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IMPROVING
MODIFIED POLICY ITERATION
FOR PROBABILISTIC MODEL CHECKING

Along with their modified versions, value iteration and policy iteration are
well-known algorithms for the probabilistic model checking of Markov decision
processes. One challenge with these methods is that they are time-consuming
in most cases. Several techniques have been proposed to improve the perfor-
mance of iterative methods for probabilistic model checking; however, the run-
ning times of these techniques depend on the graphical structure of the utilized
model. In some cases, their performance can be worse than the performance
of standard methods. In this paper, we propose two new heuristics for acceler-
ating the modified policy iteration method. We first define a criterion for the
usefulness of the computations of each iteration of this method. The first con-
tribution of our work is to develop and use a criterion to reduce the number of
iterations in modified policy iteration. As the second contribution, we propose
a new approach for identifying useless updates in each iteration. This method
reduces the running time of the computations by avoiding the useless updates of
states. The proposed heuristics have been implemented in the PRISM model
checker and applied on several standard case studies. We compare the run-
ning time of our heuristics with the running times of previous standard and
improved methods. Our experimental results show that our techniques yields
a significant speed-up.
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1. Introduction

Model checking is an automated formal verification approach that is used to verify
computer systems. In this approach, labeled transition systems are usually used to
model systems, and temporal logics are used to specify a system’s properties. Some
computer systems have stochastic behaviors; therefore, probabilistic model checking
should be used to analyze their quantitative properties. In this domain, Markov de-
cision processes (MDPs) are used to model both probabilistic and non-deterministic
behaviors [3]. Probabilistic computation tree logic (PCTL) is used to specify a wide
range of system properties [3,4]. A main class of PCTL properties is optimal (maxi-
mum or minimum) reachability probabilities [9,12]. In most cases, numerical compu-
tations are used to calculate these probabilities. Value iteration and policy iteration
are widely used for approximating optimal reachability probabilities [3,9,19].

Several model checker tools have been proposed over the last 20 years to per-
form probabilistic model checking. PRISM [6] and STORM |[7] are well-known tools
that are used to analyze systems with probabilistic behaviors. A wide range of ex-
amples from practical and academical works are available from the PRISM website
(http://www.prismmodelchecker.org/).

Excessive time or space requirements usually limit the efficiency or feasibility
of model checking in all variants. The main reason for this limitation is the state-
space explosion problem [3,4,9,12]. In addition, numerical computations are time-
consuming in the case of probabilistic model checking [6,9]. Several approaches have
been proposed to tackle this problem; however, the performance of the proposed
methods depends on the graphical structure of the underlying model. In some cases,

the running time of these methods is more than the running times of standard iterative
methods [5,6,16,17].

1.1. Referred problems in work

The overall problem that is addressed in this paper is to accelerate the modified
policy iteration (MPI) [19] for probabilistic model checking. In this method, the
value updates of some iterations are useless and time-consuming. In this case, some
states of the model can be used for a limited number of iterations but are useless in
other iterations. A solution to this problem is to pick (and, if necessary, modify) an
existing formalism or introduce a new one with the following specific characteristics:

1. Must have precise and sound syntax and semantics.

2. Must be compatible with previous work.

3. Must reduce total number of iterations while preserving accuracy of solutions.

4. Must avoid unnecessary updates.

5. Must be able to be used in parallel computing machines.

Our solution to this problem (stated clearly as our claim in Section 1.3) satisfies
Items 1-4; this sets the stage for future work on the next item.
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1.2. Motivation and historical perspective of problem

Several approaches have been proposed over the past 15 years to tackle the state-
space explosion problem for probabilistic model checking. Symbolic model check-
ing [13,18], compositional verification [8], statistical model checking [2,11], symmetry
reduction [14], and incremental model construction [21] are the main parts of these ap-
proaches that reduce the memory that is needed to store the information of the model.
Several other reduction techniques have been proposed to reduce the running time
of probabilistic model checking. SCC-based approaches [1,16] identify any strongly
connected components (SCCs) of an underlying model and compute the reachability
values of the states of each component in the correct order. A learning-based algo-
rithm was proposed in [6] to solve the reachability probability problems of MDPs.
An extrapolation technique was proposed in [20] to approximate the optimal policies.
A deep-learning method was developed in [10] to predict the optimal policies for large
MDP models. Interval iteration was proposed in [5] for computing PCTL properties
with the desired accuracy. The main challenge of the standard and improved iterative
methods is that they perform some redundant updates in their computations [6, 16].

1.3. Claim

In this paper, we focus on maximal reachability probabilities. We claim that a solution
that satisfies Items 1-4 of Sect. 1.1 is possible by doing the following work.
1. We propose a heuristic to determine the number of iterations after each policy
improvement. This can reduce the total number of iterations of the MPI method
while preserving the accuracy of the solutions.

