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Abstract Job-shop scheduling systems are one of the applications of group technology

in industry, the purpose of which is to take advantage of the physical or op-

erational similarities of products in their various aspects of construction and

design. Additionally, these systems are identified as cellular manufacturing sys-

tems (CMS). In this paper, a meta-heuristic method that is based on combining

genetic and greedy algorithms has been used in order to optimize and evaluate

the performance criteria of the flexible job-shop scheduling problem. In order to

improve the efficiency of the genetic algorithm, the initial population is gener-

ated by the greedy algorithm, and several elitist operators are used to improve

the solutions. The greedy algorithm that is used to improve the generation of

the initial population prioritizes the cells and the job in each cell and, thus,

offers quality solutions. The proposed algorithm is tested over the P-FJSP

dataset and compared with the state-of-the-art techniques of this literature.

To evaluate the performance of the diversity, spacing, quality, and run-time

criteria were used in a multi-objective function. The results of the simulation

indicate the better performance of the proposed method as compared to the

NRGA and NSGA-II methods.
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1. Introduction

A cellular manufacturing system (CMS) is an effective system for the economical

manufacturing of pieces in industrial units. The design of this system is considered to

be an application of group technology [27]. The design involves the process of making

a set of similar pieces, which is done by a group of machines that are dedicated to the

cell. Cell formation is the first and most important step in implementing the CMS.

Categorizing the machinery and pieces and forming manufacturing cells and family

pieces are accomplished in the stage of cell formation. The problem of cell forma-

tion and manufacturing scheduling are two important steps in the implementation

of these systems [22]. CMSs are in fact the application of group technology in the

field of manufacturing, the purpose of which is to classify the pieces and machines

in such a way that their physical or operational similarities in different aspects of

manufacturing and design are used [17]. On the other hand, cellular manufacturing

is a process of manufacturing that is a subsection of just-in-time manufacturing and

lean manufacturing that encompass group technology.

The scheduling problem for a finite number of jobs has been widely considered in

a great deal of research. However, jobs are sometimes repeated infinitely over time

in the real world. In this situation, jobs arrive successively to a shop with some

time intervals. This condition is generally considered in two major categories: real-

-time, and cyclic scheduling problems [29]. The real-time models usually consider the

scheduling of a set of simple tasks (single-operation jobs) with a regular or irregular

repeating pattern. In this category, a due date is determined for each task, which must

be satisfied in the scheduling model [22,27], whereas the considered tasks in real-time

models are single-operation; this is not often suitable for job-shop environments that

include jobs with multiple operations. On the other hand, cyclic job-shop scheduling

models are able to schedule high-variety repeatable jobs in a job-shop environment.

The problem with job-shop manufacturing scheduling is finding an optimal se-

quence for performing different operations and finding optimal sequences that are

related to each machine in each cell (as well as determining the optimal sequence of

the cells themselves). These problems are usually addressed with the aim of mini-

mizing the length of the schedule; the timing of implementing operations is fixed and

predetermined in them. The problem of cell manufacturing scheduling is one of the

NP-hard problems [15]. Due to the intrinsic complexity of compositional optimiza-

tion problems (and especially the problem of cell manufacturing timing), the use of

innovative and meta-functional methods to solve such problems makes effective im-

provements in the manufacturing of acceptable responses. As the dimensions of these

problems extend, traditional methods of determining the optimal response will, in

fact, lose their effectiveness due to taking too much time [5].

In order to meet the needs of different industries in today’s competitive world,

manufacturing systems with improved performance must be used. In this regard,

the automation and flexibility of machines are insufficient; systems with appropriate

timing must be created [5,15]. The problem of CMS scheduling is among the combined
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optimization problems, which; extensive studies have been conducted to solve the

problems of the CMS due to the applicability of this type of problem [5,30,32,33]. In

many of the conducted studies, artificial intelligence-optimization algorithms such as

genetics are used to solve this type of problem [2,28,30]. Generally, designing a CMS

consists of four steps [30]. The first (and foremost) step is solving a cell-formation

problem. At this stage, pieces that have similarities in their shapes and configurations

and are produced by the same or similarly required machines are considered to be

in the same family to be processed by a group of machines located in one cell. In

the second step, facility layout is determined; this involves cell layouts at the level of

a workshop as well as machines within each cell. The third step is about scheduling

the operation on each machine in each cell. Finally, the fourth step is the allocation

of resources in which such resources as tools, manpower, and materials are assigned

to the machines and cells. Family formation for the parts and grouping machines

have some advantages, such as reducing setup times, material handling costs, work-

-in-process inventories, throughput times, and production costs [2].

This paper describes a method for the layout design of a cellular manufacturing

system (CMS) that would simultaneously allow for the grouping of machines that

are unique to a part family into cells as well as those shared by several cells to be

located together in functional sections. In this paper, the focus is on the use of

a hybrid multi-functional algorithm in multi-objective mode to solve this problem.

