
Computer Science • 22(4) 2021 https://doi.org/10.7494/csci.2021.22.4.4144

Damian Goik
Krzysztof Banaś
Jan Bielański
Kazimierz Ch loń

EFFICIENT SIMULATIONS OF

LARGE-SCALE CONVECTIVE HEAT TRANSFER

PROBLEMS

Abstract We describe an approach for efficient solution of large-scale convective heat

transfer problems that are formulated as coupled unsteady heat conduction

and incompressible fluid-flow equations. The original problem is discretized

over time using classical implicit methods, while stabilized finite elements are

used for space discretization. The algorithm employed for the discretization

of the fluid-flow problem uses Picard’s iterations to solve the arising nonlinear

equations. Both problems (the heat transfer and Navier–Stokes equations)

give rise to large sparse systems of linear equations. The systems are solved

by using an iterative GMRES solver with suitable preconditioning. For the

incompressible flow equations, we employ a special preconditioner that is based

on an algebraic multigrid (AMG) technique.

This paper presents algorithmic and implementation details of the solution

procedure, which is suitably tuned – especially for ill-conditioned systems that

arise from discretizations of incompressible Navier–Stokes equations. We de-

scribe a parallel implementation of the solver using MPI and elements from the

PETSC library. The scalability of the solver is favorably compared with other

methods, such as direct solvers and the standard GMRES method with ILU

preconditioning.

Keywords convective heat transfer, finite element method, sparse linear equations,

algebraic multigrid, Navier–Stokes equations, GMRES, block preconditioning,

SUPG stabilization, MPI, PETSC, scalability

Citation Computer Science 22(4) 2021: 517–538

Copyright © 2021 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

517

https://doi.org/10.7494/csci.2021.22.4.4144
https://orcid.org/0000-0002-4045-1530
https://orcid.org/0000-0001-5605-8875
https://creativecommons.org/licenses/by/4.0/

518 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

1. Introduction

An efficient numerical solution for convective heat transfer problems has remained

a challenge for many decades [22,29]. Because of the parabolic nature of heat transfer

equations, large time steps can be used in time discretization. This leads to attempts

to employ implicit methods for the Navier–Stokes equations of an incompressible

fluid flow. The non-linear nature of the equations requires an iterative process for

a solution. Finally, large sparse systems of linear equations are produced by the time

and space discretizations of the coupled problem.

The most typical approach to tackling the problem numerically is to use some

form of iterative process. The first step of introducing iterations is to decouple the

heat and fluid-flow equations. For incompressible fluids (contrary to the case of com-

pressible flows [5]), the coupling is weak; the temperature only affects the coefficients

of the Navier–Stokes equations and buoyancy terms due to the Boussinesq approxi-

mation [4].

After applying an iterative solution to the non-linear flow problem, the next step

is to use iterative solvers for the systems of linear equations that are produced by both

decoupled problems, since the direct solvers (especially for simulations in 3D space)

suffer from excessive requirements for storage and computation time [9, 21]. The

smaller system for the heat equation can usually be efficiently solved by standard

methods, while the system for incompressible fluid flow is ill-conditioned due to the

assumed infinite speed of the propagation of pressure changes. When using Krylov

subspace methods like GMRES [25], for example, efficient preconditioning is necessary

for obtaining feasible solution times for large-scale problems.

Preconditioners for the Navier–Stokes problem is another place where the iter-

ative process can be used. Following the approach of decoupling the velocity and

pressure parts of the discretized fluid-flow equations [22], a similar decoupling for

linear systems (the so-called block decomposition) can be introduced [13]. This leads

to the application of a preconditioner in several steps where smaller decoupled linear

systems are employed. For these systems, iterative procedures can be applied as well

to ensure fast and accurate approximations.

The speed of the convergence of the whole procedure depends on many factors,

with the size of the time step (and its related CFL number) as well as the Reynolds

number of the considered flow being most important [11]. Moreover, this also depends

on the details of the discrete problem formulation – especially the method that is used

to deal with the numerical instabilities that appear in the standard formulations of

the convection dominated equations.

For the finite element method, one of the classic ways of obtaining stable solu-

tions is to employ a stabilization that is based on second-order terms, such as the

streamline-upwind/Petrov–Galerkin (SUPG) formulation [7,14]. Compared to the al-

ternative solution of using one of the mixed formulations that uses different orders of

approximation for the pressure and velocity unknowns, SUPG stabilization is easier to

Efficient simulations of large-scale convective heat transfer problems 519

implement; however, it creates linear systems with negative and positive eigenvalues

that slows down the convergence of the iterative solvers [23].
In this paper, we present a solution procedure for the convective heat transfer

problems that employ the preconditioner introduced in [16] as well as the results

of its application to the well-known heat-driven (buoyancy) cavity-flow simulations.

Implemented on the basis of the PETSC library, the preconditioner uses the block

decomposition of the system of linear equations and Schur complement techniques to

produce a three-step iterative procedure with separate linear subsystems. The sub-

system that is related to the velocity tends to be diagonally dominant; on the other

hand, the subsystem that is related to the pressure has a worse condition number

and small terms on the diagonal (especially for fine meshes). The most efficient

solution technique for the latter system is multigrid [6, 19], with pressure changes

that are transferred throughout the whole computational domain sufficiently quickly

due to the use of a sequence of coarser grids. Our preconditioner employs the alge-

braic multigrid method [28], which has an important advantage of constructing coarse

problems independently of any information that is related to the discretization of the

computational domain.
The procedure is designed for large-scale problems; hence, parallel implementa-

tion is applied. We use MPI and distributed memory machines in order to guarantee

the scalability of the computations. The parallelization is based on domain decom-

position; for the solvers of linear equations, this translates to some form of system

matrix decomposition [27]. The subdomains (subsystems) at all levels are balanced

in terms of their size and preferably have as small of an interface as possible so

that the required communication can be reduced [3, 10]. For standard decomposi-

tion methods [18, 26], the performance of the solver may deteriorate when compared

to the sequential version. In such a case, some modifications for parallel versions of

the partitioning algorithm are employed [17].
In the next section of the paper, we briefly describe the space and time discretiza-

tions of the coupled heat transfer and incompressible flow equations that we employ.

