one; otherwise, the old one is retained. If a solution

Assessment of nature-inspired algorithms for text feature selection 187

cannot be improved with a predefined number of iterations (cycles), then this solution
is assumed to be abandoned. In this case, a scout bee discovers a new solution to
replace the abandoned solution as follows [11,16]:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (13)

The reader is advised to check [16] for further details of the ABC algorithm.
The cuckoo search algorithm (CS) [40] was developed based on the reproduc-

tion technique of cuckoo birds. These birds lay their eggs in other host birds’ nests
instead of building their own nests. Cuckoo eggs mimic the physical characteristics
of a host bird’s eggs with respect to their spot patterns and colors [33]. Their strat-
egy ends up unsuccessfully if the host bird discovers the cuckoo’s eggs. CS uses the
following equation to generate new solutions by performing a Lévy flight [40]:

xt+1
i = xt

i + α⊕ Lévy(λ) (14)

where α > 0 is the step size, and ⊕ represents entry-wise multiplications. The step
length is drawn from the Lévy distribution as follows [33,39,40]:

Lévy ∼ u = t−λ, (1 < λ ≤ 3) (15)

which has an infinite variance with an infinite mean. The reader is advised to
check [39, 40] for more details about the mathematical background of the CS al-
gorithm.

The differential evolution algorithm (DE) [34] generates new solution vec-
tors by adding the weighted difference of two different solution vectors (xp and xq).
A numerical parameter F ∈ [0, 2] is used to scale the mutation operator, which
is then used to perturb an existing solution xr to generate a new solution (xk =

xr + F (xp − xq)) [37]. p, q, and r are randomly selected integers (i.e., they stand
for different solution vectors) and are different from running index k. The diversity
of the mutated vector is increased by employing a crossover, which is used to form
a trial vector. Afterward, a selection mechanism is used to save any new solution ut

that is better than previous solutions with respect to fitness [37]:

xt
i =

{
ut if f(ut) ≤ f(xt−1

i)

xt−1
i otherwise

(16)

There are different variants of DE in terms of the mutation operator. The reader is
advised to check [34] for more details about, the mathematical background of, and
the variants of the DE algorithm.

The harmony search algorithm [13] was inspired by the music-improvisation
process where musicians improvise their instruments’ pitches by searching for a better
state of harmony [15]. The procedure of HS includes the following main steps: (i)
initialize the problem and algorithm parameters; (ii) initialize the harmony memory

188 Önder Çoban

(HM); (iii) improvise a new harmony; (iv) update HM; (v) check the stopping crite-
ria [15,35]. The reader is advised to check [13] for more details of the HS algorithm.

The genetic algorithm (GA) [14] was inspired by the evolution of biological
systems. This algorithm has three main genetic operators: crossover, mutation, and
selection [37]. These three operators are used to generate new solutions – each of which
is encoded with binary or real strings to create a “chromosome.” The crossover (or
recombination) operator creates a new solution by combining the genetic information
of two existing parent solutions. The mutation flips between 0 and 1 at random
positions of the existing solution for maintaining the genetic diversity. The quality of
a solution is determined by its fitness; this is used to select the best solutions. GA
does not usually have any explicit equations in terms of generating new solutions [37].

Particle swarm optimization (PSO) [18] simulates the swarming behavior
of birds and fish using the following equations to update the particles’ positions
(i.e., solutions) and velocities [37]:

vt+1
i = vti + αϵ1[g

∗ − xt
i] + βϵ2[x

∗
i − xt

i] and xt+1
i = xt

i + vt+1
i (17)

where ϵ1 and ϵ2 are uniformly distributed random numbers that re within a range
of [0, 1], while the α and β parameters are within a range of [0, 2] [37]. g∗ rep-
resents the best solution that has been discovered so far for all of the particles in
a population, while x∗

i represents the best solution that has been found by the ith

particle individually. The reader is advised to check [18] for more details of the PSO
algorithm.

The firefly algorithm (FA) [36] was developed based on the swarming and light-
flashing behavior of tropical fireflies [37]. This algorithm can be used to solve multi-
model and non-linear problems by using the exponential decay of light absorption and
the inverse-square of light variation over distance. The main process that determines
the movement of a firefly is as follows [36,37]:

xt+1
i = xt

i + β0e
−γr2ij (xt

j − xt
i) + αϵti (18)

where α and γ control the parameters for the step sizes of the random walk and the
visibility of the fireflies, respectively. On the other hand, β0 is the attractiveness
constant when the distance between two fireflies is zero (i.e., rij = 0). The reader is
advised to check [36] for more details about and the mathematical background of the
FA algorithm.

3.4. Classification

In the classification stage, well-known traditional ML classifiers from the
scikit-learn library [28] were used to build the learning models; these were the lo-
gistic regression (LR), support vector machine (SVM), naive Bayes (NB), multinomial
naive Bayes (MNB), decision trees (DT), and random forest (RF) classifiers.

Assessment of nature-inspired algorithms for text feature selection 189

3.5. Performance evaluation

To evaluate the performances of the classifiers, we employed the accuracy (Acc) metric
that was computed based on a confusion matrix that stores the number of actual and
predicted instances with respect to the categories. Among these values, TN and
TP represented the number of correctly categorized negative and positive instances,
respectively, while FP and FN represented the number of incorrectly classified negative
and positive instances, respectively [8]. Using these values, Acc was calculated as
Acc = (TP + TN)/(TP + TN+ FP + FN).