2. We develop an approach for detecting useless updates in order to avoid them
in most iterations. Using this approach for MPI, we can reduce the number of
useful states after each policy modification and improve the performance of this
iterative method. Although this technique does not reduce the whole number of
states, its main advantage is to avoid the useless updates of the states.

1.4. Paper structure

After the introduction in this section, we will review some related definitions and stan-
dard iterative methods for computing reachability probabilities of MDPs in Section 2.
In Section 3, we describe our techniques for accelerating MPI. Section 4 presents our
experimental results. Finally, Section 5 concludes the paper.

2. Background

In this section, we provide an overview of MDPs and standard algorithms for com-
puting optimal reachability probabilities. We mainly follow the notations of [4,9]. We
use Dist(S) as the set of all discrete probability distributions over a finite set S; i.e.,
the set of all p: S —[0, 1] functions for which Y .gp(s) = 1.
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Definition 1 (Markov Decision Process) A Markov decision process (MDP) is
a tuple M = (S, sg, Act,d) where S is a finite set of states, sp € S is an initial state,
Act is a finite set of actions, and ¢ : S x Act - Dist(S) is a probabilistic transition
function. The probability of a transition from s to s’ by action a € Act(s) is shown
by §(s,a)(s"). The size of M (which is shown by |M|) is defined as the number of
states of M plus the number of its transitions. For each s € S state of an MDP
M, one or more actions of Act are defined as enabled actions. We define this set as
Act(s) ={a € Act|d(s,a) is defined}. For each s € S and a € Act(s), we use Post(s,a)
for the set of a successors of s [9]:

Post(s,a) ={s" €S| (s,a)(s") >0}.

A discrete-time Markov chain (DTMC) is an MDP for which each state has exactly
one enabled action [3]. A path in M is a non-empty (finite or infinite) sequence
=50 25 2 ... where s; €S and a; € Act(s;) and s;41 € Post(s;,a;) for each i > 0.
We use Paths to denote the set of all infinite paths of M that start in state s. We
also use (i) to denote the (i+1)-th state in path 7 (i.e., 7(i) = s;). For reasoning
about the probabilistic behavior of an MDP M, we use the notion of adversary (also
called policy). In this paper, we use only deterministic and memory-less adversaries
that are sufficient for computing reachability probabilities [3,9].

Definition 2 (Deterministic Adversary) A deterministic adversary of an MDP
M is defined as a o : FPaths — Act function where, for each finite path 7 = sq X s1 4
.. "5' s, selects an enabled action a; € Act(s;). An adversary o is called memory-less
if it depends only on the last state of the path. We use Adv,s for the set of all deter-
ministic adversaries of M.

Definition 3 (Quotient DTMC) The quotient DTMC for an MDP M =
(S, s0, Act,d) and a deterministic finite-memory adversary o is the finite state DTMC
M? = (S, s0,P) where S and sy are the same as in M, and P : S xS - [0,1] is
a transition probability matrix that is defined as P(s,s") = §(s,0(s))(s") [9]. We
use Path? for the set of all (infinite) paths of the quotient DTMC M? that start in
a state s.

2.1. Reachability probabilities

Temporal logics (such as PCTL [9,12] and probabilistic LTL [4]) are commonly used
for specifying those properties that should be verified against MDPs. A main class of
PCTL properties is the set of extremal reachability probabilities; i.e., the maximal or
minimal probability of reaching a state in some final set F' € S when starting in s:

P (F) = infoeadonps (F), P (F) = supgeaau, b3 (F),

where p?(F) = Prob?({m € Path?|3i.7(i) € F'}). Probability space Prob? is defined
over Path?. More details about the definition of this probability space can be found
in [2, 4, 8]. The reachability probabilities are calculated in two steps. The first step
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(which is called pre-computation) uses a graph-based analysis to partition state space
S into three sets: SY = {s € S|P™**(F) = 1},S" = {s € S|P™*®(F) = 0} and S’ =
S/(SYuS™). The second step (quantitative analysis) uses numerical computations to
determine the reachability values of the states in S”.

2.2. Quantitative reachability

The reachability probabilities can be defined as the solutions to the Bellman equations.
If we define x, = P"**(F) for every state s € S, then the maximum reachability
probabilities are the least solution of the Bellman equations:

Ts=1 if seSY
z,=0 if seS”
Ts = MAT e Act(s) Z 0(s,a).xy Otherwise
s'eS
Numerical computations can solve these equations [4,9,16]. Most probabilistic model
checkers (such as PRISM [15] and STORM [7]) use iterative methods such as value
and policy iteration to solve these equations. We review the idea of policy iteration

and its modified version. More details about value iteration and policy iteration and
their convergence criteria are available in [9,17,19].

