
Štefan Dlugolinský
Martin Šeleng
Michal Laclav́ık
Ladislav Hluchý

DISTRIBUTED WEB-SCALE
INFRASTRUCTURE FOR CRAWLING,
INDEXING AND SEARCH
WITH SEMANTIC SUPPORT

Abstract In this paper, we describe our work in progress in the scope of web-scale informa-

tion extraction and information retrieval utilizing distributed computing. We

present a distributed architecture built on top of the MapReduce paradigm for

information retrieval, information processing and intelligent search supported

by spatial capabilities. Proposed architecture is focused on crawling documents

in several different formats, information extraction, lightweight semantic an-

notation of the extracted information, indexing of extracted information and

finally on indexing of documents based on the geo-spatial information found

in a document. We demonstrate the architecture on two use cases, where the

first is search in job offers retrieved from the LinkedIn portal and the second is

search in BBC news feeds and discuss several problems we had to face during

the implementation. We also discuss spatial search applications for both cases

because both LinkedIn job offer pages and BBC news feeds contain a lot of spatial

information to extract and process.

Keywords distributed web crawling, information extraction, information retrieval,

semantic search, geocoding, spatial search

2012/11/17; 09:49 str. 1/15

Computer Science • 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.5

5



1. Introduction

Due to the fact that web content is very diverse, building an intelligent web-scale

search service is still a challenge and faces plenty of problems. There are many het-

erogeneous sources of information in different languages and there are many different

formats of information representation too. According to latest surveys [29], there are

about 65% of top 1 million websites using XHTML markup language, while the rest

use HTML. The trend of XHTML usage is slightly growing, but on the other hand,

semantic standards like RDF, GRDDL, RDFa, SPARQL, OWL, RIF or SKOS occur

sporadically in XHTML. In general, Semantic Web solutions based on mentioned

standards cannot be yet applied. Therefore, there is still a need to deal with the

information extraction and semantic analysis of crawled web documents to support

intelligent search. We propose an architecture for distributed large-scale information

processing for the intelligent web search task in the following chapter.

2. Architecture

An important aspect of the web-scale search service is its scalability. It can be fulfilled

by distributed architecture [18, 14, 2], which can process a large amount of data in

parallel. Our search service is built on top of Apache Hadoop [25], an open-source

implementation of MapReduce paradigm introduced by Google in 2004 [3].

The benefits of using the MapReduce architecture are discussed in our prior

work [15], where we compare its performance to a single machine solution. There are

two different applications compared with the result of 1.9 and 12 times performance

gain after executing them on a Hadoop cluster.

The system presented in this paper operates over HDFS (Hadoop Distributed File

System) [24]. Some of the produced data is stored in HBase [26] (open-source imple-

mentation of the Google BigTable [1]). In general, there can be any distributed file

system used in Hadoop under the condition that it can be mounted by the underlying

operating system. Internet content is crawled and processed by Apache Nutch [27],

which is executed in the Hadoop distributed environment in parallel. Nutch is a very

powerful crawler with a lot of configurable features, plug-ins and filters such as:

• domain filter based on regular expressions to target crawler on particular do-

mains,

• regular expression URL filter for URL parameter filtering,

• document type filter to refine, which types of document to crawl,

• dynamic URL filter for dynamically generated web pages,

• several plug-ins for different kind of content, format, etc.

In order to perform our crawling tasks over BBC feeds and LinkedIn job offers,

several Nutch plug-ins were customized and implemented:

• customized built-in HTML parser to preserve visual formatting of the document

textual content for better information extraction,

2012/11/17; 09:49 str. 2/15

6 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



• new information extraction plugin based on regular expressions and gazetteers,

• new specialized indexing plug-in for indexing entities extracted by information

extraction plug-in,

• new specialized plugin for geocoding,

• new specialized geo-location indexing plug-in.

The search part of our framework is based on Apache Solr [22] and Apache

Velocity [23] projects. Apache Solr is a subproject of Lucene framework and it extends

its search capabilities. Apache Velocity permits one to use a simple but powerful

template language to reference objects defined in Java code and thus implement user

interface comfortably. The proposed architecture of the search system is shown in

Figure 1.