4. Data sets
In this study, four different and balanced data sets were used to evaluate the perfor-
mances of the classifiers with respect to the FS algorithms. Two of these data sets
were of the non-benchmark variety and included texts that were written in the Turk-
ish language. On the other hand, the other two data sets were well-known benchmark
data sets that included texts that were written in the English language.

The first non-benchmark data set [27] was comprised of 900 messages that were
written in Turkish. These messages were collected manually from Twitter and Insta-
gram. Each message in this data set was labeled “yes” or “no” to show whether the
message had cyberbullying content or not. This process yielded a balanced data set
in which half of the messages were labeled “yes” and the remaining labeled “no”. On
the other hand, the second non-benchmark data set [43] included Turkish news texts
from seven categories; namely, world, economy, culture-art, health, politics, sports,
and technology. This data set contained 4900 documents, and each category included
700 documents. A subset of this data set was used in this study; due to the size of
the data set, it was too extensive for the scope of this paper. This subset was created
by taking 50 documents from each of the 7 categories; thus, it contained 350 docu-
ments in total. Notice that the first non-benchmark data set is named “CB”, while
the second non-benchmark sub-data set is called “TTC” in this study.

The benchmark data sets were created by taking subsets of the well-known
Reuters-21578 and 20 Newsgroups data sets, respectively. Notice that this was
because sub-setting a data set is a well-known practice in the literature – especially
when employed with an algorithm that requires a very high computational complex-
ity. In this phase, R8 was created by taking the eight most observed categories in the
Reuters corpus. The R8 data set only included documents that were assigned to just
one category. Similarly, documents from 8 categories of the 20 Newsgroups corpus
were taken (N8). Please note that those categories that had an equal or similar num-
ber of documents were selected to reduce class skewness. Due to the popularity of
these data sets, the existing ML libraries make it easy to access, preprocess, and use
them in any TC task. As such, the R8 data set was obtained in this study thanks to
the nltk2 package, while the scikit-learn3 package was used to acquire and create

2https://www.nltk.org/book/ch02.html
3https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

https://www.nltk.org/book/ch02.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

190 Önder Çoban

the N8 data set. Then, subsets of these data sets were created by taking the first
n documents from each of the categories within the train/test splits of the R8 and
N8 data sets, respectively. We set the values of n to be 80 and 100 while taking the
subsets of the R8 and N8, respectively.

We would like to note that the R8 and N8 data sets were in the form of train/test
splits, while the CB and TTC data sets were not published in the form of a train/test
split. These data sets were preferred due to their balanced structures; their subsets
were used since the size of the original data set was outside the scope of this study.

Table 1 presents the categories and the number of documents within the train/test
splits for both of the created R8 and N8 data sets, respectively. On the other hand, Ta-
ble 2 presents a quantitative description of all of the data sets. As can be seen in
Table 2, we intentionally left the data sets to be balanced to prevent our results from
being biased.

Table 1
Quantitative description of our subsets created from R8 and N8 data sets

R8 N8

Category # of instances Category # of instances
train test train test

acq 80 80 comp.os.ms-windows.misc 100 100
crude 80 80 comp.sys.ibm.pc.hardware 100 100
earn 80 80 comp.windows.x 100 100

grain 80 80 rec.autos 100 100
interest 80 80 sci.crypt 100 100

money-fx 80 80 sci.med 100 100
ship 80 80 sci.electronics 100 100

trade 80 80 sci.space 100 100

Table 2
Summarized quantitative description of four utilized data sets

Data set
of ...

balancedclasses instances
per class instances

CB 2 450 900 ✓

TTC 7 50 350 ✓

R8 8 80 1280 ✓

N8 8 100 1600 ✓

5. Experimental results

In this study, the feature-extraction, term-weighting, filter-based FS, and classification
steps were performed with the help of scikit-learn [28], which is one of the most
prominent ML libraries in Python. To employ the NI methods, the evopreprocess

Assessment of nature-inspired algorithms for text feature selection 191

package was used; this enables practitioners to apply various meta-heuristics for dif-
ferent problems (including data sampling, FS, and data weighting) [17]. For the non-
benchmark data sets (i.e., CB and TTC), all of the results were obtained with 5-fold
stratified cross-validation (cv) [20]. On the other hand, all of the results for the
benchmark data sets (i.e., R8 and N8) were obtained on the train/test splits with
a hold-out validation strategy.

During the classification stage, the training set was vectorized at first, and the
test set was vectorized by fitting the vectorizer that contains the weights of the ex-
tracted features in the training set. Then FS process was applied, and the classifi-
cation task was performed over reduced training and test sets. With the help of the
EvoFeatureSelection wrapper in the evopreprocess [17], the classifiers (i.e., LR,
SVM, DT, and RF), MI algorithm, and NI algorithms were employed with a random
seed of 123 to ensure that the different replicates of the algorithms produced the same
results. All of the other settings of the algorithms that were employed in the feature
extraction, FS, and classification steps were left at their default values (which are
summarized in Table 3), where NP and max_evals represent the population size and
the maximum number of the function evaluations, respectively.