Since one of the most important components in decision-making is time in all cases of

optimization, objective functions such as minimizing times to complete jobs, tardiness

costs, earliness costs, etc., are going to be used in the case of a CMS.

In the remainder of this paper, we state a literature review in Section 2. In Sec-

tion 3, the problem of job-shop manufacturing scheduling will be reviewed. Section 4

presents our proposed method. The comparison work and results of evaluating the

proposed method are presented in Section 5. Finally, our conclusions and suggestions

are presented in Section 6.

2. Literature review

A study on the problem of job-shop scheduling was first implemented by Johnson; it is

believed that he was one of the founders of time scheduling theory. He proposed an op-

timal algorithm for a two-machine workflow job-shop problem and extended this algo-

rithm to the job-shop work schedule problem. After this, Akers (1956) used a Boolean

algebraic method to represent the processing sequence. The scientific principles of

group technology were established by Epitz (1958) in Germany, and various definitions

and interpretations have been made of these principles [22]. Lopez considered group

technology to be a new manufacturing philosophy in 1998, eliminating the disadvan-

tages of both the custom-made and mass-produced manufacturing philosophies [27].

Reddy et al. examined the timing and sequence of operations of a CMS and

proposed an innovative method for scheduling operations [23]. Karsikian et al.

examined the problem of group technology design in the scheduling of a CMS us-
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ing meta-heuristic algorithms [13]. In this method, a variety of products are grouped

by using a custom cluster in each cell, and then the optimization problem of the

scheduling in the cells is developed. Another study that was conducted in the field

of job-shop manufacturing planning was presented by Pezla and his colleagues. They

introduced a genetic algorithm that combined several strategies to generate an initial

population; this algorithm is selected for remanufacturing.

In [6], the comparison of CMS design methods was investigated. This study fo-

cused on designing a CMS and minimizing the number of cells. The results showed

that meta-functional methods performed better with respect to the average flow time

and inventory under construction for most designs. Yazi et al. examined the schedul-

ing of cell manufacturing by considering the preparation times that were dependent

on cell sequence; their goal was to minimize the average total of flow time for all of

the tardiness [17]. The method of this study was based on a mathematical model,

and a method of searching for a harmonic hybrid was proposed. In another study,

Kia et al. presented a mathematical model for evaluating the effects of feature seg-

mentation on a dynamic CMS [14]. In this research, a two-objective model and Pareto

front were used. Jalilvand and Fattahi proposed combining a mathematical model and

a genetic algorithm to solve the problem of flexible job-shop manufacturing schedul-

ing [12]. In this method, a linear mixed programming model is used to schedule jobs;

its aim was to minimize the tardiness costs, setups, and maintenance costs for small-

scale problems. To solve large-scale problems, the mathematical model was combined

with a genetic algorithm. In [18], a case study was developed on the ability of ge-

netic algorithms to solve the problem of the time-latency of job-shop manufacturing.

The results of this study showed that the use of the genetic algorithm prolonged the

processing time but ultimately resulted in lowest labor costs. Mahmoudian et al. pro-

posed a new intelligent particle optimization algorithm to solve the problem of cell

manufacturing that was based on neural computations and applications [19]. Using

this approach to reconstruct the configuration of a real company in the agricultural

manufacturing sector showed reasonable results.

The NRGA algorithm was developed by Jadan et al.; it is a genetic algorithm of

the defeated class that is meant to solve the problem of job-shop manufacturing [11].

This algorithm uses a parametric penalty method to search for a set of the best Pareto

solutions. The NSGA-II algorithm was proposed by Ahmadi et al., which was an

expanded version of the NRGA algorithm [1]. The main difference between NSGA-II

and NRGA is in the selection process: in NSGA-II, it uses the competition selection

algorithm, while NRGA applies the roulette wheel algorithm. Also in NSGA-II, the

simultaneous improvement of the two goals of makespan (completion time the jobs)

and stability through the Pareto front was considered.

3. Problem of job-shop manufacturing scheduling

The problem of job-shop manufacturing scheduling includes two stages of timing. In

the first stage, the sequence of cells is determined; in the second, the sequence of jobs
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is determined. The main goal in this problem was to minimize the maximum time

to complete the work. In this case, there is a piece (work) (P ) that must be applied

to the machines (M). The machines are located in a separate cell (C), which creates

time for the pieces to move between the cells. In addition, tij is the processing time

of the i-th piece on the j-th machine in this case. aij shows binary if the i-th piece

needs a j-th machine to process (aij = 1); otherwise, aij = 0.

In the mathematical model of the problem of job-shop manufacturing scheduling,

inputs must ensure that each piece is allocated to only one cell. In Equation (1), this

constraint is guaranteed: ∑
c∈C

xic = 1, ∀ i ∈ P (1)

where P indicates the number of pieces, and xic is a binary variable for the decision-

making. If piece i is assigned to cell c, it is xic = 1; otherwise, xic = 0.