In Section 3, the resulting systems of linear equations are discussed (taking their

structure and possible decomposition into account). We present a preconditioner al-

gorithm for the GMRES solver that exploits the block structure of the system matrix

in the fluid-flow problem and uses the multigrid strategy for its pressure part. In Sec-

tion 4, the details of the parallel implementation of the developed solver algorithm are

presented (using the ModFEM framework and PETSC library). Section 5 contains

the description of a test problem and the results of the simulations, with a special

stress on the performance of the different solvers of the linear equations as well as

the scalability of the proposed algorithm and its implementation. In Section 6, we

present our conclusions from the numerical experiments.

2. Convective heat transfer problem and its discretization

We consider the formulated convective heat transfer problem as coupled unsteady

Fourier (heat conduction) and Navier–Stokes (incompressible fluid-flow) equations.

520 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

Contrary to compressible flows (where the coupling between the momentum and en-

ergy balance is provided by some material model like the ideal gas law or the van der

Waals equation, for example), the assumption of constant density ρ (fundamental to

the incompressible model) leads to several simplifications. First, the mass balance

reduces to the divergence-free condition for velocity field u, ui,i = 0. Pressure p be-

comes related to only the velocity field, and the stress tensor can be represented as

the sum of pressure p and the viscous stresses τ (which we assume in a form that is

typical for Newtonian fluids with a dynamic viscosity µ) and the Stokes hypothesis

(τi,i = 0) applied: τji ≈ µ(ui,j + uj,i − 2
3δjiuk,k) (this form is further simplified using

the divergence free condition for the velocity field).

Furthermore, the energy balance can be expressed exclusively for internal energy

eI (neglecting the potential energy and using the momentum balance to eliminate the

mechanical energy from the general energy balance):

(ρeI),t + (ρeIui),i + pui,i − τijui,j + qi,i = 0

Apart from explicit heat flux q (which has already been taken into account), the heat

that is produced by the viscosity and the work of the pressure, the possible influence of

the body forces, and the internal heat sources can be introduced in the equation above

using additional terms. The equation for the internal energy is further simplified by

using the following thermodynamic assumptions concerning specific heats at constant

pressure cp, constant volume cV , and temperature T : cp = cV = c, eI = cT .

Finally, the temperature is related to the heat flux using Fourier’s law: qi =

−λT,i; this leads to the final form of the energy balance that we accept in our model

(after neglecting the heat that is produced by the fluid viscosity and the introduction

of internal heat sources s):

ρc

(
∂T

∂t
+ u ·∇T

)
−∇ · (λ∇T) = s (1)

In our simulations, we assume that the material parameters (assumed to be constant

for the purpose of the equation derivation) such as density ρ, specific heat c, and heat

conductivity λ can still be treated as possibly purely experimental functions of the

temperature.

The above equation of conductive heat transfer for unknown temperature field

T (x, t) posed in the computational domain Ω is accompanied by the set of boundary

conditions that include classical Dirichlet conditions for the temperature (T = T0) on

the part of ∂Ω denoted by ΓT as well as the conditions for the heat flux (−λ∂T
n = q)

on the Γq part of ∂Ω (with n denoting, in the standard way, the unit outward vector

that is normal to the boundary). Heat flux q may be specified as constant or as

a function (linear or nonlinear) of the temperature on the boundary and some other

parameters (like the ambient temperature, heat transfer coefficient, or parameters of

the radiation condition [4]).

Efficient simulations of large-scale convective heat transfer problems 521

Vector of conductive velocity u is supplied to the heat transfer equation by the

coupled system of the Navier–Stokes equations. The coupling in this direction is

strong, which influences the solution procedure for the whole system.

The particular form of the Navier–Stokes equations in our model is derived from

the mass and momentum-balance equations assuming the introduced form of the

viscous stresses. Formulated for the unknown fluid velocity u(x, t) and pressure

p(x, t) they are considered in the following form:

ρ

(
∂u

∂t
+(u ·∇)u−ν∇2u

)
+ ∇p = f (2)

∇ · u = 0

with boundary conditions

u = û0 on ΓD

(ν∇u)n− pn = g on ΓN

In Equation (2), ν denotes the kinematic viscosity of fluid (ν = µ/ρ), and f is

a source term that includes gravity forces (the system is considered in the dimen-

sional form). Vector fields û0 and g are given on disjoint parts of the boundary of

computational domain Ω (ΓD for velocities and ΓN for stresses, respectively).

The influence of the temperature field on the velocity and pressure fields is rel-

atively weak. Similar as for the heat transfer equation, we first assume that all

material parameters such as density ρ and viscosity ν can be functions of the tem-

perature. Moreover, using the terms for forces f , we take the temperature-induced

buoyancy forces that result from the varying density of the fluid that is subject to the

gravity field into account.

The coupled system of Equations (1) and (2) is transformed by using the standard

finite element space discretization procedures of multiplying by test functions and

integrating over the computational domain. System (2) is transformed into a single

weak statement (with test functions w for the momentum balance and r for the

divergence condition), while (1) is treated as a separate system. Both problems are

coupled by the solution procedure described below, which provides field u to (1) and

field T to (2).

For both systems, the same triangulation of domain Ω into elements Ωe is in-

troduced (in the practical examples, we use 3D prismatic elements), and the same

approximation based on the linear shape functions is assumed. For the heat equation,

the spaces of the continuous piece-wise linear polynomials (V h
T for the temperature,

and V h
v for the test functions) are introduced, with the functions in V h

T satisfying the

Dirichlet boundary conditions for the temperature on ΓT and the functions in V h
v

being equal to zero on ΓT .

For the Navier–Stokes equations, the similar spaces V h
u and V h

p of the continu-

ous piece-wise linear polynomials that satisfy the Dirichlet boundary conditions for

522 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

velocities and pressure (vector valued for velocities) are defined, together with corre-

sponding function spaces V h
w and V h

r for the test functions (with zero values on the

Dirichlet parts of the boundary).