Table 3
Summary of default parameter settings for used algorithms (alg.)

along with package names that they have built-in (pkg.)

Pkg. Alg. Parameters

sc
ik

it
-l
ea

rn

SVM C=1.0, kernel=linear, degree=3, cache_size=200, random_state=123
LR penalty=l2, C=1.0, solver=lbfgs, max_iter=1000, multi_class=auto
NB priors=None, var_smoothing=1e-09
MNB alpha=1.0, fit_prior=True, class_prior=None
DT criterion=gini, splitter=best, max_depth=None, random_state=123
RF n_estimators=100, criterion=gini, max_depth=None, random_state=123
CHI NA
MI discrete_features=auto, n_neighbors=3, random_state=123

ev
op

re
pr

oc
es

s

GA NP=10, max_evals=1000, tournament_size=5, mutation_rate=0.25,
crossover_rate=0.25, random_state=123

FA NP=10, max_evals=1000, alpha=1, beta_min=1, gamma=2,
random_state=123

PSO NP=10, max_evals=1000, c1=2.0, c2=2.0, w=0.7, min_velocity=-1.5,
max_velocity=1.5, random_state=123

HS NP=10, max_evals=1000, r_accept=0.7, r_pa=0.35, b_range=1.42,
random_state=123

DE NP=10, max_evals=1000, differential_weight=1, crossover_probability=0.8,
random_state=123

CS NP=10, max_evals=1000, pa=0.2, alpha=0.5, random_state=123

BAT NP=10, max_evals=1000, loudness=0.5, pulse_rate=0.5, min_frequency=0.0,
max_frequency=2.0, random_state=123

ABC NP=10, max_evals=1000, limit=100, random_state=123
SCA NP=10, max_evals=1000, a=3, r_min=0, r_max=2, random_state=123
GWO NP=10, max_evals=1000, random_state=123

192 Önder Çoban

Notice that all of the experiments were conducted on a computer that featured
an Intel(R) Core(TM) i7-4700HQ 2.4GHz CPU with 16GB of RAM running on Win-
dows 10 (64-bit). The code4 has also been made available on GitHub to ensure the
reproducibility of the analysis. First of all, the best feature set, weighting scheme,
and classifier were detected in order to make a comprehensive assessment. Using
the best classifier and feature set, the results were then obtained for the filter and
NI methods, respectively, as compared to the different weighting schemes. All of the
experiments were conducted on two non-benchmark and two benchmark data sets
– this was intended to exploit the behaviors of the NI algorithms on different data
sets for FS.

5.1. Choosing best feature set and classifier

In the first steps of the experiments, different feature-extraction, term-weighting, and
classification methods were employed on the four data sets. In the feature-extraction
phase, bow and tri-gram features were extracted from the preprocessed data sets. The
numbers of extracted features (with respect to the data sets and feature models) are
given in Table 4. As can be seen in Table 4, the TTC data set had a greater number of
features – even though it had fewer instances than the CB data set did (see Table 2).
The tri-gram model also produced more features than the bow model did. After the
feature extraction, the different weighting methods (i.e., tf, tf*idf, and binary) were
applied, and each data set was converted into a classification-ready structure. Finally,
the classification experiments were performed using different classifiers. The main aim
of this step was to detect the feature model, term-weighting scheme, and classifier in
the respective scenarios that produced the greatest accuracies for the data sets.

Table 4
The number of extracted features considering feature model and data set

Data set Feature model
BOW Tri-gram (3G)

CB 1859 4222
TTC 4076 5827
R8 2274 3767
N8 3253 5549

As can be seen in Table 5, the best accuracies were often obtained with tf*idf
weighting for the CB and TTC data sets. The probability-based classifiers provided
better results on the binary and tf-weighted data, while LR and SVM often worked
better on the tf*idf-weighted data. On the CB data set, the first- and second-best
accuracies were obtained by the MNB and LR classifiers (0.731 and 0.728, respec-
tively), while respective accuracies of 0.825 and 0.820 were achieved with the help of
the LR and MNB classifiers, respectively, on the TTC data set. As expected, MNB

4https://github.com/ocbn/NIFS

https://github.com/ocbn/NIFS

Assessment of nature-inspired algorithms for text feature selection 193

worked well for data that can easily be converted into frequency values (such as word
counts in text). Other than MNB, the results showed that the best-fitting classifier
often turned out to be LR for both data sets. In terms of the feature model, the tri-
gram features often provided better results than the bow features. As such, the LR
classifier was used in the rest of the experiments on the tf*idf -weighted CB and
TTC data sets that were transformed into classification-ready structures by using the
tri-gram features.