Internet

Plugins

RSS parser

HTML parser

Configuration

RSS, HTML,
Text indexer

Information 
Extraction

gazetteers, 
patterns

OnteaGeo

Apache Nutch

MapReduce Architecture

Nutch index
fulltext index

HDFS
Hadoop 

Distributed File 

System

Sequence file 
graph data

Database
extracted data

Database 
graph data

HBase
Hadoop database

Feeds, Blogs, Web pages, ...

Full-text 
search GUI

Graph 
search GUI

user

Figure 1. Architecture of the distributed web-scale search system.

Users can use facets when performing full-text search. Facets refer to categories

used to characterize information items in a collection, thus when a label within a facet

2012/11/17; 09:49 str. 3/15

Distributed web-scale infrastructure for crawling (...) 7



is selected, all items that have been assigned to that facet are retrieved [11]. Infor-

mation items in a collection are represented by retrieved documents and facets are

built from extracted entities, e.g. Person, Country. Facets in Solr are treated as flat

and non-hierarchical, so it is very simple to define them. Facets are built automati-

cally from entities extracted from documents, where each entity type specifies a facet

category. Properly extracted information used to build facets can bring great value

to the navigation because documents can be categorized according to their semantic

content. A similar approach of building facets is used in [10] where authors extract

semantic information from Wikipedia using the DPpedia Framework.

There is also a graph search user interface available, which allows users to search

within a graph built from extracted entities. A spread activation algorithm is applied

during the graph search.

As it is stated earlier in the text, there is only LinkedIn website [16] crawled for

job offers currently. In the future we want to crawl and parse also Monster website [17]

to retrieve job offers and user CVs. LinkedIn claims it offers roughly 80 000 job offers

(79 871 at the time of making our tests — October 10, 2011). There are 70 116 job

offers crawled in our database with an overall size of 2.1 GB crawled/parsed data and

around 740 MB metadata with the index (includes also textual content).

We must mention that we did not start from scratch in this work, but we exploited

several tools developed in the scope of the NAZOU project [19] (e.g. Ridar and

Erid) [6].

The system was deployed and tested on a small cluster with 1 server and 8 nodes

with configuration described in Table 1. Overall storage capacity is over 5 TB and

every node in the cluster can process up to 6 tasks in parallel (48 for whole cluster).

Table 1

Cluster node configuration.

Processor Intel R©CoreTM 2 Quad CPU Q9550 2.83GHz

System memory 4 GB

Storage WDC WD7500AACS-0 (750 GB)

OS Linux 2.6.24-19-generic x86 64 GNU/Linux

3. Information extraction

Various information is extracted from the textual content of crawled web documents

as well as from the HTML DOM objects. A built-in Nutch html-parser plug-in is

modified to produce formatted output of the textual content found in a web docu-

ment. This parser tries to preserve visual formatting of the source HTML page in the

output text, so this feature can be exploited in the text segmentation and better infor-

mation extraction. Simple gazetteers, regular expression patterns and a combination

2012/11/17; 09:49 str. 4/15

8 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



of both approaches are used for information extraction. There are several types of

NEs (Named Entities) are extracted. The entities listed below were extracted from

the LinkedIn job offers:

• job posted date,

• job offering company,

• industry in which the job is offered,

• location related to the job offer and offering company (i.e. JobLocation, City

and Country),

• required skills for the offered position,

• expected experience of the applicant,

• generic named entities.

The following entities are extracted in the BBC news task:

• PersonName,

• TelephoneNumber,

• location related entities Address, City and Country,

• generic name entities.

Person names are extracted in two-step approach, where in the first step

a gazetteer is used to match a given name and finally extraction patterns with

gazetteer results awareness are applied. The same approach is used for other NE

types (e.g. CompanyName, TelephoneNumber). There are also patterns used, which

combine results extracted by other patterns. This way an Address entity is extracted

for example. The generic named entities are sequences of capital letter starting words

(with sentence beginning awareness) and have assigned a “NE” key (e.g. NE⇒ “Gare

SNCF”). Users can interact with the extracted data using the graph search tool and

change the type of extracted entity, delete its value or merge entities representing

the same object (e.g. “International Monetary Fund” with “IMF”). This way the

user can help in creating negative and positive gazetteers for the next re-parsing and

extraction.