Both the (1) and (2) systems are unstable in their standard Galerkin forms, so

both are stabilized by using the SUPG method [14]. Using the index notation and

the summation convention for repeated indices together with “,i” denoting the space

differentiation with respect to the i-th space coordinate, the final weak formulation

for the heat equation takes the following form:

Find approximate function Th ∈ V h
T such that statement∫

Ω

ρc
∂Th

∂t
vhdΩ +

∫
Ω

ρcuiT
h
,iv

hdΩ +

∫
Ω

λTh
,iv

h
,idΩ (3)

+
∑
e

∫
Ωe

RF (Th)σRF (vh)dΩ +

∫
Γq

qvhdΓ =

∫
Ω

svhdΩ

holds for each test function vh ∈ V h
v . Above, RF (Th) and RF (vh) denote the residuals

of heat equation (1) that were computed for the respective arguments, while σ is the

coefficient of the SUPG stabilization.

The system of the Navier–Stokes equations is transformed into the following weak

formulation:

Find approximate functions uh ∈ V h
u and ph ∈ V h

p such that statement∫
Ω

ρ
∂uhj
∂t

wh
j dΩ +

∫
Ω

ρuhj,lu
h
l w

h
j dΩ +

∫
Ω

ρνuhj,lw
h
j,ldΩ

−
∫
Ω

phwh
j,jdΩ −

∫
Ω

uhj,jr
hdΩ +

∑
e

∫
Ωe

uhj,lγw
h
j,ldΩ (4)

+
∑
e

∫
Ωe

RNS
j (uh, ph)ωδjlR

NS
l (wh, rh)dΩ =

∫
Ω

fjw
h
j dΩ −

∫
ΓN

gjw
h
j dΓ

holds for each test function wh ∈ V h
w and rh ∈ V h

r .

Above, RNS
j (uh, ph) and RNS

l (wh, rh) denote the residuals of the momentum

balance equations that were computed for the respective arguments. The symbol δjl
denotes the usual Kronecker’s delta, while ω and γ are the coefficients of the SUPG

stabilization (we refer to papers [14] and [15], fundamental for the SUPG stabilization,

for further details concerning the existence, uniqueness, stability, and convergence of

the solutions).

The resulting weak statements are non-linear and include time derivatives. For

the space-time discretization, we use the method of lines (with finite differences for dis-

cretization over time) and the presented finite element discretization in space. For each

unknown field, we represent the values at point x and time instant t as the product of

finite element basis functions ψL(x) (depending only on x) and the time-dependent

Efficient simulations of large-scale convective heat transfer problems 523

coefficients of the linear combination of basis functions (the values of the unknowns

at finite element nodes). For the temperature field, this would read as follows:

T (x, t) =

N∑
L=1

TL(t)ψL(x)

with similar expressions for other fields. As a consequence, the time derivative con-

cerns only those values at the nodes, and the functions at a particular time instant

tn can be expressed with the formulae (using temperature again as an example):

Th(x, tn) =

N∑
L=1

TL(tn)ψL(x)

∂Th(x, t)

∂t |tn
=

N∑
L=1

dTL(t)

dt |tn
ψL(x)

The standard implicit Euler time-integration method is applied for both of the

coupled problems. The whole formulation is considered at time tn+1, with the time

derivative at tn+1 calculated as the backwards-in-time finite difference (which reads

as follows for the example temperature field):

∂Th(x, t)

∂t |tn+1
≈ Th(x, tn+1) − Th(x, tn)

∆t

where ∆t = tn+1 − tn. Since we deal with stationary problems in the current paper,

the problem of accuracy in time is irrelevant only if the procedure converges to the

steady state. We exploit the unconditional stability of the implicit backward Euler

scheme, which is also valid for non-linear fluid-flow problems ([5]). For transient

problems (which are not considered in the current paper) we use the second-order

Crank-Nicolson method, having conditional stability.

After the time discretization, the weak statements consist of the terms without

time derivatives but possibly with non-linear coefficients (including velocity field u,

which can be treated as a coefficient for both the heat transfer and Navier–Stokes

equations).

The procedure of the simple (Picard) iteration (which solves for unknown values

in the next iteration by assuming the values of the coefficients that are computed based

on the unknowns in the previous iteration) is used for solving the system of non-linear

equations. Denoting the value of each function using the superscripts for the time

instant and the subscripts for the subsequent Picard iterations (dropping superscript h

for brevity), we arrive at the final weak statement of the coupled problem.

The weak formulation for the heat equation aims at finding solution Tn+1
k+1 in the

next (k+1) non-linear (Picard) iteration and time step n+1 given solution Tn+1
k from

524 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

the previous iteration (used for calculating nonlinear coefficients) and solution Tn

in the previous time step:∫
Ω

ρc
Tn+1
k+1

∆t
vdΩ +

∫
Ω

ρc(un+1
k+1)i(T

n+1
k+1),ivdΩ +

∫
Ω

λ(Tn+1
k+1),iv,idΩ (5)

+
∑
e

∫
Ωe

RF (Tn+1
k+1)σRF (v)dΩ +

∫
Γq

qvhdΓ =

∫
Ω

ρc
Tn

∆t
vdΩ +

∫
Ω

svdΩ

A similar formulation is obtained for the Navier–Stokes equations, where the ve-

locity in the convection term is treated as a coefficient and supplied from the previous

iteration:∫
Ω

ρ
(un+1

k+1)j

∆t
wjdΩ +

∫
Ω

ρ(un+1
k+1)j,l(u

n+1
k)lwjdΩ +

∫
Ω

ρν(un+1
k+1)j,lwj,ldΩ

−
∫
Ω

pn+1
k+1wj,jdΩ −

∫
Ω

(un+1
k+1)j,jrdΩ +

∑
e

∫
Ωe

RNS
j (u, p)ωjlR

NS
l (w, r)dΩ (6)

+
∑
e

∫
Ωe

(un+1
k+1)j,lγwj,ldΩ =

∫
Ω

ρ
(un)j

∆t
wjdΩ +

∫
Ω

fjwjdΩ −
∫
ΓN

gjwjdΓ

with residual RNS
j (u, p) calculated as a function of un+1

k+1 , un+1
k , and pn+1

k+1 .

Statements 5 and 6 reveal the details of the solution procedure for the coupled

system. In each time step and each iteration, we first solve the linear system that is

related to the Navier–Stokes equations due to its weak coupling with the heat trans-

fer equation. The indicated coefficients that introduce the non-linearity (including

velocity and the other parameters that depend on the temperature) are calculated

for the solutions from the previous iteration (for the first iteration, the solutions from

the previous time step are taken). Then, we solve the linear system for the heat equa-

tion using the conductive velocity that was just calculated by the linear system that

is related to the Navier–Stokes equations in the same nonlinear iteration. The pro-

cedure is repeated for the next (and subsequent) non-linear Picard iterations. First,

the linear system that is related to the Navier–Stokes equations is solved, then the

linear system for the heat transfer equation (strongly coupled by the velocity field).