2.3. Policy iteration

The idea of policy iteration is to generate a sequence of memory-less adversaries and
construct the quotient DTMC of each adversary. The method uses standard numerical
methods such as Gauss-Seidel (GS) [9] to compute the reachability probabilities of
the states in the corresponding DTMCs. After satisfying the stopping criterion for
the computation of any quotient DTMC, the method improves the adversary and
continues the computations in another cycle of the iteration. This terminates when
it reaches a situation where there is no further change in the computed adversary [9].

2.4. Modified policy iteration

The idea of MPI [19] is to update each adversary after a fixed number of iterations (100
iterations, for example). Figure 1 describes the algorithm of this method; it initiates
the values of x4 in Line 2. A cycle of policy iteration starts in Line 5 and continues
through Line 18; it applies a limited number of iterations (shown by max _iters)
of the Gauss-Seidel method for the related quotient DTMC (Lines 6-14) to update
the values of the states of S7. The policy iterations continue until satisfying both
convergence criteria: having the same two subsequent adversaries, and the maximum
difference of two consecutive values of the states becomes less than the threshold e.

3. Our improvements for modified policy iteration

In this section, we propose two heuristics for accelerating MPI.
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Algorithm 1 Modified Policy Iteration for PMe*(F).

input: an MDP M = (S, s, Act,d), a target set F € S, stopping threshold € and
max _iters.
output: Approximation of P™*®(F) for all s € S”
1: for all se S do
1, ifseSY

2: Tg <
0, otherwise
3: end for
4: Select arbitrary adversary o.
5: do
6: for i = 1 to max_iters do
7 diif « 0;
8: for all s¢ S’ do
9: Tnew < Zs’es 5(87 U(S))(S,) X Tgry
10: dif f < max(dif f,(Tnew — Ts)/Ts);
11: Ts < Tnew;
12: end for
13: if diff <€ then
14: break;
15: end if

16: end for

17: for all se S do

18: 0'(5) < argmaZaeAct(s) Zs’eS 5(87 a’)(sl) X Tt
19: end for

20: while o has changed or diff > ¢ ;

3.1. Reducing iterations of modified policy iteration

One challenge with MPI is that it is not easy to find a good fixed value for the
max_iters parameter. In some cases, non-suitable values for this parameter degrade
the performance of the method. We use a dynamic approach for determining the
number of iterations for each quotient DTMC. For each adversary o, we consider
the total difference of the values between two subsequent iterations as a criterion
for the convergence of the computations of the quotient DTMC. The benefit of this
criterion is that it is not limited to the maximal difference of the values (which is
the case in a standard policy iteration method). For each state s € S” and each
adversary o, we use x7'" for the value of s at the i-th iteration after selecting o.
Specially, #7°° is the value of s when the method computes o. We define AJ? =

S . .
%% — 221 and for set S”, we define Agﬁ =Y .es? A7 as the total difference of the

S S
values at iteration i. We consider A%/ A7 as a criterion of the efficiency of adversary o
after the i-th iteration as compared to the first one: if A;’;/A‘; . is greater than 0.1,
most updates are valuable, and the iterative method should continue with . On the
other hand, if A%/ /a7 is less than 0.1, the method should improve the adversary.

This criterion should be considered in Line 13 of Algorithm 1. For each s; € S7,
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the method should initialize the value of Agf before Line 8 and update it after the
computation of e, in Line 9. In this heuristic, we consider 0.1 as the threshold for
the efficiency of the iterations of a selected adversary o.

3.2. Avoiding useless updates of each iteration

Depending on the structure of the model, the reachability probability of some states
may not change in some iterations of numerical iterative methods. We use a graph-
based technique to identify useless updates in MPI. One can use the idea of an SCC-
reduction technique for DTMCs [1] to accelerate the iterative computations. This
approach decomposes each quotient DTMC into its SCCs and selects them according
to their topological order; it then applies iterative methods to update the values
of the states of each SCC. However, the overhead of the SCC decomposition for
a series of DTMCs is high and affects the overall running time of the iterative method.
Alternatively, we develop a heuristic that finds the set of states for each quotient
DTMC M? that do not belong to any non-trivial SCC (and their values do not affect
the value of any SCCs). Formally, we define In_trans[s] as the number of useful
incoming transitions of M7 to s for each state s € S. We call a transition wuseful
if it belongs to an SCC or is between two SCCs. Useful transitions should be used
in iterative computations; on the other hand, useless transitions cannot affect the
value of any state in some SCCs. A useless transition can be used once at most:
after the termination of the iterative computations for M?. For any state s € S,
if In_trans[s] is zero, then the value of s does not affect the value of any other
state in M7, and its outgoing transitions are useless. The algorithm can give up the
updates of those states with In_trans[s] = 0 in their iterations. Instead, it updates
these states after termination and before the update of the adversary. Initially, we
consider all transitions of M7 as useful and set In_trans[s] as the number of incoming
transitions to s. Next, for each s € S with In_trans[s] = 0, we consider its outgoing
transitions as useless and disregard them in the computation of In_trans[s] of the
other states s € S. Ignoring these states and their outgoing transitions, we may have
In_trans[s'] = 0 for some other states s’ € S. The computations continue until
no other useless transition can be found. We define Sy, trans = 0 for the set of
states s € S7 for which Ingrans[s] = 0 and Sr, transso for the set of states where
In_trans[s]>0. -