In a feasible solution, the pieces that are assigned to a cell must be present only

in the sequence of the same cell. In Equation (2), this constraint is guaranteed:∑
k

zikc = xic, ∀ i ∈ P, ∀ c ∈ C (2)

where zikc is a binary variable for the decision-making. If piece i is present in the

k-th sequence of cell c, zikc = 1; otherwise, zikc = 0.

The completion time of each piece can be calculated as Equation (3):

ci = max
(
∀ k ∈ K, j ∈ M, c ∈ C&b ∈ Kc : c(k, j, c, b) · zikc · ycb

+
∑c

c=1

(∑M
j=1 aij · |aij − ajc|

)
· xic · Tic

)
, ∀ i ∈ P

(3)

where Kc is the number of sequences, Ci is the completion time of piece i, and Tic

specifies the time of the intercellular movement for piece i in cell c. Also, ycb is

a binary variable for the decision-making. If cell c is assigned to sequence b, ycb = 1;

otherwise, ycb = 0. In addition, Cmax (maximum makespan) is calculated according

to Equation (4):

Cmax = max

Ckjcb +

P∑
i=1

C∑
c=1

( M∑
j=1

aij · |aij − ajc|
)
· xic · Tic

 (4)

In the following, the problem of manufacturing scheduling is explained through an

example. Consider a company that manufactures four types of car pieces. The com-

pany has two manufacturing cells and a total of five machines. The pieces show the

jobs that need to be manufactured by different machines. The paths for the pieces

show the machines that must be applied to those parts. Details of this example are

shown in Table 1.

In this example, Piece 1 requires Machines 1, 2, and 3 to complete the manufac-

turing process. Piece 2 requires Machines 1 and 2, Piece 3 requires Machines 3, 4,
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and 5, and finally Piece 4 requires Machines 3 and 4. Manufacturing a piece by any

machine has a time process.

Table 1
Machines required for processing pieces

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Piece 1 1 1 1 0 0

Piece 2 1 1 0 0 0

Piece 3 0 0 1 1 1

Piece 4 0 0 1 1 0

Table 2 shows the time that is required to process each component on the ma-

chines. Here, the time required to complete Piece 1 on machines 1, 2 and 3 is 4, 5

and 12, respectively. For the other components, the processing times are specific and

fixed. According to the placement of the machines in two cells, the dependence of the

machines that are available on each of the cells is shown in Table 3.

Table 2
Time needed to process pieces on machines

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Piece 1 4 5 12 0 0

Piece 2 6 4 0 0 0

Piece 3 0 0 7 6 14

Piece 4 0 0 5 3 0

Table 3
Machine dependence on cells

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Cell 1 1 1 0 0 0

Cell 2 0 0 1 1 1

Regarding the dimensions of the problem in Figures 1 and 2 (two pieces, two

cells, and five machines), the problem is solved with two different modes of the cell

sequence.

The solutions for the two different modes show the pieces with total construction

times of 27 and 48. Considering the objective function of “minimizing the total time

of manufacturing the pieces”, the best sequence obtained is that the pieces are first

applied to Cell 2 and then to Cell 1. With this sequence, the total construction time

of the pieces is 27 (which is less than the second method). In the sequence of cells,

each piece must be applied to the cell in which it is located. Therefore, the sequence

of jobs (pieces) is also taken into account in addition to the sequence of cells in this

problem.
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Figure 1. Sequence in form of Cell 1 and then Cell 2 – State 1

Figure 2. Sequence in form of Cell 1 and then Cell 2 – State 2
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4. Proposed method

In this study, a combination of genetic and greedy algorithms has been used to pro-

vide a meta-functional method for solving the problem of job-shop manufacturing

scheduling. Combining these two algorithms to achieve quality initial responses ac-

celerates the finding of the range of responses; thus, the speed of the problem-solving

and the appropriate quality of the final response are guaranteed. The structure of

chromosome representation plays a key role in optimizing the genetic algorithm [9].

This paper uses a simple linear structure for the problem of job-shop manufacturing

scheduling. In the genetic algorithm optimization process, the initial population is

generated by a greedy algorithm [25]. The solutions are then improved by using sev-

eral elitism operators. In the proposed greedy algorithm, the cells and jobs in each cell

are prioritized. Based on the priority of each cell, one cell is selected as the next cell;

this is done by the tournament selection strategy for cell manufacturing scheduling.

Then, the jobs in the cells are prioritized; and similar to a roulette wheel, one job is

selected as the next job.

Figure 3. Flowchart of proposed method

In this paper, the fitness of the solutions is calculated based on four different

objective functions. These objective functions include “reducing the total time of the
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piece manufacturing”, “reducing the intercellular movement”, “reducing the cost of

the pieces”, and “reducing the tardiness cost”. Figure 3 of the flowchart shows the

proposed method.

The research assumptions and details of the proposed meta-heuristic algorithm

are described below.

4.1. Research assumptions

In the job-shop scheduling problem, there are several situations and limitations in

which the assumptions for presenting the proposed method are expressed.