Table 5
Accuracies of four data sets considering different feature models (FM),

weighting schemes (W), and classifiers

FMW
CB TTC

LR SVM NB MNB DT RF LR SVM NB MNB DT RF
BOWtf 0.693 0.685 0.614 0.693 0.636 0.668 0.697 0.640 0.668 0.782 0.491 0.734
BOWtf*idf 0.695 0.701 0.598 0.701 0.621 0.657 0.802 0.814 0.657 0.780 0.468 0.694
BOWbinary 0.703 0.687 0.624 0.722 0.658 0.671 0.740 0.688 0.660 0.777 0.482 0.720
3Gtf 0.712 0.713 0.579 0.731 0.617 0.687 0.780 0.700 0.600 0.820 0.497 0.722
3Gtf*idf 0.728 0.727 0.611 0.723 0.610 0.705 0.825 0.814 0.585 0.665 0.534 0.757
3Gbinary 0.718 0.700 0.585 0.726 0.602 0.698 0.811 0.774 0.628 0.802 0.445 0.711

FMW R8 N8
BOWtf 0.801 0.772 0.558 0.822 0.681 0.805 0.577 0.401 0.526 0.582 0.419 0.601
BOWtf*idf 0.828 0.846 0.548 0.823 0.678 0.795 0.654 0.632 0.498 0.648 0.411 0.587
BOWbinary 0.804 0.780 0.560 0.780 0.664 0.786 0.573 0.402 0.494 0.642 0.434 0.587
3Gtf 0.787 0.710 0.460 0.815 0.639 0.785 0.463 0.322 0.413 0.530 0.380 0.511
3Gtf*idf 0.812 0.834 0.464 0.750 0.569 0.782 0.603 0.600 0.353 0.426 0.364 0.521
3Gbinary 0.791 0.739 0.436 0.744 0.572 0.755 0.511 0.421 0.355 0.561 0.383 0.516

Similarly, the best accuracies were often obtained with the tf*idf weighting for
both the N8 and R8 data sets (as can be seen in Table 5). On the R8 data set, the
best accuracies were obtained with the help of SVM (0.846 and 0.834). On the N8
data set, the best accuracies were obtained by the LR classifier (0.654 and 0.603).
For both of the data sets, the highest accuracies were obtained by using the bow
features.

Table 6 presents a summary of these results; this shows that the best feature sets
of the benchmark and non-benchmark data sets were bow and trigram, respectively.
Other than MNB, the best-fitting classifier for both of the non-benchmark data sets
was the LR. However, the respective best classifiers on the benchmark data sets were
different and they were SVM and LR for R8 and N8 data sets respectively.

Based on these findings, our experiments were performed throughout the rest
of this study with 5-fold stratified cross-validation on the tf*idf-weighted trigram
features and the LR classifier for the non-benchmark data sets. On the contrary,
the experiments were performed with hold-out validation on the tf*idf-weighted bow
features on the benchmark data sets. SVM and LR were used for the R8 and N8 data
sets, respectively.

194 Önder Çoban

Table 6
Summary of experimental setup and results obtained without FS in first step

with respect to four data sets

Data set Evaluation
strategy

Best

classifier feature
model

weighting
scheme acc

CB 5-fold MNB tri-gram tf 0.731
TTC 5-fold LR tri-gram tf*idf 0.825
R8 hold-out SVM bow tf*idf 0.846
N8 hold-out LR bow tf*idf 0.654

On the CB and TTC data sets, the NI algorithms were configured to run for FS
with outer stratified 5-fold cv and inner 2-fold cv, where four independent runs of
the NI algorithm at hand were used at each fold. On the R8 and N8 data sets, the
NI algorithms were configured to run with hold-out as an outer evaluation strategy
and 2-fold cv as an inner evaluation strategy. Finally, the respective best classifier
for each data set was used as both the inner and outer classifiers for evaluating the
solutions.

5.2. Results of filter-based methods

In this step, experiments were conducted to explore the effects of filter-based FS on
the performance of the respective best classifier for each data set that was detected
in the previous step. For this purpose, the CHI and MI methods were employed on
the CB, TTC, R8, and N8 data sets, and their behaviors were compared with the
weighting scheme as well as the k parameter that specified the number of features to
be selected. The value of k increased by 10 at each step; the obtained results for the
four data sets are depicted in Figure 2. Notice that not all of the results for parameter
k’s different values are provided; this is meant to reduce the complexity and make the
charts easy to follow.

As can be seen in Figure 2, CHI and MI featured similar behavior for the bench-
mark and non-benchmark data sets. Applying the CHI and MI methods on the binary
and tf-weighted data often produced equal or lower results as compared to the results
that were obtained without FS (see Table 6). However, these two methods improved
the classification accuracy on the tf*idf-weighted data at the end of the day. As can
be seen in Figure 2a, the CHI and MI methods achieved their best accuracies on the
CB data set (0.740 and 0.737, respectively) by selecting the most informative 3590
and 4000 tf*idf-weighted features, respectively. As can be seen in Figure 2b, these
methods achieved their best results for the TTC data set (0.834 and 0.825) when
using the 4530 and 5810 tf*idf-weighted features, respectively.

On the other hand, Figure 2c shows that the CHI and MI methods obtained
their best results (0.850 and 0.851, respectively) by selecting the most informative
1130 and 2150 features on the tf*idf-weighted R8 data set. Similarly, Figure 2d
shows that the CHI and MI methods produced the best accuracies (0.680 and 0.655,

Assessment of nature-inspired algorithms for text feature selection 195

respectively) by selecting the most informative 1250 and 3130 features on the tf*idf-
weighted N8 data set.

a) b)

c) d)

Figure 2. Accuracies of respective best classifiers for reduced CB (a), TTC (b), R8 (c),
and N8 (d) data sets considering different filter-based methods, numbers of selected

features (k), and weighting schemes

These results make it clear that the results of the MI and CHI methods were
slightly different over the same data set and that these two methods often improved
the classification accuracy or provided the same accuracy by using a lower num-
ber of features when compared to the classification experiments without FS. The
CHI method often outperformed MI in terms of accuracy by selecting a lower number
of features.