For each linear system, the coefficients (and, as a consequence, the system matrices)

are recalculated for the most recent values of the velocity and temperature fields.

We repeat the iterations until the criterion of convergence for the coupled non-linear

problem is met or the maximal number of iterations is reached.

As a result, we get the converged solution fields for the whole coupled system at

the end of non-linear iterations for each time step (despite the fact that we decoupled

the linear systems).

The calculations are performed for a sequence of time steps. For the transient

problems, the time-step length is selected based on the accuracy requirements, and

the simulation continues for the specified period of time. For steady-state problems,

we use time integration until a stationary limit is found (with the time-step length

Efficient simulations of large-scale convective heat transfer problems 525

adapted to the stability constraints). The particular form of the adaptation algorithm

depends on the problem and the degree of non-linearity. Usually, the simulations start

with a time-step length that is close to the value that corresponds to the classical

CFL condition and is enlarged when the convergence of the non-linear iterations is

sufficiently fast.

3. Systems of linear equations

For the described procedure, two systems of linear equations are solved in each non-

linear iteration at each time step. The system for the (scalar) heat equation has

a typical form for the finite element approximations of the time-dependent problems.

It is sparse, with the diagonal dominance depending on the value of time step ∆t.

The system of linear equations for the Navier–Stokes problem has a more com-

plicated structure. For the purpose of the solution procedure, the equations of the

system can be arranged in two different ways. Due to the use of stabilized formu-

lation and equal-order interpolation, the unknowns – three velocity components and

pressure – are defined at each finite element node (with the nodes that correspond to

the vertices of the elements in our linear approximation). If all four unknowns at each

node are arranged in the solution vector as subsequent components, the global system

matrix can be split into 4 × 4 blocks. The solution procedure can take advantage of

this structure by using the BCRS format, for example, for storing the matrix and suit-

ably adapting the algorithms. We employ this approach in our reference-incomplete

LU preconditioner for the GMRES solver.

Another possible solution is to split the unknown vector into two large parts: the

first with all of the velocity unknowns (that we will denote as uv), and the second

with the pressure degrees of freedom (denoted by up). In this approach, the system

of equations splits into the following parts:(
Dvv Dvp

Dpv Dpp

)
·
(

uv

up

)
=

(
b̄w

bq

)
(7)

In the absence of stabilization terms, part Dvp is just the transpose of Dpv,

while part Dpp vanishes. For the stabilized formulation, additional terms appear

in Dvp, Dpv, and Dpp, while Dvv keeps its diagonally dominant form due to the

discretized time-derivative term. Additionally, matrix Dvv depends on the solution

in the previous Picard iteration, while the right-hand side b̄w depends on the solution

in the previous time step.

We solve system (7) using the restarted GMRES method with left preconditioning

(where the preconditioning in the standard way corresponds to the multiplication of

both sides of the system by a matrix that tries to approximate the inverse of the system

matrix [24]). In the GMRES procedure, this would manifest by the multiplication of

the preconditioner matrix with the vector that resulted from the product of the system

matrix with the suitable vector (related to the residual of the linear system). In our

526 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

implementation, we use a typical approach where the preconditioner matrix is not

constructed explicitly and the result of matrix-vector product is achieved by several

steps of a specially designed algorithm (where only linear operations are applied to

the input vector in each step).

In order to develop an algorithm that reflects the action of the preconditioner,

the following identity is employed:(
Dvv Dvp

Dpv Dpp

)
=(

I 0

DpvDvv
−1 I

)
·
(

Dvv 0

0 S

)
·
(

I Dvv
−1Dvp

0 I

)
where S is the Schur complement for Dpp

S = Dpp −DpvDvv
−1Dvp

Hence, the inverse of the system matrix is given by the following:(
Dvv Dvp

Dpv Dpp

)−1

=(
I −Dvv

−1Dvp

0 I

)
·
(

Dvv
−1 0

0 S−1

)
·
(

I 0

−DpvDvv
−1 I

)
The action of the inverse of the matrix on a vector (with the parts that are related

to the velocities and pressure denoted by zv and zp, respectively) can be written as

follows: (
Dvv Dvp

Dpv Dpp

)−1 (
zv
zp

)
=

(
Dvv

−1 (zv −Dvpz̄p)

S−1
(
zp −DpvDvv

−1zv
))

The formulae presented above give rise to the family of SIMPLE (semi-implicit

pressure-linked equation) solvers and preconditioners [22]. In the version of the

SIMPLE preconditioning strategy that we use in our solver [13], the following al-

gorithm is employed to approximate the action of the inverse of the system matrix

on any vector with parts zv and zp and storing the result in ẑv and ẑp:

1. solve approximately: Dvvz̃v = zv;

2. solve approximately: S̃ẑp = zp −Dpvz̃v;

3. substitute: ẑv = z̃v − D̃−1
vvDvpẑp.

In Step 2 of the algorithm, an approximation S̃ to the original Schur complement

matrix S is used. The approximation changes the original block D−1
vv to some approx-

imation. The approximation to D−1
vv is also used in Step 3 of the algorithm (denoted

their by D̃−1
vv), although these two approximations to D−1

vv can be different.

The quality of the approximations to D−1
vv (both in the Schur complement and

the standalone) constitutes the most important factor that influences the quality of

Efficient simulations of large-scale convective heat transfer problems 527

the preconditioner and, as a consequence, the convergence rate of the solver. Even

with the same approximation being employed for all of the subsystems in the algo-

rithm, the selected solver and the accuracy of the solution (the number of iterations)

can be different for each subsystem. The exact computation of the Schur complement

is infeasible, as this is more difficult than solving the whole system. In a general

case, finding a good approximation for the Schur complement is difficult, and the so-

lution of the subsystem that is related to the pressure (which is included in the Schur

complement) usually limits the convergence rate of the whole solver.