Figure 1 shows a quotient DTMC that has two SCCs: five states before the
first SCC, and one state between SCC; and SCC,. We have In_trans[sl] =
In_trans[s2] = 0. Avoiding these two states and their outgoing transitions from the
iterative computations, we have In_trans[s3] = In_trans[s4] = 0 (again avoiding s3
and s4 and their outgoing transition results in In_trans[s5] = 0). For the other states,
the In_trans values are greater than zero. As aresult, St trans=0 = {1, $2, $3, 4, S5 }
and MPI can ignore the update of the value of these five states. Instead, it should up-
date their values according to their topological order after terminating the iterations.
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Figure 1. Quotient DTMC with 11 states and 2 SCCs (SCCh = ss, s7, and SCC3 = sg, 510)

The set of useless transitions of Figure 1 is {(s1,s3), (s2,54), (83,55), (54, $5),
(s5,86)}- Note that we consider a transition to be useless if it cannot affect the value
of any states of some SCCs. Figure 3 shows the details of our graph-based approach
for improving MPL. It first computes the In_trans[s] value of each state s € S* and
adds those states s for which In_trans[s] =0 to @ (Lines 6-15). Then, it adds the
state to the stack U for each state s in ). For each state s that is removed from @
(Line 17), we have In_trans[s] = 0, and we are sure that it does not belong to any
SCC of M?. Because the values of any of these states do not affect the values of the
states of any SCC, the algorithm disregards them in the iterative computations. In
addition, the algorithm should not consider the outgoing transitions of these states for
computing the In_trans value of the other states. To do so, the algorithm updates
the I'n_trans[s'] value of any state s’ € Post(s,o(s)) for each state s that is removed
from @ (Line 20). It next adds such s’ states to @ if the In_trans[so] value is zero,
which means that s’ is not in any SCC. After this adversary-based pre-computation,
the algorithm performs the iterative computations for the rest of the states that are
not in U (Lines 26-36). Finally, the algorithm updates the values of the states that
are in stack U (Lines 37—41). In this case, the algorithm pops states from U and
updates their values. The correctness of Algorithm 2 is shown below.

Lemma 1. For each adversary o and for each state s € S;p, ¢rans<o, Algorithm 1 and
Algorithm 2 approximate the same value for zy if they perform the same number of
iterations in their inner loop (100 iterations, for example) and start from the same
vector of values Z.

Proof: Note that the values of the states in Sr, ¢rans>0 do not depend on the values
of the states in Sy, trans=0- For each state s € S, trans=0, Algorithm 2 pops the
state from U in the correct order and updates its value according to the value of
the states that have been previously updated: for each state s’ € Post(s,o(s)) either
s" € St transs0, or the algorithm has popped s’ from U before popping s. In both
cases, the value of 74 was updated. For each s’ € St,, ¢rans=0, the value of z, depends
(directly or indirectly) on the value of some states of seS In_trans>0-

Algorithm 2 uses the values of s’ € S7,, trans>0 from the last iteration to update
the values of the states in St trans=0. As each x value never decreases in the iterative
methods [4], the values from the last iteration are the best values for updating the
value of the states in S, trans-0. Algorithm 2 uses the optimal topological order [8]
for updating the values of the states in S In_trans=0-
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Algorithm 2 Graph-based improved modified policy iteration for PMae(F).

N =

26:

input: MDP M = (S, s0, Act, d) , target set F' € S, stopping threshold € and maz__iters.
output: Approximation of P**(F) for all s € S”
: for all se S do
1, ifseSY
Ts «
0, otherwise
end for
: Select arbitrary adversary o.
do
U < ¢; // Set stack U as empty.
for all s; € S do
In_trans[s;] < 0;
end for

for all transition (s,o(s),s’,p) do
if se S’ then
In_trans[s'] < In_trans[s'] - 1;
end if
end for

Q < {s€ S%|In_trans[s] = 0};
while @ is not empty do

Remove state s from Q;