A summary of the results that had been obtained thus far without FS and with
filter-based FS is provided in Table 7, which obviously shows that applying filter-
based FS improved the classification accuracy – especially with the help of CHI over
the tf*idf-weighted data sets. For instance, the CHI method improved the best accu-
racies on the CB and TTC data sets (from 0.731 to 0.740, and from 0.825 to 0.834,
respectively).

196 Önder Çoban

Table 7
Comparative summary of experimental setup and results

obtained with/without filter-based FS

Data set
Weighting
scheme

Classifier
Feature
model

Evaluation
strategy

Best acc

Without FS (✗)
(see Table 6)

Filter-based
FS (✓)

MI CHI
CB tf*idf LR trigram 5-fold cv 0.731 0.737 0.740
TTC tf*idf LR trigram 5-fold cv 0.825 0.825 0.834
R8 tf*idf SVM bow hold-out 0.846 0.851 0.850
N8 tf*idf LR bow hold-out 0.654 0.655 0.680

5.3. Results of NI methods

In this step, the respective best classifier for each of the data sets was again used
to perform classification experiments on the reduced data sets. Different from the
previous step, ten different NI algorithms (briefly introduced in 3.3.1) were employed
on data sets that were weighted using the tf, tf*idf, and binary schemes in order to
reduce the feature space. First of all, the accuracies were obtained with respect to the
NI methods on the four data sets. Then, the number of selected features by the NI
methods were extracted, and their computation times were established. The following
sub-headings provided the respective results of these experiments.

Obtained accuracies: Figure 3 depicts the accuracies that were obtained with the
respective best classifiers for each of the data sets after being reduced by the different
NI methods and weighted by using the tf-, tf*idf-, and binary-weighting schemes. As
can be seen in Figure 3, the NI methods produced better results with tf*idf weighting
for all of the data sets (which was similar to the filter-based methods). On the other
hand, these methods often worked better with tf weighting as compared to binary
weighting.

Considering the tf*idf weighting on the CB data set (see Figure 3a), the three best
accuracies were obtained (0.718, 0.708, and 0.702) with the help of the CS, ABC,
and FA methods, respectively. The other methods often had similar behaviors and
produced slightly different results; the worst accuracy was obtained by PSO (0.683).
On the TTC data set (see Figure 3b), the best accuracy was obtained by both the
ABC and FA algorithms (0.825), while BAT, CS, DE, and HS obtained an equal
accuracy (0.820). On the other hand, the worst accuracy was obtained by the GA
algorithm (0.802). On the R8 data set (see Figure 3c), the three best accuracies were
obtained (0.840, 0.839, and 0.837) with the help of the ABC, FA, and GWO
algorithms, respectively. The rest of the algorithms produced quite similar results;
the worst accuracy was produced by the GA algorithm (0.795). Finally, the best
accuracy was obtained on the N8 data set (0.652) by using the ABC algorithm (see
Figure 3d), while BAT, CS, and FA have produced the same accuracy of 0.650 which

Assessment of nature-inspired algorithms for text feature selection 197

is the second-best result. The worst accuracy on this data set was obtained by the
DE algorithm (0.621).

a) b)

c) d)

Figure 3. Accuracies of respective best classifiers on reduced CB (a), TTC (b), R8 (c),
and N8 (d) data sets with respect to weighting schemes and NI methods

Considering the overall results, it seems that performances of the NI methods
varied depending on the data set at hand; however, their behaviors did not tend to
show major changes. Oftentimes, the most successful algorithms in terms of accuracy
were ABC, FA, and CS; however, it was clear that applying the NI methods on FS
did not improve the classification accuracy for all of the data sets. On the CB data
set, the best accuracy decreased from 0.731 to 0.718, while on the TTC data set,
the best accuracy of 0.825 did not change. On the R8 data set, the best accuracy
similarly decreased (from 0.846 to 0.840), while on the N8 data set, the best accuracy
decreased from 0.654 to 0.652. Hence, the best accuracy values of the NI methods
fell behind those of the best results of the filter-based methods.

198 Önder Çoban

The average number of features and computation times: The other two parameters
for evaluating the NI methods were the number of selected features and the computa-
tion times. It was important to evaluate the numbers of selected features, as this had
a direct effect on their costs and performances. On the other hand, the NI methods
decided those features that were to be selected by using their inner evolution strategy.
As such, it was not possible to compare their computation times by using a prede-
fined constant number of features (as was the case in the filter-based methods). Even
though the number of selected features provided insight into their costs for the outer
classification task, it was required to measure the inner costs of the NI methods for
the computation time.

In this step, therefore, the number of selected features was extracted for each
of the NI methods that were employed on the four data sets (the average value was
taken for the 5-fold evaluation strategy). In addition, the time that was required
to complete both the classification and FS tasks was also measured for all of the
employed NI methods. As in previous steps of the experiments, the tf*idf-weighted
data sets were taken into consideration, as both the filter-based and NI methods
produced better results on the tf*idf-weighted data sets. The number of selected
features, as well as the computation times of the NI methods on the four data sets,
are depicted in Figure 4.