We use the following techniques in each step of the solution procedure [16]. In

Step 1, we approximately solve the system by simply employing the Gauss-Seidel

iterations to Dvv. This simple approach is sufficient for assuring that the efficiency

of the preconditioner and the convergence of the whole solver solely depends on the

quality of solving Step 2 of the procedure. We develop special heuristics to determine

the exact ratio of the number of iterations used in Step 1 to the number of iterations

in Step 2.

There are several possible techniques to approximate D−1
vv in the Schur comple-

ment matrix. One of the simplest and most efficient (the one that we use in our

solution procedure) is to change the original block D−1
vv to the diagonal matrix, with

each row containing the inverse of the sum of the absolute values of the entries in the

corresponding row of Dvv.

Step 2 constitutes the most important phase of the application of the precon-

ditioner – inducing its overall efficiency that is reflected by the convergence rate of

the solver. Apart from using some form of approximation to D−1
vv , this requires the

approximate solution of the system with matrix Dpp as its dominant part. Being

related to the pressure unknowns, this matrix has no time-derivative terms and corre-

sponds to the changes that immediately propagate across the computational domain;

therefore, it has an elliptic character and is ill-conditioned. To solve this system, we

use a special variant of the algebraic multigrid method.

We use a single V-cycle of the multigrid. First, we perform the smoothing on

the finest level using the Gauss-Seidel algorithm for matrix S̃. Then, we create the

coarsened system. Using the standard algebraic multigrid criteria (based on mea-

suring the influence of the values of the solution at certain nodes on the values of

the solution in the neighboring nodes [17]), the nodes that are meant to remain at the

coarser level are selected (with the rest of the nodes omitted). The lines and columns

of the system matrix at the fine level that correspond to the omitted nodes are also

neglected, and the new system matrix for the coarse level is created using the Galerkin

projection [28]. The solution from the fine level is projected (restricted) to the coarse

level, and the coarse level system is used to smooth the coarse-level solution.

The procedure is repeated for several coarser levels up to the coarsest system,

which is solved exactly and its solution added as the coarsest level correction to the

solution. Then, the solution is projected back (prolongated) to the next-finer level

and smoothed again at that level. The final smoothing at the finest level ends the

528 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

V-cycle procedure. We use standard algebraic multigrid techniques for the restriction

and interpolation [28], with Gauss-Seidel again used for the smoothing.

In Step 3 of the preconditioner algorithm, we simply perform two matrix vector

products using the previously created D−1
vv approximation and one vector subtraction.

Step 3 is computationally less demanding, so the performance-tuning is done for Steps

1 and 2 only.

4. Parallel implementation

The parallelization of the whole solution procedure follows the steps that are typically

employed in such cases. The subsequent stages of the computations (which include

not only the consecutive non-linear iterations and time steps but also the creation and

solution of the two linear systems of equations) are performed in sequential order.

The most interesting, from the theoretical point of view, is the stage of solving

a single linear system that corresponds to the Navier–Stokes equations. The history

of the tasks that are related to the most time-consuming operations after the sys-

tem’s creation can be analyzed by using the Mazurkiewicz trace model [12]. For this

purpose, we introduce the notation for the velocity part of the system:

• aij – operations that are related to i-th local iteration of Gauss-Seidel method

for j-th subdomain;

• Ai – beginning of i-th global Gauss-Seidel iteration;

and for the pressure part:

• bkij – operations that are related to i-th local iteration of Gauss-Seidel method

for j-th subdomain and level k;

• Bk
i – beginning of i-th global Gauss-Seidel iteration at level k.

The dependency relationships appear as follows:

• ∀i,j{aij, Ai}2
⋃
{Ai, ai+1j}2;

• ∀i,j,k{bkij , Bk
i }2

⋃
{Bk

i , b
k
i+1j}2

⋃
{Bk

i , b
k+1
ij }2 – for part of V-cycle going up;

• ∀i,j,k{bkij , Bk
i }2

⋃
{Bk

i , b
k
i+1j}2

⋃
{Bk

i , b
k−1
ij }2 – for part of V-cycle going down.

Using the developed framework, example histories can be derived:

• for the velocity, solve

a11a12...a1JA1a21a22...a2JA2....AI ;

• for the pressure, solve

b111b
1
12...b

1
1JB

1
1b

1
21b

1
22...b

1
2JB

1
2B

1
I b

2
11b

2
12...b

2
1JB

2
1b

2
21b

2
22...b

2
2JB

2
2B

2
I ...B

K
I .

Analyzing the trace, one can conclude that the full concurrency concerns only

the local iterations. This fact is fully exploited in the practical implementation of

the solver. The proportion of easily parallelized local iterations increases until the

sufficient reduction of the residuum is achieved.

Efficient simulations of large-scale convective heat transfer problems 529

The implementation of the solution procedure for the coupled problem is done by

using the finite element framework ModFEM [20], with the PETSC library [1] being

employed for the linear algebra operations during the solution of the system that is

related to the Navier–Stokes equations.
ModFEM is a general-purpose finite-element software framework with a modular

structure [2] that uses special problem-dependent modules to create codes for different

application domains [4]. In our setting, the generic ModFEM modules are used to

manage the computational grids (particularly to perform the domain decomposition

for the parallel execution) for both coupled problems. ModFEM also handles the

creation of the local element matrices and vectors according to the weak statements

of both problems and the solution of the linear system that is related to the heat

equation. For the Navier–Stokes equations, ModFEM passes the element system

matrices and load vectors to a special module that designed to solve the system that

is related to the Navier–Stokes equations.
The special module for the Navier–Stokes equations implements the precondi-

tioner that was described in the previous section. It is built around the matrix and

vector data structures provided by the PETSC library along with the basic matrix

and vector operations (including the sparse matrix-matrix product). The module as-

sembles the local element matrices and vectors to global matrices Dvv, Dvp, Dpv,

and Dpp as well as vectors b̄w and bq. During the solution procedure, the module

realizes the steps of the solver algorithm (with the parallel successive over-relaxation,

adapted to serve as the Gauss–Seidel smoother, being the only PETSC algorithm

utilized).
The main interface of the module allows for two main operations: the AMG-levels

creation (set-up phase), and the execution of a single V-cycle on the created levels’

structure. The exact form of each operation can be controlled by multiple parameters,

including the number of levels, the number of pre- and post-smoothing steps, and the

number of local and global iterations [16]. When tuning the solver, it is necessary

to maintain good proportions among the level’s set-up time, the number of iterations

for the convergence, and the single iteration time. For the algebraic multigrid, bet-

ter set-up will create denser matrices, thus the iteration time will increase but the

convergence, hopefully, will improve.
The subsequent steps of the whole parallel solution procedure are as follows.