Push (U, s);

for all s’ € Post(s,0(s))n S’ do

In_trans[s'] < In_trans[s'] - 1;
if In_trans[s’] =0 then
Add s’ to Q;
end if
end for

end while
for i = 1 to max_iters do
diif < 0;
for all s’ € S where s is not in U do
Bnew « Tares 0(5,0(5))(8") x 13
dif f < max(diff, (-’Enew - xs)/ws);
Ts < Tnew;
end for
if diff < e then
break;
end if
end for
while U is not empty do
s < top(U);
Bs e T es 8(5,0(5))(5') x 2o
Pop(U);
end while
for all se S do
U(S) < argmarae Act(s) Ysres 6(8701)(5,) X Tgls
end for
: while o has changed or diff > ¢;
: return (s ) ses;
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As a result, the value of x4 after performing max iters iterations of Algo-
rithm 2 is greater than or equal to the case of performing max iters iterations of
Algorithm 1 for each s € S7 (if both algorithms use the same adversary o) m

In general, the inner loop of Algorithm 1 may perform more iterations than the
inner loop of Algorithm 2 for a fixed adversary o and a fixed vector of values Z.
Algorithm 1 considers all of the states of S7. Some states that are pushed to U and
disregarded in Algorithm 2 may postpone the satisfaction of the convergence criterion
of Algorithm 1. This can increase the precision of the computations of Algorithm 1
as compared to Algorithm 2. In practice, the precision of the computed values of
Algorithm 2 is usually more than that of the computed values of Algorithm 1. The
running time of the adversary-based pre-computation (Lines 6-25 of Algorithm 2) is
linear at a size of M, and its overhead is negligible when compared to 100 iterations
of Gauss-Seidel for the quotient DTMCs (Lines 6-16 of Algorithm 1). Note that one
can use our heuristics with the SCC-based method of [9]. In this case, the MDP will
be decomposed into its SCCs, and our heuristics for MPI can be used to compute the
reachability probabilities of the states of each SCC.

4. Experimental results

We used several case studies to compare the performances of the standard iterative
methods with our proposed heuristics. These case studies were selected from the
PRISM benchmark suite and have been used in previous works [5-7,11,16,17]. In
addition, we generated several artificial case studies in order to compare the per-
formances of our methods with the previous ones. To the best of our knowledge,
PRISM is the only tool that supports MPI for probabilistic model checking. We
used maz_iters = 100 as the default value, as it is used in the explicit engine of
PRISM. Table 1 describes the models by including their names, parameters, total
numbers of states, numbers of states in |S”|, total numbers of actions, and numbers
of transitions. We also present the running times and the numbers of iterations for
the Gauss-Seidel value iteration (GS), MPI with max iters = 100, and MPI with
our proposed dynamic method (D-MPI). All of the times are given in seconds. We
excluded the running time of the pre-computations, as these are negligible in good
implementations [6]. The best running times are indicated in bold. For the Consen-
sus and csma case studies, we used symmetric reduction method [14] to reduce the
numbers of the states of the models. The running times for constructing the mod-
els and the running times of the pre-computations for detecting the S¥ and S™ sets
are proposed in Table 2. PRISM uses BDD-based methods to construct models and
perform pre-computations [16]. These approaches are relatively time-consuming;
however, more efficient approaches are proposed in [6,7,21] that can reduce these
running times by several orders of magnitude. We implemented our heuristics for
MPT in PRISM and used its sparse engine for our implementations (which was de-
veloped in C++). We used a machine with 2.8 GHz Core i7 processor and 8GB
of RAM for running our case studies. Our implementation is available at GitHub
(https://github.com/mohagheghivru/PRISM ImprovingPI).
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Table 1
Information on case studies (K = 10%)

Model Parameters Is| |S?\ | Act] [Trans| Running time Iterations
name GS | MPI | D-MPI GS MPI | D-MPI
N=6,K=15 274.5K 186K 1.1M 1.3M 293 175 174 75K 87K 87K
N=6, K=30 554.5K | 372K 2.2M 2.7M 1372 | 743 730 151K | 175K 175K
cons N=6,K=45 814.5K | 558K 3.2M 4.1M 5137 | 3405 | 3387 | 465K | 582K | 581K
N=8 K=5 399.5K | 225K 2.1M 2.6M 127 59 58 18K 20K 20K
N=8, K=10 778.3K | 450.5K | 4.15M 5.2M 579 307 304 42K 45K 45K
N=8, K=15 1.157K | 676K 6.2M 7.7T™M 2238 | 1189 1186 121K | 143K 143K
csma N=3,K=6 14.2M 3.9M 14.2M | 24.7M | 15.1 | 35.8 21.7 112 357 154
N=4,K=4 5.87TM 5.2M 598M | 114M | 7.15 | 17.3 7.73 126 291 135
N =5, ttm = 1500 3.6M 36.2K 6.3M 7.6M 0.83 | 2.37 0.78 102 342 136
wlan N =5, ttm = 5000 9.1M 150K 17.4M | 18.8M 2.3 6.74 1.97 104 347 139
N =6, ttm = 1000 8.1M 57K 12.5M | 17.7M BT | 227 .64 51 225 101
N =6, ttm = 2500 12.8M 36.9K | 21.9M 27TM 1.35 | 5.44 1.57 53 228 106
wlan_ ttm = 500, col =5 6.5M 24.4K 9.4M 14.5M | 2.35 5.9 2.11 182 475 218