Location related entities (geo-entities) extracted from web documents are in the

form of a free-form text and need to be converted into latitude/longitude coordinates

before they can be used for indexing the documents and in spatial search. The conver-

sion process is called geocoding. There are several free geocoding services available.

The most known are Google Geocoding [7] and Yahoo! PlaceFinder [30] services. We

use both services as a basis for our geocoding approach, which is explained in more de-

tail in chapter 6.2 on LinkedIn task. After the geo-entities are extracted and geocoded,

they are ready for indexing. The spatial indexing is described in chapter 4.1.

Generic NEs are used also for creating JobSkill gazetteers. This is done by

taking NEs extracted from the “Desired Skills & Experience” part of job offer and

then filtering out those with the lowest frequency. Finally a gazetteer list is built and

applied in the next crawl cycle. Since there is no strict job offer structure required by

LinkedIn, some job offers have their own structure, but most of the job offers contain

recommended parts like the mentioned one.

2012/11/17; 09:49 str. 5/15

Distributed web-scale infrastructure for crawling (...) 9



4. Indexing

Fetched web documents are indexed by all extracted entities described in chapter 3.

These entities are used inside the Lucene index as fields (following the key/value

sense). If there are multiple entities of the same type but with different values ex-

tracted, they are all put into the index, because multi-valued fields are supported in

Nutch (since version 1.2).

4.1. Spatial indexing

The concept of indexing by spatial data is very important. If talking about web doc-

uments, there are two general approaches to indexing by geographic coordinates. The

first is to index each document by one geographic location and the second is to index

each document by multiple geographic locations. The advantage of the first method

is in straightforward indexing and searching implementation, where each document

in the index has been assigned a pair of latitude/longitude coordinates. Therefore,

searching is a simple question whether a tested document’s latitude/longitude coor-

dinates are within a specified range. The disadvantage is that only one geographic

location can be assigned to each document in the index. The second approach is

more suitable for indexing web documents, because it is natural that one document

could refer to more geographic locations and it is expected then to index such docu-

ment by all of them. For instance a news article, which informs about explosions in

two different cities or a job offer, where several positions on different places can be

announced.

The first indexing approach is currently implemented in Apache Lucene [21]

(Lucene is an indexing base for Solr and Nutch), but there are also other methods

investigated in Lucene, which follows the second approach [28]. To be more precise,

there is CartesianTier concept, which has been abandoned and LocalLucene, which is

still under development. The methods of the second approach exploit hash functions

to encode latitude/longitude coordinates into a single string, which gives an ability

to store coordinates in a multi-valued index field and to attach multiple geo-locations

to one document.

In our previous work we have showed a suitable indexing (as well as searching)

approach which uses an HTM (Hierarchical Triangular Mesh) [12, 20] method for

indexing geo-locations on the Earth’s surface. We integrated it and tested for Nutch

0.9 [5, 4]. In this work, we use the same spatial indexing approach and integrated it in

Nutch 1.3 and Solr 3.1. There is an HTM ID computed for each geocoded geo-entity

(represented by latitude and longitude) and stored in the “GeoHash” index field of

particular document. The GeoHash field is then used in spatial searches.

2012/11/17; 09:49 str. 6/15

10 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



5. Search

5.1. Full-text search with facets

A full-text search with facets is accessible by customized native Apache Solr user

interface, where users can input their queries and receive displayed results (see the

Fig. 2 and Fig. 3). On the left side of the pane we can see several lists of the 10 most

frequent values for each indexed entity type (JobTitle, JobCompany, JobLocation,

etc.) — “Field Facets”. In the top pane there is a “Find” search box (for full text

search) with the list of already selected facets under it. As an example of a full-text

faceted search, we can search for “php” to filter job offers with the word “PHP” in

the content. We receive 2 944 results. If we are interested only in full-time jobs

and a requirement for MySQL and JavaScript, we select corresponding facets and

receive 203 filtered job offers. The search can be also restricted to London. Then

10 results matching the criteria for the London area are returned. A faceted search

is also connected with entity relation search tool gSemSearch [13], which benefits of

entity relation graph traversing and spreading activation.