First, the ModFEM code reads those files with mesh and (possibly) initial field data

and performs a decomposition of the computational domain into the overlapping

subdomains [27]. Then, the simulations follow the scheme of advancing in time,

performing non-linear iterations, and solving the two coupled systems of the linear

equations at each iteration. For each system and each subdomain, a part of the

system is created. Each subdomain that corresponds to a set of rows of the linear

systems is assigned to a single process that performs calculations for the subsequent

steps of the solution procedure (in a sequential or multi-threaded manner).

The internal ModFEM solver (which is employed to solve the system that is

related to the heat equation) uses GMRES with the hybrid block Gauss-Seidel/Jacobi

530 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

algorithm as a preconditioner [8]. The algorithm performs the in-parallel Gauss-Seidel

iterations within the subdomains, followed by the exchange of the values of the degrees

of freedom within the overlap between the subdomains (for the “ghost” nodes). Such

a hybrid algorithm (which is frequently used in parallel iterative solvers) results in

lower convergence rates than the Gauss-Seidel method at the global level; however, it

has a much lower cost and provides good scalability.

When solving the system that is related to the Navier–Stokes equations in par-

allel, the special solver module assembles the global system matrices so that each

process has a continuous range of rows for the subdomain’s internal degrees of free-

dom. The module performs the AMG level’s structure construction in parallel and

creates auxiliary matrices and vectors that are used in the developed preconditioner

algorithm.

After creating the data structures for the solution of the system of equations,

the control is handed back to the ModFEM module that runs the GMRES algorithm.

For each GMRES iteration, the preconditioned residual is computed for the solved

system, with the special Navier–Stokes module being used for performing the action

of the preconditioner. The same hybrid block Gauss-Seidel/Jacobi algorithm as seen

in the heat equation is used for the smoothing in the V-cycle, and the same pattern

of exchanging the values of the degrees of freedom for the “ghost” nodes is employed.

During the solution procedures for both systems of linear equations, the only com-

munication steps are required for the global vector operations (norm, scalar product)

and the exchange of data during the Gauss-Seidel/Jacobi iterations.

5. Numerical examples

5.1. Test problem

As the problem for testing the performance of the developed procedure, we chose

a well-known problem – the classical heat-driven cavity flow in its 3D version. The

computational domain consists of the unit cube that is discretized into prismatic

finite elements. For the heat problem, the left and right sides have different constant

temperatures (TL = 1 and TR = 2, respectively) that drive the fluid motion, while the

remaining sides are insulated (with zero heat flux). For the flow problem, all of the

sides have no flow (zero velocity) boundary conditions. The parameters are chosen in

such a way that the Rayleigh number of the problem is equal to 106 (belonging to the

laminar flow regime). Figures 1 and 2 present the velocity field of the final stationary

flow, while Figure 3 shows the temperature field. Figure 4 combines both fields by

using a contour plot of the temperature and arrows that correspond to the velocity

vectors.

In order to investigate the performance characteristics of the solution procedure,

we select a typical time step (one of internal steps during the convergence to the

steady state) and a single non-linear iteration.

Efficient simulations of large-scale convective heat transfer problems 531

Figure 1. Heat-driven cavity example – vertical cross-section with velocity magnitude field

Figure 2. Heat-driven cavity example – horizontal cross-section with velocity magnitude

field

532 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

Figure 3. Heat-driven cavity example – cross-section with temperature field

Figure 4. Heat-driven cavity example – cross-section showing contour plot of temperature

and arrows corresponding to velocity vectors

Efficient simulations of large-scale convective heat transfer problems 533

5.2. Performance comparison for single computational node

The first test was performed for a single computational node – a system with two

12-core Intel Xeon E5-2650v4 CPUs (2.2 GHz) and 256 GB DRAM running under

Centos7 Linux with the 4.4 kernel version.

We compare the performance of the developed solver with a direct solver in

the form of a highly tuned PARDISO algorithm from the Intel MKL library and the

internal ModFEM solver that uses the same GMRES procedure as with the developed

solver but with standard ILU preconditioners.

For a selected time step and non-linear iteration, we report the characteristics for

the solution of a single linear system for the Navier–Stokes equations, which always

takes more than 80% of the execution time (the rest being the creation of both

systems and the heat system solution – the same for all of the compared solvers).

The developed solver runs in MPI alone mode, with the other solvers running in

OpenMP only modes.

Table 1 presents the execution times that were obtained on a mesh with 409,101

nodes (1,636,404 degrees of freedom). The calculations were performed while using

up to 16 cores (threads/processes). The results for the ILU preconditioning of the

GMRES are reported only for the ILU(2) variant, since ILU(0) and ILU(1) had too-

slow convergence rates due to the strong ill-conditioning of the system.

Table 1
Heat-driven cavity problem – execution time (in seconds) for solving system of

linear equations (1,636,404 DOFs) on server using three solvers: direct PARDISO solver

from Intel MKL library, standard ModFEM GMRES solver with ILU(2) preconditioner,

and GMRES solver with developed block preconditioner based on AMG

Number of cores

Solver 1 2 4 8 16

PARDISO 38,241 19,142 10,428 6744 3881

GMRES+ILU(2) 2063 1713 1664 1726 1816

GMRES+AMG 530 272 226 254 414

It can be seen that the developed solver was much faster than both of the other

solvers. The direct solver had very long execution times (the 3D grid employed led

to high fill-in in the direct decomposition of the system matrix), but it scaled well

with increasing numbers of cores/threads. Both of the iterative solvers scaled poorly

above two cores. For the case of using the ILU(2) preconditioning, the reason is

algorithmic (and the situation cannot easily be improved). For the developed solver,

the algorithmic considerations indicated that a much better scalability can be reached;

hence, the reason for the low speed-up may lie in the hardware set-up (especially the

low memory throughput).