collide ttm = 1250, col =6 8.8M 65.6K | 14.1M | 19.2M 5.95 12 5.23 324 778 359
ttm = 3000, col =6 14.3M 127K 25M 30.2M 10.1 | 20.7 8.6 327 782 362
dl =36, ddl =800 530K 198K 803K 954K 2.96 | 1.08 1.07 614 615 615
dl =36, ddI = 2500 1.8M 994K 2.8M 3.35M 315 | 16.5 16.4 2326 | 2327 2318
firewire | dl= 108, ddl= 1500 1.6M 903K 3.1M 4M 14.4 8.8 8.6 1330 | 1331 1322
(abst) dl =108, ddl= 2500 2.7TM 1.7M 5.4M 6.9M 63.6 | 28.9 28.7 2339 | 2332 2320
dl =108, ddl = 5000 5.6M 3.7TM 10.9M | 14.1M 246 125 126 4834 | 4835 4819
dl =165, ddl= 5000 6.9M 4.9M 14.7M | 19.5M 342 159 158 4863 | 4864 4832

K=14, N=20 4.4M 3.1M 8.2M 10M 14.7 | 26.7 6.2 194 1142 230

K =14, N=2000 4,4M 3.1M 8.2M 10M 204 | 49.8 12.6 320 1591 490

K=16, N=20 5M 3.6M 9.2M 11.3M 16.3 | 31.4 8.1 199 1187 261

zero- K =16, N=2000 5M 3.6M 9.2M 11.3M 19 50.9 12.6 326 1644 510
conf K=18, N=20 5.5M 4.1M 10.1M | 12.4M 23.5 | 38.1 10.6 207 1270 295

K =18, N=2000 5.5M 4.1M 10.1M | 12.4M 30.7 52 15.9 332 1702 515

As compared to GS, MPI increased the number of iterations because it may have
used some non-optimal policies. On the other hand, the average number of compu-
tations per state was reduced in MPI. As presented in Table 1, MPI outperformed
GS for most of the cases, and GS outperformed all of the others. An interesting
result of our experiments is that, for the csma,wlan,wlan _col and zeroconf case
studies, we had a considerable improvement in the running times of MPI when we
used our dynamic method for the numbers of iterations of each quotient DTMC. For
these classes of case studies, MPI had a late convergence to the optimal policy, which
increased the overall running time of this method as compared to the GS method. For
these cases, our dynamic approach for computing the number of iterations for each
policy reduced the overall number of iterations and, as a result, proposed a consider-
able improvement in the iterative computations. On the other side, MPI had a fast
convergence to the optimal policies for the cons and firewire models, and because
of their average numbers of actions per state, MPI was much faster than GS for these
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classes of models. We compared the running time of our improved method for MPI
(Algorithm 2) and the running times of prominent previous works; these results can be
found in Table 3. We considered a learning-based method from [6] and an SCC-based
method from [16]. For the computing reachability probabilities of the states of each
SCC, we used MPI with max__iters = 100.

Table 2
Running times of pre-computation, model construction, and MPI with different max_iters

Model Const- sm SY MPI MPI MPI Non-optimal
name ruction mazx_iters | max_iters | max_iters Actions
=20 = 50 = 500

consensus(6,15) 0.5 2.1 471.5 192.2 180.2 170.5 3.50%
consensus(6,30) 1.1 2.4 1258 852 797 721 3.62%
consensus(6,45) 14 4.9 | 2383.3 3620 3422 3368 3.80%
consensus(8,5) 0.7 3.58 1953 65.8 63.2 56.9 3.20%
consensus(8,10) 1.1 6.3 2878 348 323 297 3.42%
consensus(8,15) 1.7 9.4 4312 1227 1213 1172 3.60%
csmal(3,6) 116 225 7634 35.5 31.7 45.3 1.10%
csma(4,4) 73 154 1333 17.5 15.5 20.3 1.20%
wlan(5,1500) 127 32.43 | 92.43 2.21 1.97 2.45 9.40%
wlan(5,5000) 997 128 274 5.8 5.41 6.85 9.21%
wlan(6,1000) 178.6 72.6 | 223.6 5.18 4.78 5.58 11.50%
wlan(6,2500) 690 149 353 4.89 5.44 5.62 10.71%
wlan7c01(500) 145 45.7 | 123.6 5.49 5.15 6.44 9.70%
wlan_ col(1250) 192 77.9 352.7 11.74 10.31 14.12 9.40%
wlan_ col(3000) 280 112 471 11.74 10.31 14.12 9.40%
firewire(36,800) 3.9 9 1.5 1.1 1.08 1.06 38.3%