In Figure 4, the charts on the left show the number of selected features, while the
charts on the right side depict the computation times with respect to the NI methods
for CB, TTC, R8, and N8, respectively. Figures 4a and 4c depict the obtained average
numbers of features that were selected by the different NI methods during the process
of the 5-fold cross-validation on the CB and TTC data sets, respectively. As can be
seen in these figures, the methods had similar behaviors for the number of selected
features on both of the data sets. However, SCA, CS, ABC, and HS often selected
a higher number of features on average when compared to the others. Similarly, Fig-
ures 4e and 4g show the numbers of selected features in the process of the hold-out
classification on the R8 and N8 data sets, respectively. As can be seen in these fig-
ures, the methods again exhibited similar behaviors, and ABC, SCA, and CS often
selected a higher number of features. In the previous step of the experiments, it was
found that the top three methods in terms of accuracy on the tf*idf-weighted data
were FA, ABC, and CS. However, the most interesting finding was that FA selected
a lower number of features on average when compared to the ABC and CS methods.
This shows that FA was a bit more cost-effective (in terms of the number of selected
features) for classification tasks (unless it did not have much more inner complexity).

Considering the computation times (see Figures 4b, 4d, 4f, and 4h), the NI meth-
ods again showed similar behaviors on the four data sets. CS, ABC, and SCA generally
required less time to complete their computations as compared to the others. On the
other hand, the PSO, DE, GWO, and HS methods often had more inner complexity,
whereas FA featured a moderate computation time. Considering the results of the
previous step of the experiments, the results showed that ABC, FA, and CS often

Assessment of nature-inspired algorithms for text feature selection 199

produced better results. However, ABC and CS selected a higher number of features
with lower inner complexities, whereas FA selected a moderate number of features
with greater inner complexity. As classification requires less time than the inner eval-
uation of the NI methods does, it seems that it is a better choice to select ABC and
CS for text FS.

a) b)

c) d)

e) f)

g) h)

Figure 4. Numbers of selected features (left) and computation times (right) for NI methods
on CB (a, b), TTC (c, d), R8 (e, f), and N8 (g, h) data sets

5.4. Overall comparison

During this step, an overall comparison was performed in order to provide clearer in-
sight into the NI methods that were employed for text FS. For this purpose, the results
that were obtained in the previous steps have been put together in Table 8 consid-
ering different parameters such as the accuracy, inner computation time (FST – i.e.,
feature selection), outer computation time (CT – i.e., classification), and the number

200 Önder Çoban

of selected features. As can be seen in Table 8, the filter-based methods provided bet-
ter results than the NI methods did for FS. Specifically, the CHI method had a very
low inner complexity and was also superior to its peer MI with respect to all of the
parameters. Unfortunately, the NI methods had a very high inner complexity and fell
below that of the filter-based methods considering the accuracy.

Table 8
Comparison of filter-based methods with three best-performing NI algorithms
with respect to accuracy (Acc), # of features, feature-selection time (FST),

and outer-classification time (CT)

5-fold average
CB TTC

FS (✗)
FS (✓)

FS (✗)
FS (✓)

CHI MI ABC CS FA CHI MI ABC CS FA

Acc 0.728 0.740 0.737 0.708 0.718 0.702 0.825 0.834 0.825 0.825 0.820 0.825
of features 4222 3590 4000 2353 2500 1771 5827 4530 5810 5503 5526 5230
FST [s] NA 0.036 42.75 132.2 135.2 238.8 NA 0.021 36.46 548.8 494.4 1062.6
CT [s] 0.155 0.098 0.131 0.065 0.074 0.040 0.328 0.249 0.326 0.226 0.217 0.207

Hold-out value R8 N8
Acc 0.846 0.850 0.851 0.840 0.823 0.839 0.654 0.680 0.655 0.652 0.650 0.650
of features 2274 1130 2150 2104 1942 1923 3253 1250 3130 2884 3065 2805
FST [s] NA 0.062 65.23 363.0 457.6 704.0 NA 0.109 151.3 233.8 154.1 285.0
CT [s] 4.484 1.999 4.390 2.232 1.995 1.947 0.890 0.484 1.061 0.306 0.396 0.264

6. Discussion and conclusion

This paper provides a comprehensive assessment of basic NI algorithms for text FS
on both benchmark and non-benchmark data sets. Unique among its peers in the lit-
erature, the novelty of this study lies in the consideration of ten major representatives
of basic NI algorithms along with the exploration of the effect of the term-weighting
process on their performances.

Based on the results, it can be concluded first and foremost that filter-based
methods provide better results and have very low inner complexity when compared
to basic NI ones. On the other hand, NI methods provide slightly different results than
filter-based methods and often select a lower number of features – especially when
the filter-based method is MI. Even though the performances of the NI methods vary
depending on the data set at hand, they provide slightly different results. It seems
that FA, CS, and ABC are often better choices as compared to other NI ones.