• In this problem, there are M machines and P pieces where the machines are

settled in the cells.

• The processing time is a fixed amount and is independent of the sequence of jobs.

• Each piece has a specific process to complete.

• There is a fixed time to complete each piece on each machine.

• Scheduling is the processing of each piece according to the cell in which the

machine is located.

• There is no failure time for machines, and each machine performs definite oper-

ations that are related to the piece.

• The number of pieces, machines, and cells in the problem is specific and fixed.

• Each machine can only be applied to one piece at a time; therefore, other pieces

must wait if they need to use the machine.

• The cells are located at varying distances from each other, and displacing pieces

between cells bears costs.

• The goal of solving this problem is to find the best sequence of jobs in each cell

as well as the sequence of cells, where the intercellular movement, earliness cost

of the pieces, and tardiness cost of the pieces are minimized.

• All machines are available at the beginning of the scheduling; their time is zero

at the start.

• Some pieces in the process of completing need machines that may be in several

cells. In this case, the completion time of the piece is equal to the sum of the com-

pletion time in the previous cell sequence and the processing time in the current

sequence.

• The completion time of the piece in the j-th machine for a sequence is equal to

the sum of the completion time on the (j − 1)-th machine and the processing

time of the piece on the j-th machine.

• The completion time of a piece for a sequence on the j-th machine in a cell is

equal to the sum of the maximum completion time on the (j−1)-th machine and

the processing time of the piece on the j-th machine. Meanwhile, if the comple-

tion time of the last sequence in the previous cell is greater than the maximum

completion time on the (j − 1)-th machine, the completion time is equal to the

sum of the completion time of the last sequence, and the processing time is in

the current cell sequence on the j-th machine.
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4.2. Creating initial population based on greedy algorithm

In this study, a vector with a total number of jobs (P ) is used for chromosome rep-

resentation in the genetic algorithm. In this structure, the sequence of jobs shows

the timing of its performance in the CMS. Due to the simultaneous optimization

of the sequence of cells and functions, the timing of the cells is automatically de-

termined according to the location of the jobs. This simple structure increases the

design capabilities of various operators and reduces the complexity of the proposed

method. Also, it is easily possible to switch jobs between cells by considering only the

number of jobs in the proposed structure. The structure of the proposed chromosome

is shown in Figure 4.

Figure 4. Structure of proposed chromosome representation

,

where ti represents the i-th piece, and the length of each solution is equal to the

number of pieces. In addition, if the ti-th piece belongs to the machine in cell ci, this

piece is scheduled in the current sequence of cell ci.

In general, the quality of the initial population plays an important role in solving

the problem by the GA. To reduce the size of the problem space and the number of

generations as well as increase the quality of the population, a greedy algorithm is

used to generate an initial population. The greedy algorithm proposed at each stage

makes the best choice based on the current state of the system and the prioritization

of the cells and jobs. Table 4 shows the stages of initial population manufacturing.

In this algorithm, the minimum number of intercellular displacements is calcu-

lated. For example, suppose a piece needs machines {m1,m2,m3} in order to be

completed so that the m1 and m2 machines are in cell c1 and machine m2 is in cell

c2 to the components that are assigned to the machines within that cell. Under this

circumstance, the minimum number of displacements for this piece is two. After ap-

plying the m1 machine in cell c1, it must move to machine m2 in cell c2; so, a case of

displacement can occur. In the next step, the piece must move from cell c2 to cell c1
with the completion of the m2 machine process in order to use machine m3. This step

also imposes an intercellular displacement for the piece. To consider the intercellular

displacement for each specific cell, displacement is regarded for the cell from which

the transfer took place. In this case, the number of displacements for cells c1 and c2
is one.
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Table 4
Generate initial population with greedy algorithm

Generation of initial population with greedy algorithm

1 Start

2 The number of displacement is calculated for each cell.

3 The probability of selecting each cell should be calculated based on a smaller

number of displacements.

4 The next cell in the chromosome should be selected based on the tournament

strategy.

5 The pieces associated with the selected cell are identified, where they should not

be present on the chromosome.

6 The probability of selecting each piece should be calculated based on the crite-

rion of being less “the result of multiplying the displacement of the piece by the

processing time of the piece”.

7 The next piece in the chromosome should be selected based on the tournament

strategy.

8 If all of the current cell components are not selected, go to Step 5.

9 If all of the cells are not selected, go to Step 4.

10 End

In general, the reason for using a tournament strategy is to increase the pop-

ulation diversity and not to create duplicate chromosomes. This strategy selects k

random individuals from the population and then selects the two best individuals

among these k individuals to be parents. In addition, the pieces that are associated

with a cell are determined by considering the first machine that is needed to complete

that piece; for example, when machines {m1,m2,m3} are needed to complete a piece

and these machines are in cells {c1, c2, c1}, respectively. Then, based on the machine

m1present in cell c1, the desired piece belongs to cell c1. The underlying reason is

that the first machine determines the start of the manufacturing process of the piece.