firewire(36,2500) 31.7 1.6 2.1 17.3 16.8 16.3 38%
firewire(108,1500) 11.7 1.5 1.2 8.98 8.84 8.4 37.7%
firewire(108,2500) 31.2 1.5 1.8 29.5 29.1 28.6 38.5%
firewire(108,5000) 125 1.6 3.2 131 128 122 38.1%

firewire(165,5000) 132 2.3 3.4 170 164 155 38%
zeroconf(14,20) 175 7.5 154 19.64 23.93 33.74 33.70%
zeroconf(14,2000) 263 9.9 175.8 35.31 42.72 61.82 35.20%
zeroconf(14,20) 261 9.8 175.3 30.74 34.19 44.56 41.20%
zeroconf(18,2000) 321 11.3 | 194.3 37.3 42.5 57.72 43.60%

Table 3 lists the running times and some related information on the iterative
methods. We recalled the running time of the best iterative method from Table 1.
For the SCC-based method, the running times include the times for SCC decompo-
sition and the running times of the iterative methods for computing the reachability
probabilities. For our improved method (called improved MPI in Table 3), we consid-
ered two alternatives. First, we present the running time of Algorithm 2 for MPI in the
max_iters = 100 column. Next, we consider Algorithm 2 with a dynamic approach
for the number of iterations for each quotient DTMC and propose the running time in
the ‘D-MPT’ column. For the Consensus models, we also used the SCC-decomposition
approach and applied our improved method for computing the reachability probabil-
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ities of each SCC. In the last column, we show the average number of useful states
per the states in S°.

Table 3
Running times of proposed improved methods
Model Best Learning- SCC- Improved MPI
name Standard -based -based | max_iters DoMPI | wsefutstates
Method Method | Method =100 1S71
consensus(6,15) 174.7 579.2 57.16 22.4 22.3 22.60%
consensus(6,30) 730 1952 255 107 106 21.17%
consensus(6,45) 3405 7842 1149 524.4 522.7 19.40%
consensus(8,5) 59.5 212.9 17.7 7.81 7.78 23.70%
consensus(8,10) 304 926 121 53 51 22.69%
consensus(8,15) 1189 4370 327.7 142.5 141.8 21.50%
csma (3,6) 15.12 27.91 14.1 0.72 0.72 <1%
csma (4,4) 7.15 18.34 39.4 0.46 0.46 <1%
wlan(5,1500) 0.83 0.23 1.54 0.13 0.11 <1%
wlan(5,5000) 2.3 0.35 3.11 0.3 0.28 <1%
wlan(6, 1000) 57 0.28 4.42 <0.1 <0.1 <1%
wlan(6, 2500) 1.35 0.46 7.19 <0.1 <0.1 <1%
wlan__Col(500) 2.35 0.52 3.25 0.23 0.19 <1%
wlan_ Col(1250) 5.95 0.67 4.52 0.32 0.27 <1%
wlan_ Col(3000) 10.1 0.79 6.7 0.4 0.37 <1%
firewire(36,800) 2.96 2.78 .25 <.1 <.1 <1%
firewire(36,2500) 31.5 2.78 .46 0.16 0.15 <1%
firewire(108,1500) 14.4 2.78 .35 0.15 0.15 <1%
firewire(108,2500) 63.6 2.78 .48 0.28 0.27 <1%
firewire(108,5000) 246 2.78 .84 0.85 0.84 <1%
firewire(165,5000) 342 2.78 .85 0.98 0.96 <1%
zeroconf(14,20) 14.67 4.57 31.7 8 6.1 1.93%
zeroconf(14,2000) 20.43 37.24 43.9 8.71 6.7 1.83%
zeroconf(16,20) 16.3 7.53 42.1 9.1 7.4 1.59%
zeroconf(16,2000) 19 38.1 55.7 9.43 7.8 1.54%
zeroconf(18,20) 23.53 11.92 52.2 11.63 9.07 1.37%
zeroconf(18,2000) 30.66 37.9 67.5 11.67 8.95 1.39%

In general, the running time of each method depends on the structures of the
models. Each iterative method performs several updates on the value of each state
in S7. As a result, the number of states in S” affects the performance of each method.
In addition, the number of actions for each state and the number of outgoing transi-
tions are important in the computations. For example, GS considers all of the actions
of each state to update its value, while MPI considers the best action in most itera-
tions. According to Table 1, the average number of actions per state is close to one
for the csma models. As a result, the difference between GS and MPI is negligible for
this case. On the other hand, each state had more than three actions on average
for the consensus models, which affected the running times of GS. In addition, the
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graphical structure of a model can affect the performance of the iterative methods.
Our second proposed method uses the information of each quotient DTMC to avoid
useless updates.