Lucene/Solr dispose with a rich query language, which interprets query strings

into a Lucene query. One of such query types are range queries, which are used inside

our application to filter jobs by their submission date. Range queries can be applied

on custom numerical fields like “salary” field, for instance.

5.2. Spatial search

Spatial search can be performed in several ways depending on the method of spatial

indexing. The method of spatial indexing being used in the system gives several

advantages. One can perform bounding-box queries, circle radius queries or any

bounding-shape queries. The idea is to pre-compute geo-hash prefixes for a search

area and then test in-index geo-hashes on a prefix match. If a tested document’s

geo-hash matches the search area prefix, the document is considered to be inside the

search area. More details are discussed in [4]. A navigable map has been added to

the user interface to easily specify search interest bounding-box. Full-text search, like

it is described in chapter 5, can be easily used together with the spatial search.

6. Experiments

6.1. BBC News and RSS feeds

BBC news contains a lot of interesting information about what is happening in the

world. There are 18 705 web pages crawled, including RSS feeds and there are ex-

tracted entities like person names, addresses, cities, countries and NEs. Spatial en-

tities are geocoded and indexed so that the documents in which they appear can be

found when searching within a bounding-box.

More details on BBC index are available in Table 2. Documents represent BBC
news. Doc. ratio stands for percentage of overall fetched documents, where particular

2012/11/17; 09:49 str. 7/15

Distributed web-scale infrastructure for crawling (...) 11



Figure 2. Faceted search in Apache Solr.

entity occurs at least one time. Totally 1 501 distinct geo-entities (i.e. Address,

City and Country) are extracted from the BBC news. LatLon field stores geocoded

coordinates and GeoHash field is indexed field with HTM ID value (see chapter 4.1).

There is a user interface available at http://try.ui.sav.sk:7070/

apache-solr-3.1.0/browse (Fig. 3), but it is still experimental and not very

user friendly. We use it only for testing purposes.

6.2. LinkedIn job offers

There are LinkedIn job offer pages crawled in this experiment and important informa-

tion related to a particular job offer is extracted. Job offer pages need to be crawled

periodically since they are updated and outdated. User interface for job offer search

is available at http://try.ui.sav.sk:7070/2012-01-07/browse.

2012/11/17; 09:49 str. 8/15

12 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



Figure 3. Spatial search enhancement in Apache Solr.

More detailed information about one of our test crawls for LinkedIn is available

in Table 3. There are 70 116 job offers of overall 113 268 LinkedIn documents fetched,

which is about 62%. Doc. ratio represents the percentage of all fetched documents,

where a particular entity occurs at least one time. The percentage marked with an

asterisk is computed from the total number of job offer pages since the corresponding

entity is extracted only from job offer pages.

2012/11/17; 09:49 str. 9/15

Distributed web-scale infrastructure for crawling (...) 13



Table 2

Index statistics for the BBC task.

Documents 18 705

Terms 520 625

Entity type Docs Doc. ratio [%] Distinct

Address 44 0.24 62

City 12 933 69.14 1 152

Country 11 082 59.25 287

LatLon 16 101 86.08 2 167

GeoHash 16 101 86.08 2 145

NE 18 698 99.96 94 936

Person 17 467 93.38 39 355

TelephoneNumber 3 0.02 10

Title 18 705 100.00 15 133

The system extracts non-spatial information such as JobTitle, JobType, Job-

Function, Company, Industry, Skill, Experience, PostedDate and spatial information

like JobLocation, City and Country. City and Country entities are extracted by the

gazetteer from the textual content only (just like it is in the BBC news task), while

the JobLocation is extracted by traversing the HTML DOM tree of a job offer page

and looking for its DIV element. City and Country entities are geocoded directly,

while the JobLocation entities need to be treated differently, because of their content.

JobLocations are in a free form text, always beginning with a company name followed

by a location of the job. There is no strict format for the location. It can be anything

that user writes down, for example “Anywhere” as it has been seen many times in

offers. Below are some concrete examples of such JobLocations:

• Pegasystems Inc. — Anywhere (Austin, Texas Area),

• Plum District — One Reg Mgr opening in NYC/Manhattan and one in Brook-

lyn/Queens (Greater New York City Area).