This algorithm will largely maintain the distribution of jobs between machines

and cells based on their priorities; it will also reduce the number of displacements

between cells. In cases where there are the same priorities for selecting jobs, the jobs

are randomly selected.

4.3. Calculating fit and creating Pareto front

In this study, four objective functions of “reducing the total time of the piece manu-

facturing”, “reducing the intercellular movement”, “reducing the cost of the pieces”,

and “reducing the cost of delaying the pieces” are used to calculate the suitability

of the solutions. The aim of the proposed algorithm is to minimize these functions

in order to improve the quality of the manufacturing system schedule. The target

functions are shown in Equations (5) through (8).

F1 = Cmax (5)



474 Amin Rezaeipanah, Fariba Sarhangnia, Mohammad Javad Abdollahi

F2 = CMove (6)

F3 =

P∑
i=1

Ei.max{0, di − Ci} (7)

F4 =

P∑
i=1

Li.max{0, Ci − di} (8)

The value that is attributed to F1 is the time for making the last piece (Cmax). The F2

function is used to indicate the number of displacements that are made between cells

in the construction of the pieces. If a piece needs several machines to be made and

these machines are located in different cells, the piece must be moved between the

cells; this displacement (which is proportional to the distance between two cells)

imposes costs (increased timing) in the system. Therefore, the sequence of cells and

the components must be created in such a way as to move the least number of CMove

in the solution. In F3, Ei is the earliness cost for the i-th piece, di is the delivery time

of the i-th piece, and Ci is the completion time of the i-th piece. The earliness cost of

the pieces is equal to the total earliness cost for all of the P pieces. The positive

difference between the delivery time of a piece and its time of completion shows the

amount of time that the piece is prepared ahead of time and creates maintenance

cost (E). Finally, F4 calculates the total tardiness cost for all of the P pieces. In

this case, Li is the tardiness cost for the i-th piece. The positive difference between

the completion time of a piece and its delivery time shows the amount of time that the

piece is prepared later than the due time and leads to tardiness cost (L).

Various studies have shown that meta-functional methods are much more effective

at solving multi-objective optimization problems than traditional tools. There is no

single answer in solving multi-objective problems due to contradictions between goals;

in other words, there is no single answer in which all goals are optimal. Finally, a set

of dominant answers will be presented as optimal answers. These answers are called

the Pareto solution front [8]. The main advantage of this method is its capability of

providing a set of non-dominated answers for the decision-maker. In this study, the

size of the Pareto front is fixed, and this front is updated at each repetition.

In general, it is absolutely uncommon to find a single solution that presents

the minimum (or maximum) values for all of the objectives at the same time. Vec-

tor F (x) is said to dominate another vector F (y) (x and y ∈ C, which is denoted

by F (x) ≺ F (y)) if and only if fi(x) ≤ fi(y) for all i ∈ {1, 2, · · · , o} (where o is the

number of criteria) and fi(x) < fi(y) for at least one j ∈ {1, 2, · · · , o}. A point x ∈ C

is said to be globally Pareto optimal or a globally efficient point if and only if there

does not exist y ∈ C that satisfies F (y) ≺ F (x). F (x) is then called globally non-

-dominated. In this case, we do not have a single optimal solution but a variety of

Pareto-optimal solutions.
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4.4. Genetic operators

Selection operator: both parents that are used for remanufacturing are selected by

elitism from the Pareto list. The selection policy in both methods is based on the

roulette wheel.

Crossover operator: in this study, two crossover operators have been used – one

to improve the sequence of the cells, and the other to improve the timing of the jobs.

This operator is applied with a probability of CR. In the cell-based crossover operator,

the cells are first identified in the parents; then, a cell is randomly selected from each

parent and copied in the child’s chromosome (with the restriction of non-repetition).

If one or more jobs are already available among the existing jobs in the selected cell

that is intended for copying in the child’s chromosome, the jobs will be removed from

the cell; then, the copying will be done. Figure 5 shows an example of a cell-based

crossover operator. In a job-based crossover operator, a work is first selected from

each parent at random and then copied to the child’s chromosome (with the restriction

of non-repetition). The sequence of job selection indicates the sequence of performing

jobs in the timing system. In order to increase the efficiency of this operator, the

selected jobs are chosen from one cell at each stage. In fact, when a c-cell is selected

from the first parent, a c-cell is selected from the second parent (if one exists). This

strategy prevents successive displacements in the child’s chromosome. Figure 6 shows

an example of a job-based crossover operator.

Figure 5. Example of cell-based crossover operator

Figure 6. Example of job-based crossover operator
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Mutation Operator: in this study, two mutation operators were used – one to

improve the cell sequence, and the other to improve the work timing. In cell-based

mutation, all non-adjacent cells on the chromosome are first identified and then ran-

domly selected for each cell; then, the displacement occurs. In the job-based mutation

operator, the non-adjacent cells in the chromosome are first identified; then, another

operation is performed for each job in the same cell by randomly. Through the prob-

ability of MR, the displacement occurs.