534 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

5.3. Scalability study

In order to show the true scalability of the developed solver (not limited by the shared

memory bandwidth), the tests were done in a cluster setting with a scalable memory

throughput. For this purpose, we employed a specified number of nodes from the

Prometheus system at the Cyfronet AGH Computing Center. Each node has two

12-core Intel Xeon E5-2680v3 CPUs (2.5 GHz) and 128 GB DRAM and also runs

under the Centos7 Linux version.

Figure 5 shows several performance metrics for the two problem sizes (the number

of DOFs equal to 1,636,404 and 12,328,132) and parallel runs on different numbers of

processors in the Prometheus cluster. The metrics include execution time, standard

parallel speed-up, and efficiency. Figure 6 presents the results for the weak scalabil-

ity study, where the execution times are compared for different runs with the same

number of DOFs per single subdomain. It can be seen that the solver scales well up

to 128 processes, with the efficiency of the parallelization above 60% for the larger

case with the 12,328,132 unknowns.

 0

 100

 200

 300

 400

 500

 600

 10 100

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Number of processors

Ndof=1,636,404
Ndof=12,328,132

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

S
p

e
e

d
−

u
p

Number of processors

Ndof=1,636,404
Ndof=12,328,132

a) b)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

E
ff

ic
ie

n
c
y
 o

f
p

a
ra

lle
liz

a
ti
o

n

Number of processors

Ndof=1,636,404
Ndof=12,328,132

c)

Figure 5. Heat-driven cavity problem – parallel performance metrics for two problem sizes

(Ndof equal to 1,636,404 and 12,328,132): execution time, speed-up, and parallel efficiency

for growing number of cluster processors: a) execution time; b) speed-up; c) efficiency

Efficient simulations of large-scale convective heat transfer problems 535

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Problem size [mln DOFs]

approx. 100 000 DOFs per subdomain
approx. 200 000 DOFs per subdomain
approx. 400 000 DOFs per subdomain

Figure 6. Heat-driven cavity problem – weak scalability results: execution time for three

different numbers of DOFs per single subdomain

6. Conclusions

We have presented an efficient solution procedure for simulating large-scale convective

heat transfer problems. The efficiency is achieved thanks to the proper selection of

algorithms and their parallel implementation, that both guarantee the scalability

of the computations. The key ingredient of the procedure is a special preconditioner

for linear systems that arise from the discretization of the Navier–Stokes equations.

The GMRES solver with the developed preconditioner achieves much shorter solution

times than the high-performance PARDISO solver from the Intel MKL library and

iterative solvers with ILU peconditioning.

In our future developments, we plan to introduce further algorithmic improve-

ments to the solver and to extend its implementation to hybrid CPU/GPU environ-

ments.

Acknowledgements

The work was realized as a part of the fundamental research that is financed by the

Ministry of Science and Higher Education, Grant No. 16.16.110.663.

References

[1] Balay S., Gropp W.D., McInnes L.C., Smith B.F.: Efficient Management of Paral-

lelism in Object-Oriented Numerical Software Libraries. In: E. Arge, A.M. Bru-

aset, H.P. Langtangen (eds.), Modern Software Tools in Scientific Computing,

pp. 163–202, Birkhäuser Press, 1997.

536 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

[2] Banaś K.: A Modular Design for Parallel Adaptive Finite Element Computational

Kernels. In: M. Bubak, G. van Albada, P. Sloot, J. Dongarra (eds.), Computa-

tional Science – ICCS 2004, 4th International Conference, Proceedings, Part II,

Lecture Notes in Computer Science, vol. 3037, pp. 155–162, Springer, 2004.

[3] Banaś K.: Scalability Analysis for a Multigrid Linear Equations Solver. In:

R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Wasniewski, (eds.), Parallel

Processing and Applied Mathematics, Proceedings of VIIth International Confer-

ence, PPAM 2007, Gdansk, Poland, 2007, Lecture Notes in Computer Science,

vol. 4967, pp. 1265–1274. Springer, 2008.

[4] Banaś K., Ch loń K., Cybu lka P., Michalik K., P laszewski P., Siwek A.: Adap-

tive Finite Element Modelling of Welding Processes. In: M. Bubak, J. Kitowski,

K. Wiatr (eds.), eScience on Distributed Computing Infrastructure – Achieve-

ments of PLGrid Plus Domain-Specific Services and Tools, Lecture Notes in

Computer Science, vol. 8500, pp. 391–406. Springer, 2014. doi: 10.1007/978-3-

319-10894-0 28.

[5] Banaś K., Demkowicz L.: Entropy Controlled Adaptive Finite Element Simula-

tions for Compressible Gas Flow, Journal of Computational Physics, vol. 126,

pp. 181–201, 1996.

[6] Brandt A.: Multi-Level Adaptive Solutions to Boundary-Value Problems, Math-

ematics of Computation, vol. 31(138), pp. 333–390, 1977. doi: 10.2307/2006422.

[7] Brooks A.N., Hughes T.J.R.: Streamline upwind/Petrov-Galerkin formulations

for convection dominated flows with the particular emphasis on the incompress-

ible Navier–Stokes equations, Computer Methods in Applied Mechanics and En-

gineering, vol. 32(1–3), pp. 199–259, 1982.

[8] Cai X., Sarkis M.: A Restricted Additive Schwarz Preconditioner for Gen-

eral Sparse Linear Systems, SIAM Journal on Scientific Computing, vol. 21,

pp. 792–797, 1999.

[9] Calo V.M., Collier N.O., Pardo D., Paszynski M.R.: Computational complexity

and memory usage for multi-frontal direct solvers used in p finite element analysis,

Procedia Computer Science, vol. 4, pp. 1854–1861, 2011.

[10] Chow E., Falgout R.D., Hu J.J., Tuminaro R.S., Yang U.M.: A Survey of Par-

allelization Techniques for Multigrid Solvers. In: M.A. Heroux, P. Raghavan

and H.D. Simon (eds.), Parallel Processing for Scientific Computing chap. 10,

pp. 179–201, SIAM, 2006. doi: 10.1137/1.9780898718133.ch10.

[11] Cyr E.C., Shadid J.N., Tuminaro R.S.: Stabilization and scalable block precon-

ditioning for the Navier–Stokes equations, Journal of Computational Physics,

vol. 231(2), pp. 345–363, 2012. doi: 10.1016/j.jcp.2011.09.001.