Applying both filter-based and NI methods on tf*idf-weighted data provided bet-
ter results in all cases. This was because weighting has a direct effect on both the
inner and outer evaluation phases for the NI methods. It is also important to keep
in mind that this study used major and basic NI methods (without any extension,
modification, or parameter tuning) along with their default parameter settings. How-

Assessment of nature-inspired algorithms for text feature selection 201

ever, changing their algorithm-specific parameters along with other ones (such as the
number of folds for inner evaluation, population size, and the maximum number of
function evaluations) can take the performances of NI methods one step further.

As such, it has also been concluded that basic NI methods can be employed
for text FS by hybridizing or improving the existing ones. However, their high in-
ner complexity (stemming from the higher number of function evaluations) is the
most important challenge for employing them – especially on high-dimensional text
data sets.

Acknowledgements

The author would like to thank reviewers and editors for their valuable suggestions,
which contributed greatly to the improvement of this paper.

References

[1] Aghdam M.H., Ghasem-Aghaee N., Basiri M.E.: Text feature selection us-
ing ant colony optimization, Expert systems with applications, vol. 36(3),
pp. 6843–6853, 2009.

[2] Aghdam M.H., Ghasem-Aghaee N., Basiri M.E.: Application of ant colony op-
timization for feature selection in text categorization. In: 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on Computational Intelli-
gence), pp. 2867–2873, IEEE, 2008.

[3] Al-Tashi Q., Rais H.M., Abdulkadir S.J., Mirjalili S., Alhussian H.: A review of
grey wolf optimizer-based feature selection methods for classification, Evolution-
ary Machine Learning Techniques, pp. 273–286, 2020.

[4] Basiri M.E., Nemati S.: A novel hybrid ACO-GA algorithm for text feature
selection. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2561–2568,
IEEE, 2009.

[5] Belazzoug M., Touahria M., Nouioua F., Brahimi M.: An improved sine cosine
algorithm to select features for text categorization, Journal of King Saud Uni-
versity – Computer and Information Sciences, vol. 32(4), pp. 454–464, 2020.

[6] Chantar H., Mafarja M., Alsawalqah H., Heidari A.A., Aljarah I., Faris H.:
Feature selection using binary grey wolf optimizer with elite-based crossover
for Arabic text classification, Neural Computing and Applications, vol. 32(16),
pp. 12201–12220, 2020.

[7] Chen H., Hou Q., Han L., Hu Z., Ye Z., Zeng J., Yuan J.: Distributed Text Fea-
ture Selection Based On Bat Algorithm Optimization. In: 2019 10th IEEE In-
ternational Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 1, pp. 75–80, IEEE, 2019.

[8] Çoban Ö., Özyer B., Özyer G.T.: Sentiment analysis for Turkish Twitter feeds.
In: 2015 23nd Signal Processing and Communications Applications Conference
(SIU), pp. 2388–2391, IEEE, 2015.

202 Önder Çoban

[9] Diao R., Shen Q.: Nature inspired feature selection meta-heuristics, Artificial
Intelligence Review, vol. 44(3), pp. 311–340, 2015.

[10] Faris H., Aljarah I., Al-Betar M.A., Mirjalili S.: Grey wolf optimizer: a review of
recent variants and applications, Neural Computing and Applications, vol. 30(2),
pp. 413–435, 2018.

[11] Gao W., Liu S.: Improved artificial bee colony algorithm for global optimization,
Information Processing Letters, vol. 111(17), pp. 871–882, 2011.

[12] Garg S., Verma S.: A Comparative Study of Evolutionary Methods for Feature
Selection in Sentiment Analysis. In: IJCCI, pp. 131–138, 2019.

[13] Geem Z.W., Kim J.H., Loganathan G.V.: A new heuristic optimization algo-
rithm: harmony search, Simulation, vol. 76(2), pp. 60–68, 2001.

[14] Holland J.H.: Adaptation in natural and artificial systems, University of Michigan
Press, Ann Arbor, MI, 1975.

[15] Inbarani H.H., Bagyamathi M., Azar A.T.: A novel hybrid feature selection
method based on rough set and improved harmony search, Neural Computing
and Applications, vol. 26(8), pp. 1859–1880, 2015.

[16] Karaboga D., Basturk B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm, Journal of Global Op-
timization, vol. 39(3), pp. 459–471, 2007.

[17] Karakatič S.: EvoPreprocess-Data Preprocessing Framework with Nature-
Inspired Optimization Algorithms, Mathematics, vol. 8(6), pp. 1–29, 2020.

[18] Kennedy J., Eberhart R.: Particle swarm optimization. In: Proceedings of
ICNN’95 – International Conference on Neural Networks, vol. 4, pp. 1942–1948,
IEEE, 1995.

[19] Khurana A., Verma O.P.: A Fine Tuned Model of Grasshopper Optimization
Algorithm with Classifiers for Optimal Text Classification. In: 2020 IEEE 17th
India Council International Conference (INDICON), pp. 1–7, IEEE, 2020.

[20] Kohavi R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: International Joint Conference on AI, pp. 1137–1145,
Montreal, Canada, 1995.

[21] Kyaw K.S., Limsiroratana S.: Traditional and Swarm Intelligent Based Text
Feature Selection for Document Classification. In: 2019 19th International Sym-
posium on Communications and Information Technologies (ISCIT), pp. 226–231,
IEEE, 2019.