For all of the samples, our improved method outperformed all of the standard
iterative methods. The last column of Table 3 shows that our method identified
a large portion of the states of each quotient DTMC as useless states. In this case,
a few numbers of states should have been updated in each iteration, which improved
the performance of MPI. The SCC-based method was more useful for the consensus
samples. The overhead of the SCC decomposition was high for the other cases, and
their overall running times were more than the running times of our improved method.
Our experiments showed that the learning-based method was more useful for wlan
and some of the zeroconf samples, but it was not promising for the other ones. To
compare the first proposed method with MPI, we also considered the running time of
MPI for three other values of the maz _iters; these results are reported in Columns
5-7 of Table 2. The eighth column of Table 2 shows the average number of non-
optimal actions per state during the policy modifications when we applied MPI with
maz_iters = 100. To compute this value, we considered the optimal policy (after
convergence) and repeated the experiments again to compare the computed policies
with the optimal one. According to these results, the performance of MPI was slightly
better for the Consensus models when we considered higher values for the max _iters.
For this class of models, the method converged to the optimal policy after a few policy
modifications, and MPI did not need to consider the non-optimal actions in the other
iterations. On the other hand, the method showed the slow convergence to an optimal
policy for the zerocon f models, and a large number of computations were useless due
to the non-optimal policies. In this case, the lower values for the max_iters caused
a faster convergence to the optimal policy. In general, it is not easy to determine
a good value for the maz_iters. We considered A(;%i/A‘;*?l to be a criterion in our
first method to determine the usefulness of each policy. We considered 0.1 to be the
threshold to decide on improving the policies. To study the impact of this threshold
on the performance of the proposed method, we considered different values for this
parameter.
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Figure 2. Impact of various thresholds on performance of D-MPI
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Figure 2 proposes the running time of D-MPI with different values of this thresh-
old. In most cases, values between 0.06 and 0.3 are good choices for this threshold.
Lower values cause more iterations for each policy, which increases the number of use-
less computations. On the other hand, higher values cause more policy modifications
and the increased use of non-optimal actions. However, the results showed that the
difference of the performance of the method is negligible when the threshold is set at
around 0.1.

In addition to the standard case studies, we considered eight classes of simulated
models in order to compare the performances of our methods with others. Table 4
shows some details of each class (each containing ten models), and we present the
average running times of the models. All of the models had 10,000 states. The differ-
ence of D1-D4 was in the number of actions per state, while there were two outgoing
transitions for each action. The destination of the transitions and their probabilities
were determined randomly. When the number of actions per state increased, MPI
performed better than the GS and SCC-based methods. In this case, MPI avoided
more actions in each update. Our D-MPI method outperformed the other methods
in all cases because it converged to the optimal policy faster than MPI and reduced
the number of iterations. For D5-D8, each state has two actions, but the average
numbers of outgoing transitions were different. Again, D-MPI was better than the
other methods. In this case, the performance of the learning-based method degraded
when the average number of outgoing transitions increased.

Table 4
Running times of simulated models
Model | |Act| | |Trans| | GS | MPI | Learning | SCC | D-MPI | Improved

based based MPI
D1 2 40K 114 | 7.3 10.8 114 5.78 5.39
D2 4 80K 24.5 | 8.45 25.4 24.7 6.22 5.67
D3 7 140K 45.7 | 9.83 41.9 46.2 7.2 6.4
D4 10 200K 63.7 | 11.2 57.4 64 9.5 8.31
D5 2 60K 16.7 | 11.4 12.5 16.8 9.6 8.46
D6 2 90K 25.7 | 15.7 19.5 25.9 13.3 11.7
D7 2 160K 479 | 28.1 36.6 48 25.2 22.2
D8 2 300K 98.3 | 574 71.6 98.6 53.1 49.8

5. Conclusion

Modified policy iteration is an iterative method that is widely used in probabilistic
model checking to compute maximum or minimum reachability probabilities. The
work presented in this paper has established a way to accelerate the MPI method.
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To do this, we proposed two new heuristics in Section 3. For the first heuristic, we
defined a criterion for determining the usefulness of a policy. This relies on the impact
of the current policy on the values of the underlying states of a model. This criterion
is more efficient than the standard criterion in MPI, and the experimental results
show that it usually reduced the overall number of iterations. The second proposed
heuristic performed a graphical analysis of the quotient DTMCs to identify and avoid
any useless updates of the states. This considered the number of incoming transitions
to a state to determine any useless states. Our experimental results showed that these
two techniques outperformed the best previous methods for most case studies. For
our future works, we plan to develop a parallel version of our heuristics and apply
them for accelerating the interval iteration method for computing the reward-based
properties that were proposed in [5]. In addition, one can extend the second heuristic
by considering the probability of the incoming transitions to prioritize the states.
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