4.5. Adaptive control of crossover and mutation operators’ rate

The performance probability of the crossover and mutating operators depends on

CR and MR, where their optimal settings affect the quality of the solutions and

accelerates the convergence of the genetic algorithm. Numerous studies have shown

that using adaptive control rather than considering the constant probability for CR

and MR makes tremendous improvements in the ability to search for genetic algo-

rithms [16,26]. In this paper, the adaptive probability of CR and MR is determined

according to Equations (9) and (10):

CR =

 k1
(iter)

(IterMax)
× CR f́ ≥ f̄

CR, f́ < f̄
(9)

MR =

 k2
(iter)

(IterMax)
×MR f́ ≥ f̄

MR, f́ < f̄
(10)

where k1 and k2 are two constant values that are smaller than the one that determines

the rate of the reductions of CR and MR. f̄ and f́ are the average fitness solutions

of the old and current generation, respectively, which are determined based on s(i) in

the Pareto front. The s(i) for the i-th solution equals the number of solutions that

have been defeated by the this solution. Finally, iter and IterMax are the iteration

current and maximum number of iterations, respectively.

4.6. Next-generation and improvement operator

The interesting point of the genetic algorithm is the possibility of generating highly

suitable chromosomes in intermediate generations (yielding solid results at the fitness

function). These chromosomes might be destroyed as a result of the crossover and

mutation operators and not be generated anymore. The elitism technique identifies

such cases and uses them in subsequent generations.

In this paper, the current-generation solutions, old-generation solutions, and

Pareto front solutions are used to generate the population of the next-generation.

In each generation, a number of Pareto front solutions are transferred directly to

the next-generation. Therefore, if the size of the Pareto front list is NPareto and
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the population size is NPop, the composition of the next-generation solutions will be

determined according to Equation (11):

Popnew = [Pareto(1 : α.NPareto), Pop(1 : NPop − α.NPareto)] (11)

where α represents the percentage of the Pareto front that is selected as the next-

generation population. Pop is the sum of the two current- and old-generation popula-

tions; this is used to complete the next-generation population solutions. The solutions

in both the Pareto and Pop parts are selected based on s(i). In addition, this pa-

per uses an improvement operator to improve the efficiency of the solutions in the

next-generation population. The improvement operator is a local search for finding

the best neighbors of the solutions. The operator tries to place pieces together by

moving the contents of non-adjacent cells so that their machines are located in the

same cells. This process will eventually reduce the number of displacements among

the cells in a solution. Table 5 shows the steps of the improvement operator for an

input solution.

Table 5
Improvement operator steps

Improvement operator steps

1 Start

2 Set the number of non-adjacent cells in the solution to the variable

3 For i = 1, 2, · · · , nc do

4 Select a non-adjacent cell from cell i at random.

5 Replace all the pieces from the selected cell to all the pieces from cell i.

6 Changes will be apply, if new solution versus a solution of Pareto front prevails.

7 End for

8 End

5. Results and experiments

In this section, the performance of the proposed algorithm is evaluated to improve

flexible job-shop manufacturing planning systems using the P-FJSP dataset from the

UCI machine-learning repository. The simulation is done with MATLAB software

(Version 2016a), and the NSGA-II and NRGA algorithms have been used for the

comparison work. In all of the experiments, an average of 15 runs for each algorithm

are reported to ensure the results. The efficiency and effectiveness of the hybrid and

meta-heuristic algorithms greatly depend on the appropriate adjustment of the param-

eters. Here, the parameters are determined by using the Taguchi method to achieve

the best solution [24]. The results that were obtained through various parameters of

the three levels are estimated based on standard table of orthogonal arrays L27 [24].

The aim of the Taguchi method is to maximize the S/N ratio (signal-to-noise), which

is calculated by Equation (12) in the paper.
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S/Nij = −10 log10

(
1

m

m∑
i=1

Fobj(i, j)
2

)
, ∀ j ∈ level, (12)

where Fobj(i, j) is the objective function value that uses parameter i on the j-th level,

and m is the number of times that the j-th level of parameter i is repeated over the

runs of all of the trials. According to Taguchi, the values of the parameters that

were used in the simulation of the proposed algorithm are as follows: NPop = 50,

CR = 0.85, MR = 0.15, NPareto = 10, IterMax = 500, k1 = 0.05, k2 = 0.01, and

α = 0.4.

5.1. Evaluation criteria

To evaluate the performance quality of the proposed algorithm with the four-objective

function, the diversity, spacing, quality, and run-time criteria are used.

The diversity criterion shows the amount of change that exists among the data

of a distribution. This criterion specifies the Euclidean distance between the first and

last solutions in a Pareto front. Higher diversity values imply the higher quality of

the results [1]. This criterion is defined as Equation (13):

D =

√√√√ 2∑
m=1

(
max

i
f i
m − min

i
f i
m

)2
, ∀ i = 1, 2, · · · , N (13)

where N is the number of non-dominated solutions in a Pareto front, and f i
m represent

the i-th value of the non-dominated solution (which are makespan form m = 1 and

stability form m = 2).