We analyzed a huge amount of JobLocations parsed from crawled job offer pages

(totally 70 116) and observed that in many cases there are multiple locations defined

in one JobLocation. Due to uncertain location format and multiplicity of locations

in one JobLocation string, it is not very smart to send the whole JobLocation string

to the geocoding service and expect a successful result. There should be another

approach used because multiple locations in one geocoding request do the job in

confusing the geocoder to return erroneous results. There was a gazetteer approach

considered for finding the sub-locations, but it was desisted from it because it would

require a very precise gazetteer to cover as many as possible location names. Instead

of it the location is split into several parts, where each part contains the possibly one

sub-location.

2012/11/17; 09:49 str. 10/15

14 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



Table 3

Index statistics for the LinkedIn task.

Documents 113 268

Job offer pages 70 116 (61.90%)

Terms 934 419

Entity type Docs Doc. ratio [%] Distinct

JobLocation 70 115 *100.00 40 739

JobLatLon 69 992 *99.82 12 796

JobGeoHash 69 992 *99.82 12 792

Address 1038 0.92 582

City 101 602 89.70 6481

Country 40 623 35.86 224

State 62 020 54.76 97

LatLon 106 086 93.66 5011

GeoHash 106 086 93.66 5010

Company 27 265 24.07 11 084

Experience 70 115 *100.00 10

Industry 70 115 *100.00 186

JobCompany 70 100 *99.98 19 042

JobSkill 70 115 *100.00 51 186

JobSkill2 67 967 *96.94 32 702

JobTitle 70 115 *100.00 51 186

TelephoneNumber 1324 1.17 864

During the JobLocation analysis, one can observe that sub-locations are often

separated by conjunctions (e.g. “and”, “or”, “und”, “oder”, “y”, “o” in English, Ger-

man, Spanish and other languages), which occur in geographic names very rarely. In

addition, most of the JobLocation strings contain a “bracket part” describing wider

geographic areas of the job. Both facts can be used to split one JobLocation string into

several sub-location strings. Sub-location strings as the result of the split need to be

further processed. Words, which are not typical for the geographic names and which

occur quite a lot in the sub-location strings, like “anywhere”, “business”, “next”,

“next to”, “office”, “work”, etc. are cleaned off. Afterwards, non-alphanumeric char-

acters except the “.” and “&” are cleaned off as well. Finally, there are leading and

trailing white-spaces trimmed.

After the cleaning and trimming process a set of sub-location strings and company

names is almost ready for geocoding. But most of the sub-location strings cannot

be yet precisely geocoded because they contain only city and country information

(rarely, there is also a ZIP code). The geocoding service would return coordinates

in the middle of the cities or countries, which is not sufficient. To get more precise

geocoding results, one needs to make the location more specific, but this cannot be

2012/11/17; 09:49 str. 11/15

Distributed web-scale infrastructure for crawling (...) 15



done simply by specifying the company name in the query because geocoding services

do not recognize business names.

But there is Google Places Autocomplete service [8], which can complete the

address of some establishment, which we decided to use in the geocoding process.

It takes establishment name, latitude, longitude and radius as input parameters.

As the establishment, we put the company name and for latitude/longitude we put

a geocoded sub-location string by the Google Geocoding service. Google Places Au-

tocomplete service returns up to 5 results — complete addresses matched for the

company near the specified latitude/longitude. Each result is then geocoded and its

distance from the reference point is computed in order to filter distant results, which

might be irrelevant. In addition a success probability for each geocoding service result

is computed. The computation is based on the service return values “location type”

and “partial match”, which indicate the geocoding success. Then, latitude/longitude

coordinates of the result with the highest probability are picked as a job location and

stored in the index.

7. Conclusion

In this paper we have presented a work-in-progress framework for distributed crawling,

extracting, indexing and lightweight semantic search over the extracted data with

spatial support. The use of this framework has been shown on two example tasks,

the LinkedIn job offer search task and the BBC news search task. Spatial indexing

and searching has been implemented as a plugin for Nutch and Solr. This plugin

has been used for indexing documents by more than one geographic location and for

performing searches within a specified bounding-box (other options such as circle area

can be easily implemented too).