[12] Diekert V., Rozenberg G. (eds.): The Book of Traces, World Scientific, 1995.

doi: 10.1142/2563.

https://doi.org/10.1007/978-3-319-10894-0_28
https://doi.org/10.1007/978-3-319-10894-0_28
https://doi.org/10.2307/2006422
https://doi.org/10.1137/1.9780898718133.ch10
https://doi.org/10.1016/j.jcp.2011.09.001
https://doi.org/10.1142/2563

Efficient simulations of large-scale convective heat transfer problems 537

[13] Elman H., Howle V.E., Shadid J., Shuttleworth R., Tuminaro R.: A taxon-

omy and comparison of parallel block multi-level preconditioners for the incom-

pressible Navier–Stokes equations, Journal of Computational Physics, vol. 227(3),

pp. 1790–1808, 2008. doi: 10.1016/j.jcp.2007.09.026.

[14] Franca L.P., Frey S.L.: Stabilized finite element methods: II. The incompressible

Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineer-

ing, vol. 99(2–3), pp. 209–233, 1992. doi: 10.1016/0045-7825(92)90041-H.

[15] Franca L.P., Frey S.L., Hughes T.J.R.: Stabilized finite element methods: I. Ap-

plication to the advective-diffusive model, Computer Methods in Applied Me-

chanics and Engineering, vol. 95(2), pp. 253–276, 1992. doi: 10.1016/0045-

7825(92)90143-8

[16] Goik D., Banaś K.: A Block Preconditioner for Scalable Large Scale Fi-

nite Element Incompressible Flow Simulations. In: V.V. Krzhizhanovskaya,

G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira

(eds.), Computational Science – ICCS 2020. ICCS 2020, Lecture Notes in Com-

puter Science, vol. 12139, pp. 199–211. Springer, Cham, 2020. doi: : 10.1007/978-

3-030-50420-5 15.

[17] Henson van E., Yang U.M.: BoomerAMG : A parallel algebraic multigrid solver

and preconditioner, Applied Numerical Mathematics, vol. 41(1), pp. 155–177,

2002. doi: 10.1016/S0168-9274(01)00115-5.

[18] Jurczyk T., Glut B., Kitowski J.: An Empirical Comparison of Decomposition

Algorithms for Complex Finite Element Meshes. In: PPAM ’01: Proceedings of

the 4th International Conference on Parallel Processing and Applied Mathematics

– Revised Papers, pp. 493–501, Springer-Verlag, Berlin, Heidelberg, 2001.

[19] McCormick S.F. (ed.): Multigrid Methods. Frontiers in Applied Mathematics,

Society for Industrial and Applied Mathematics, Philadelphia, PA, 1987.

[20] Michalik K., Banaś K., P laszewski P., Cybu lka P.: Modular FEM frame-

work “ModFEM” for generic scientific parallel simulations, Computer Science,

vol. 14(3), pp. 513–528, 2013. doi: 10.7494/csci.2013.14.3.513.

[21] Paszyński M., Pardo D., Paszyńska A., Demkowicz L.F.: Out-of-core multi-

frontal solver for multi-physics hp adaptive problems, Procedia Computer Science,

vol. 4, pp. 1788–1797, 2011.

[22] Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Series on Computa-

tional Methods in Mechanics and Thermal Science, Hemisphere Publishing Cor-

poration, 1980.

[23] Rehman ur M., Vuik C., Segal G.: A comparison of preconditioners for incom-

pressible Navier–Stokes solvers, International Journal for Numerical Methods in

Fluids, vol. 57(12), pp. 1731–1751, 2008. doi: 10.1002/fld.1684.

[24] Saad Y.: Iterative methods for sparse linear systems, PWS Publishing,

Boston, 1996.

https://doi.org/10.1016/j.jcp.2007.09.026
https://doi.org/10.1016/0045-7825(92)90041-H
https://doi.org/10.1016/0045-7825(92)90143-8
https://doi.org/10.1016/0045-7825(92)90143-8
https://doi.org/:
https://doi.org/10.1007/978-3-030-50420-5_15
https://doi.org/10.1007/978-3-030-50420-5_15
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.7494/csci.2013.14.3.513
https://doi.org/10.1002/fld.1684

538 Damian Goik, Krzysztof Banaś, Jan Bielański, Kazimierz Ch loń

[25] Saad Y., Schultz M.H.: GMRES: A Generalized Minimal Residual Algorithm for

Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statisti-

cal Computing, vol. 7(3), pp. 856–869, 1986. doi: 10.1137/0907058.

[26] Schloegel K., Karypis G., Kumar V.: Graph partitioning for high performance

scientific simulations. In: J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy,

L. Torczon, A. White, (eds.), Sourcebook of Parallel Computing, Morgan Kauf-

mann Publishers Inc., San Francisco, 2002.

[27] Smith B., Bjorstad P., Gropp W.: Domain Decomposition. Parallel Multilevel

Methods for Elliptic Partial Differential Equation, Cambridge University Press,

Cambridge, 1996.

[28] Stüben K.: A review of algebraic multigrid, Journal of Computational and

Applied Mathematics, vol. 128(1–2), pp. 281–309, 2001. doi: 10.1016/S0377-

0427(00)00516-1.

[29] Volker J.: Finite Element Methods for Incompressible Flow Problems, Springer

Series in Computational Mathematics, vol. 51, Springer, Cham, 2016.

Affiliations

Damian Goik
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Krzysztof Banaś
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland,
pobanas@cyf-kr.edu.pl, ORCID ID: https://orcid.org/0000-0002-4045-1530

Jan Bielański
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland,
jbielan@agh.edu.pl, ORCID ID: https://orcid.org/0000-0001-5605-8875

Kazimierz Ch loń
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Received: 11.03.2021

Revised: 10.07.2021

Accepted: 06.09.2021

https://doi.org/10.1137/0907058
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1016/S0377-0427(00)00516-1
https://orcid.org/0000-0002-4045-1530
pobanas@cyf-kr.edu.pl
https://orcid.org/0000-0002-4045-1530
https://orcid.org/0000-0001-5605-8875
jbielan@agh.edu.pl
https://orcid.org/0000-0001-5605-8875

	Introduction
	Convective heat transfer problem and its discretization
	Systems of linear equations
	Parallel implementation
	Numerical examples
	Test problem
	Performance comparison for single computational node
	Scalability study

	Conclusions