The spacing criterion is used to show the compatibility of the distance between

the solutions in the Pareto front [10]. Lower values of the distance criterion indicate

that the distance stability between the solutions is higher. This criterion is defined

as Equation (14):

S =

√√√√ 1

N − 1

N∑
i=1

(di − d̄)2 (14)

where d̄ is the average of the N solutions in the Pareto front, and di represents

the Euclidean distance between the two non-dominated solutions in the Pareto front

(which is defined according to Equation (15)):

di = min
k∈N,k ̸=i

2∑
m=1

|f i
m − fk

m| (15)

where f i
m and fk

m represent the i-th and k-th values, respectively, of the non-domi-

nated solution.
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The quality criterion tests the distribution of the Pareto front solutions that are

obtained at the solution boundary. This criterion is defined as Equation (16):

Q =

∑N−1
i=1 |x̄− xi|

(N − 1) · x̄
(16)

where xi represents the Euclidean distance between the two non-dominated solutions

that are adjacent to the Pareto front, x̄ is the average xi, and N indicates the number

of members in the Pareto front list.

The last criterion used for comparison is run-time. Since all of the parameters

in the algorithms are the same, this criterion is a suitable comparison criterion for

evaluating the manufacturing scheduling system. This criterion is reported in the

comparisons in seconds.

5.2. The P-FJSP dataset

In this paper, the P-FJSP dataset (BRdata) was used to evaluate the proposed algo-

rithm and performance the comparisons. This dataset was produced by BrandMiart

(1993) and includes ten instances [3,7]. The parameters of each of the datasets in this

dataset are generated randomly by using a uniform distribution between two ranges.

The number of jobs is defined as 10 to 20, the number of machines – 4 to 15, the

number of operations for each job – 5 to 15, and the number of operations for all

jobs – 55 to 240. In addition, it is specified which machines are required for each job.

Table 6 shows the details of the P-FJSP dataset.

Table 6
Details of P-FJSP dataset

Instances

No. of No. of No. of No. of No. of Size Total

jobs machines cells operations processing instance operation

time time

MK01 10 6 3 5–7 1–7 10× 6 56

MK02 10 6 6 5–7 1–7 10× 6 58

MK03 15 8 5 10–10 1–20 15× 8 150

MK04 15 8 3 3–10 1–10 15× 8 90

MK05 15 4 2 5–10 5–10 15× 4 106

MK06 10 15 5 15–15 1–10 10× 15 150

MK07 20 5 5 5–5 1–20 20× 5 100

MK08 20 10 2 5–10 5–10 20× 10 225

MK09 20 10 5 10–15 5–10 20× 10 250

MK10 20 15 5 10–15 5–20 20× 15 240

In the first line of each P-FJSP instance, there are at least two numbers. The

first is the number of jobs, and the second is the number of machines (the third is

not necessary – it is the average number of machines per operation). Then, every
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line represents one job: the first number is the number of operations of that job, and

the second (let us say k >= 1) is the number of machines that can process the first

operation. Then, according to k, there are k pairs of numbers (machine, processing

time) that specify which are the machines and which are the processing times; the

data for the second operation follows, and so on.

5.3. Results and discussion

For comparison, the NRGA and NSGA-II algorithms are used according to the diver-

sity, spacing, quality, and run-time (seconds) criteria. A comparison of the diversity

criterion in the different algorithms on ten experimental instances is shown in Figure 7.

Figure 7. Comparison of different methods in diversity criterion

The results show that the NSGA-II algorithm has better quality than NRGA.

On the other hand, the proposed algorithm performs better than both methods (with

a diversity criterion of 74.85). Figure 8 shows the comparison results in the spac-

ing criterion. Since lower values of distance mean higher quality, the NRGA method

performed better than NSGA-II in the MK09 and MK10 models. However, the spac-

ing criterion in the NRGA and NSGA-II algorithms averaged 19.19 and 12.71, re-

spectively; this indicates that higher-quality solutions are produced by the NSGA-II

algorithm. Despite the superiority of the NSGA-II algorithm over the NSGA, the

proposed algorithm performed better than both methods (with an average spacing

criterion of 12.4).



Meta-heuristic approach based on genetic and greedy algorithms . . . 481

Figure 8. Comparison of different methods in spacing criterion

Based on the quality criterion, the NSGA-II method is superior to the NRGA

method in all instances except for MK08 of NRGA. In this criterion, the superiority

of the proposed method existed in all instances when compared to the NSGA-II

method; as a result, it showed a better quality of performance. Figure 9 shows the

results of comparing the quality criterion of each instance on average. Regarding

the run-time criterion, there is no significant statistical difference between the results

of the three algorithms being compared. In Figure 10, the results of the run-times of

these algorithms are reported in the ten tested instances (with slight differences in

the results).