Our future plans are to extend the semi-automated mapping between job offers

and CVs (related to the LinkedIn task), to include job offers and CVs from the Monster
website and to support other formats like PDF or DOC for the CV upload. Intelligent

matching of job offers and users CVs to find the most suitable job for the applicant

and the most suitable applicants for the job is our other goal. Last but not least,

we want to invite users to use and evaluate the whole system from their point of

view. Regarding the spatial index and search capabilities, we are working on their

integration into Lucene since there is not yet multi-location indexing per document

supported.

Acknowledgements

This work is supported by projects TRA-DICE APVV-0208-10, VENIS FP7-284984

and VEGA 2/0184/10. It is also the result of the projects implementation: SMART

II ITMS: 26240120029 and ITMS: 26240220029 supported by Operational Programme

Research & Development funded by the ERDF.

2012/11/17; 09:49 str. 12/15

16 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



References

[1] Chang F., Dean J., Ghemawat S., Hsieh W. C., Wallach D. A., Burrows M.,

Chandra T., Fikes A., Gruber R. E.: Bigtable: A distributed storage system for

structured data. ACM Trans. Comput. Syst., 26:4:1–4:26, June 2008.

[2] Ciglan M., Babik M., Šeleng M., Laclavik M., Hluchý L.: Running mapreduce

type jobs in grid infrastructure. In Cracow ’08 Grid Workshop : proceedings,

2009.

[3] Dean J., Ghemawat S.: Mapreduce: simplified data processing on large clusters.

In Proc. of the 6th conference on Symposium on Opearting Systems Design &

Implementation — vol. 6, pp. 10–10, Berkeley, CA, USA, 2004. USENIX Associ-

ation.

[4] Dlugolinsky S., Laclavik M., Hluchy L.: Towards a search system for the web

exploiting spatial data of a web document. In Proc. of the 2010 Workshops on

Database and Expert Systems Applications, DEXA ’10, pp. 27–31, Washington,

DC, USA, 2010. IEEE Computer Society.

[5] Dlugolinský Š., Laclav́ık M., Šeleng M.: Vyȟladávanie informácíı na webe poďla

vzdialenosti. In Proc. of the 4th Workshop on Intelligent and Knowledge oriented

Technologies, WIKT 2009, Košice, Slovakia, November 2009. Equilibria.

[6] Gatial E., Balogh Z.: Identifying, retrieving and determining relevance of het-

erogenous internet resources. In P. Návrat et al., ed., Tools for Acquisition, Or-

ganisation and Presenting of Information and Knowledge, Research roject Work-

shop (NAZOU), in conjunction with ITAT 2006, pp. 15–21, Bystrá dolina, Nı́zke

Tatry, Slovakia, September 2006. Slovak University of Technology Bratislava.

[7] Google: The Google Geocoding API. http://developers.google.com/maps/

documentation/geocoding/, May 2012.

[8] Google: The Google Places Autocomplete API (Experimental).

http://developers.google.com/maps/documentation/places/autocomplete,

May 2012.

[9] Habala O., Hluchý L., Tran V., Krammer P., Šeleng M.: Using advanced data

mining and integration in environmental prediction scenarios. Computer Science,

13(1):5–16, 2012.

[10] Hahn R., Bizer C., Sahnwaldt C., Herta C., Robinson S., Bürgle M., Düwiger H.,

Scheel U.: Faceted wikipedia search. In W. Abramowicz, R. Tolksdorf, W. Aalst,

J. Mylopoulos, M. Rosemann, M. J. Shaw, C. Szyperski, ed., Business Infor-

mation Systems, vol. 47 of Lecture Notes in Business Information Processing,

pp. 1–11. Springer, Berlin Heidelberg, 2010.

[11] Hearst M. A.: Design recommendations for hierarchical faceted search interfaces.

In SIGIR, Workshop on Faceted Search, 2006.