[22] Labani M., Moradi P., Jalili M.: A multi-objective genetic algorithm for text
feature selection using the relative discriminative criterion, Expert Systems with
Applications, vol. 149, pp. 1–21, 2020.

[23] Largeron C., Moulin C., Géry M.: Entropy based feature selection for text cat-
egorization. In: Proceedings of the 2011 ACM symposium on applied computing,
pp. 924–928, 2011.

Assessment of nature-inspired algorithms for text feature selection 203

[24] Mafarja M., Qasem A., Heidari A.A., Aljarah I., Faris H., Mirjalili S.: Efficient
hybrid nature-inspired binary optimizers for feature selection, Cognitive Compu-
tation, vol. 12(1), pp. 150–175, 2020.

[25] Mirjalili S.: SCA: a sine cosine algorithm for solving optimization problems,
Knowledge-Based Systems, vol. 96, pp. 120–133, 2016.

[26] Mirjalili S., Mirjalili S.M., Lewis A.: Grey wolf optimizer, Advances in Engineer-
ing Software, vol. 69, pp. 46–61, 2014.

[27] Özel S.A., Saraç E., Akdemir S., Aksu H.: Detection of cyberbullying on so-
cial media messages in Turkish. In: 2017 International Conference on Computer
Science and Engineering (UBMK), pp. 366–370, IEEE, 2017.

[28] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blon-
del M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Courna-
peau D., Brucher M., Perrot M., Duchesnay E.: Scikit-learn: Machine Learning
in Python, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[29] Porter M.F.: An algorithm for suffix stripping, Program: Electronic Library and
Information Systems, vol. 14(3), pp. 130–137, 1980.

[30] Purushothaman R., Rajagopalan S., Dhandapani G.: Hybridizing Gray Wolf
Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text
feature selection and clustering, Applied Soft Computing, vol. 96, pp. 1–14, 2020.

[31] Rawashdeh G., Mamat R., Bakar Z.B.A., Abd Rahim N.H.: Comparative be-
tween optimization feature selection by using classifiers algorithms on spam
email, International Journal of Electrical and Computer Engineering, vol. 9(6),
pp. 5479–5485, 2019.

[32] Sharma M., Kaur P.: A Comprehensive Analysis of Nature-Inspired Meta-
Heuristic Techniques for Feature Selection Problem, Archives of Computational
Methods in Engineering, pp. 1103–1127, 2021.

[33] Shrivastava P., Shukla A., Vepakomma P., Bhansali N., Verma K.: A survey of
nature-inspired algorithms for feature selection to identify Parkinson’s disease,
Computer Methods and Programs in Biomedicine, vol. 139, pp. 171–179, 2017.

[34] Storn R., Price K.: Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Optimization,
vol. 11(4), pp. 341–359, 1997.

[35] Wang Y., Liu Y., Feng L., Zhu X.: Novel feature selection method based
on harmony search for email classification, Knowledge-Based Systems, vol. 73,
pp. 311–323, 2015.

[36] Yang X.S.: Firefly algorithm, stochastic test functions and design optimisation,
International Journal of Bio-Inspired Computation, vol. 2(2), pp. 78–84, 2010.

[37] Yang X.S.: Nature-inspired algorithms and applied optimization, vol. 744,
Springer, 2017.

[38] Yang X.S.: Nature-inspired optimization algorithms, Academic Press, 2020.
[39] Yang X.S., Deb S.: Cuckoo search via Lévy flights. In: 2009 World Congress on

Nature & Biologically Inspired Computing (NaBIC), pp. 210–214, Ieee, 2009.

204 Önder Çoban

[40] Yang X.S., Deb S.: Engineering optimisation by cuckoo search, International
Journal of Mathematical Modelling and Numerical Optimisation, vol. 1(4),
pp. 330–343, 2010.

[41] Yang X.S., Gandomi A.H.: Bat algorithm: a novel approach for global engineering
optimization, Engineering Computations, 2012.

[42] Yang Y., Pedersen J.O.: A Comparative Study on Feature Selection in Text Cate-
gorization. In: ICML’97: Proceedings of the Fourteenth International Conference
on Machine Learning, pp. 412–420, Nashville, TN, USA, 1997.

[43] Yildirim S., Yildiz T.: A Comparison of Different Approaches to Document Rep-
resentation in Turkish Language, Süleyman Demirel Üniversitesi Fen Bilimleri
Enstitüsü Dergisi, vol. 22(2), pp. 569–576, 2018.

Affiliations

Önder Çoban
Adıyaman University, Department of Computer Engineering, Adıyaman, Turkey;
ocoban@adiyaman.edu.tr, ORCID ID: https://orcid.org/0000-0001-9404-2583

Received: 14.04.2021
Revised: 09.11.2021
Accepted: 09.11.2021

https://orcid.org/0000-0001-9404-2583
ocoban@adiyaman.edu.tr
https://orcid.org/0000-0001-9404-2583

	Introduction
	Related work
	Methods
	Preprocessing
	Feature extraction and term weighting
	Feature-selection algorithms
	Filter methods
	NI meta-heuristics

	Classification
	Performance evaluation

	Data sets
	Experimental results
	Choosing best feature set and classifier
	Results of filter-based methods
	Results of NI methods
	Overall comparison

	Discussion and conclusion