In general, the proposed method in the diversity criterion has a better perfor-

mance than the NRGA and NSGA-II methods in all instances except for MK03,

MK09, and MK10. Furthermore, the proposed method increased the average diver-

sity criterion to 19.36 and 96.8 units, respectively; so, the diversity criterion witnessed

an increase in this method when compared to the two other methods. The average

reduction in the spacing criterion in the ten tested instances decreased by 7.05 and

0.57, respectively, when compared to NRGA and NSGA-II.

The results of the proposed method in the quality criterion also have an appropri-

ate performance; on average, this criterion increased by 0.01 and 0.11, respectively, as

compared to the two comparison methods. Since all three comparison methods were

applied to the genetic algorithm, the results fluctuated within almost the same range

as the run-time criterion. The results of this criterion for the proposed method and the

NRGA and NSGA-II methods averaged 2965, 3015, and 2931 seconds, respectively;

this is considered to be a relative superiority for the proposed method.
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Figure 9. Comparison of different methods in quality criterion

Figure 10. Comparison of different methods in run-time criterion

Finally, the numerical results that compare the proposed method with the NRGA

and NSGA-II algorithms are shown in Table 7. Each row represents an instance of

a problem, and the columns show the diversity, spacing, quality, and run-time criteria,

respectively. In addition, the last row for each algorithm represents the number of

instances with better results than other algorithms.
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In general, the proposed method in the diversity criterion performed better than

the NRGA and NSGA-II algorithms in all instances except for MK03, MK09, and

MK10. The superiority of the proposed method in the spacing criterion was 7.05%

and 0.57% against NRGA and NSGA-II, respectively. The results of the proposed

method in the quality criterion also had a satisfactory performance, where the supe-

riority of the proposed method was 0.01% and 0.11% against NRGA and NSGA-II,

respectively. Due to the use of all three comparative methods of the genetic algo-

rithm, the results fluctuated approximately the same as with the run-time criterion.

However, the average results for the proposed method and the NRGA and NSGA-II

algorithms were 2965, 3015, and 2931 seconds, respectively.

In order to more accurately evaluate the proposed method, we provide further

comparisons in Table 8. This comparison includes the genetic algorithm (GA) [21], the

neighborhood-based genetic algorithm (NGA) [4], the hybrid evolutionary algorithm

(HEA) [31], the genetic algorithm with a tabu search in a holonic multi-agent model

(GATS+HM) [20], and the improved genetic algorithm with adaptive variable neigh-

borhood search (IGA-AVNS) [10]. The data reported in this table was collected from

the corresponding literature. This comparison is based on the best heuristic solution

that was discovered after ten operations; i.e., the minimum value of the completion

time obtained.

Table 8
Comparison of proposed method with other algorithms

Instances GA NGA HEA GATS+HM IGA+AVNS Proposed method

MK01 40 37 40 41 40 40

MK02 26 26 27 28 26 26

MK03 204 204 204 204 204 204

MK04 60 60 60 65 60 60

MK05 173 173 173 175 173 173

MK06 63 67 59 67 60 58

MK07 149 148 144 144 144 145

MK08 523 523 523 523 523 523

MK09 311 307 307 312 307 305

MK10 212 212 209 225 208 208

# Wins 0 1 0 0 0 2

The results show the superiority of NGA for MK01 over the other algorithms;

however, all of the algorithms offer the same solution for MK03, MK05, and MK08.

The proposed method performs better than GA for almost all instances. The pro-

posed method provides a better solution than the GATS+HM algorithm for MK02,

MK04, MK06, MK09, and MK10. Also, compared to the HEA algorithm, a better

solution was found for MK02 and MK10. For MK07, the IGA-AVNS algorithm finds

a better solution, but for MK06 and MK09, the proposed method performs better.
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In summary, the proposed method is an efficient method for solving the job-shop

manufacturing scheduling problem.

6. Conclusion and future work

In the present study, the multi-objective scheduling of a flexible job-shop manufac-

turing system using a meta-heuristic algorithm was investigated. This algorithm is

a combination of genetic and greedy algorithms to find the optimal sequence of jobs

as well as the sequence of cells. In order to fulfill the suitability of the solutions, four

goals were used: reducing the total time of manufacturing the pieces, reducing the

intercellular movement, reducing the cost of the pieces quickly, and reducing the tardi-

ness cost of the pieces. Since random solutions bring about a reduction in the quality

of the initial population and an increase in the duration of the convergence, a greedy

algorithm was used in this study to create an initial population to reduce the size of

the problem space and the number of generations. This algorithm makes the most

efficient choice at each stage based on the current state of the system and the pri-

oritization of the cells and jobs. Therefore, the minimum number of intercellular

displacements is calculated according to the pieces that are assigned to the machines

within that cell. For future studies, the times that are related to machine preparation

as well as the problem scrutiny in a dynamic environment can be scrutinized.
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