[12] Kunszt P. Z., Szalay A. S., Thakar A. R.: The hierarchical triangular mesh. In

A. J. Banday, S. Zaroubi, M. Bartelmann, ed., Mining the Sky: Proc. of the

MPA/ESO/MPE Workshop Held at Garching, Germany, July 31 – August 4,

2012/11/17; 09:49 str. 13/15

Distributed web-scale infrastructure for crawling (...) 17



2000, volume XV of ESO Astrophysics Symposia, pp. 631–637, Springer-Verlag,

Berlin Heidelberg, 2001.

[13] Laclav́ık M., Dlugolinský v., Šeleng M., Ciglan M., Hluchý L.: Emails as graph:

relation discovery in email archive. In Proc. eedings of the 21st international

conference companion on World Wide Web, WWW ’12 Companion, pp. 841–

846, New York, NY, USA, 2012. ACM.

[14] Laclav́ık M., Šeleng M., Ciglan M., Hluchý L.: Supporting collaboration by

large scale email analysis. In M. Bubak, M. Turala, K. Wiatr, ed., Cra-

cow’08 Grid Workshop, pp. 382–387, Krakow, 2009. (Academic Computer Centre

CYFRONET AGH)

[15] Laclav́ık M., Šeleng M., Hluchý L.: Towards large scale semantic annotation

built on mapreduce architecture. In Proc. of the 8th international conference on

Computational Science, Part III, ICCS ’08, pp. 331–338, Springer-Verlag, Berlin,

Heidelberg, 2008.

[16] LinkedIn Corporation: Apache Velocity template language.

http://www.linkedin.com/, May 2012.

[17] Monster: Monster website. http://www.monster.com/, May 2012.

[18] Šeleng M.: Distribuované spracovanie dát nad mapreduce architektúrou (hadoop

a hive). In Proc. of the 5th Workshop on Intelligent and Knowledge oriented Tech-

nologies, WIKT 2010, p. 141, Bratislava, Institute of Informatics SAS, November

2010.

[19] Slovak University of Technology in Bratislava, Institute of Informatics SAS, Pavol

Jozef Šafárik University in Košice, Softec, Ltd.. NAZOU website. http://nazou.

fiit.stuba.sk, May 2012.

[20] Szalay A., Gray J., Fekete G., Kunszt P. Z., Kukol P., Thakar A.: Indexing the

sphere with the hierarchical triangular mesh. Technical Report MSR-TR-2005-

123, Microsoft Research Advanced Technology Division, Microsoft Corporation

One Microsoft Way Redmond, WA 98052, 2005.

[21] The Apache Software Foundation: Apache Lucene website.

http://lucene.apache.org, May 2012.

[22] The Apache Software Foundation: Apache Solr indexing and searching frame-

work. http://lucene.apache.org/solr/, May 2012.

[23] The Apache Software Foundation: Apache Velocity template language.

http://velocity.apache.org/, May 2012.

[24] The Apache Software Foundation: Hadoop Distributed File System site.

http://hadoop.apache.org/hdfs/, May 2012.

[25] The Apache Software Foundation: Hadoop site. http://hadoop.apache.org/,

May 2012.

[26] The Apache Software Foundation: HBase site. http://hbase.apache.org/,

May 2012.

[27] The Apache Software Foundation: Nutch site. http://nutch.apache.org/,

May 2012.

2012/11/17; 09:49 str. 14/15

18 Štefan Dlugolinský, Martin Šeleng, Michal Laclav́ık, Ladislav Hluchý



[28] The Apache Software Foundation: Spatial search in Lucene.

http://wiki.apache.org/lucene-java/SpatialSearch, May 2012.

[29] W3Techs.: World wide web technology surveys.

http://w3techs.com/, October 2011.

[30] Yahoo! Inc.: Yahoo! PlaceFinder.

http://developer.yahoo.com/geo/placefinder/, May 2012.

Affiliations

Štefan Dlugolinský
Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia,
stefan.dlugolinsky@savba.sk

Martin Šeleng
Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia,
martin.seleng@savba.sk

Michal Laclav́ık
Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia,
michal.laclavik@savba.sk

Ladislav Hluchý
Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia,
ladislav.hluchy@savba.sk

Received: 14.05.2012

Revised: 17.08.2012

Accepted: 3.09.2012

2012/11/17; 09:49 str. 15/15

Distributed web-scale infrastructure for crawling (...) 19


