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EFFICIENT MULTI-CLASSIFIER WRAPPER
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Abstract The task of identifying the most relevant features for a credit-scoring applica-

tion is a challenging task. Reducing the number of redundant and unwanted

features is an inevitable task for improving the performance of a credit-scoring

model. The wrapper approach is usually used in credit-scoring applications

to identify the most relevant features. However, this approach suffers from

the issue of subset generation and the use of a single classifier as an evaluation

function. The problem here is that each classifier may give different results that

can be interpreted differently. Hence, we propose an ensemble wrapper feature-

selection model in this study that is based on a multi-classifier combination. In

the first stage, we address the problem of subset generation by minimizing the

search space through a customized heuristic. Then, a multi-classifier wrapper

evaluation is applied using two-classifier-arrangement approaches in order to se-

lect a set of mutually approved sets of relevant features. The proposed method

was evaluated on four credit datasets and has shown good performance as com-

pared to individual classifier results.
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1. Introduction

A key issue that faces financial institutions when building credit-scoring (CS) mod-

els is how to define the most appropriate set of features. In fact, the progress of

data-storage technologies has provided opportunities to have a large set of features

and expand financial analyses. However, high-dimensional data is a challenge to

data-mining methods. In general, scoring models use the credit history of previous

customers to compute a new applicant’s defaulting risk [11]. The collected set of

booked loans may come from different sources and may be collected for a general

task [16, 18]. Feature selection is a term that is commonly used in machine learning

to denote methods for reducing a dataset to a convenient size for processing and inves-

tigation. This process involves not only a predefined cutoff on the number of features

that can be considered when building a credit-scoring model but also the choices of

appropriate features based on their relevance to the study [4].

In order to reduce the effect of unwanted features in a dataset, feature selection is

a crucial process that is generally performed before the classification step. Unneeded

features include irrelevant and redundant features [15]. The first (irrelevant features)

are those that can never contribute to improving the predictive accuracy of a credit

model since they have not any correlation with the response variable. Removing

such features reduces the dimension of the search space and speeds up the learning

algorithm. The second (redundant features) are those that may replace others in

a feature subset since they basically bring similar information (i.e., date of birth and

age features). Typically, feature redundancy is defined in terms of features correlation:

two features are considered to be redundant if they are highly correlated.

The reduction task of features can lead to parsimonious credit models and helps

simplify the practice of different visualization techniques, consequently yielding bet-

ter accuracy and easier interpretations. Two main classes of feature selection have

identified in the literature [14]: filter and wrapper feature-selection methods.

Filter methods are generally used as a pre-processing step. A filter method

chooses the best features by studying their intrinsic properties (i.e., the relevance

or correlation of the features to the target concept) that are measured via uni-variate

statistics without considering the properties of the classifier. Hence, the selection of

features is independent of any machine-learning algorithms. In contrast to filter meth-

ods, wrappers actually take a classifier’s proprieties into consideration. The main idea

of wrapper feature selection is to remove unwanted features from the data by using

the predictive accuracy of a particular classifier as an evaluation function [9].

To be more precise, the main differences between the two classes of feature-

selection methods are as follows: first, filter methods measure the relevance of fea-

tures by their correlation with the target feature, while wrapper methods measure

the usefulness of a subset of a feature by training a model on it. Second, the over-

fitting problem is more frequent when using wrapper methods as compared to using

a subset of features from the filter methods. However, it is important to point out
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that filter methods might fail to find the best subset of features on many occasions,

while wrapper methods are more likely to provide the best subset of features.

It has been shown that wrappers generally outperform filters [9] in terms of accu-

racy since they are tuned to the specific interactions between a classifier and a dataset.

Hence, we propose to apply wrapper feature selection on credit-scoring data in order

to obtain a simpler credit-scoring model. However, wrapper methods have practical

and theoretical limitations [3]. They typically lack generality since the resulting sub-

set of features is tied to the bias of the classifier that is used in the evaluation function.

The optimal feature subset will be specific to the classifier under consideration. Also,

finding the optimal feature subset will come with a high computational cost. This

cost depends on the number of times the classifier is trained on the evaluation process,

the number of subsets to be investigated, and the sizes of these feature subsets. The

number of subsets and their sizes depend on the used search strategy. In the case of

a complete search, the number of subsets increases along with the time complexity.

However, using a heuristic-only reduced number of subsets will be investigated (which

may reduce the quality of the selected features).

In this paper, we try to solve these two shortcomings in wrapper feature selection

in credit-scoring application: the bias of the classifier, and the subsets’ generation

process. In order to minimize the number of evaluations that are performed by the

classifier while maintaining good accuracy, we design a search algorithm that reduces

the number of possible candidates. The proposed algorithm uses a mixture of complete

search and heuristic search techniques in order to reduce the search space. Then,

an empirical study is conducted that combines multiple classifiers in the process of

wrapper evaluation in order to select an optimal and unbiased set of features. We

show how the number and type of the classifiers within the combination framework

may influence the final results.

This paper is organized as follows. Section 2 briefly reviews the major issues of

wrapper feature selection. Section 3 describes the proposed approach for solving the

discussed issues. Experimental investigations are given in Section 4, while Section 4.2

gives empirical results and discussions regarding four datasets. Finally, Section 5

provides conclusions.

2. Issues with wrapper approach of feature selection

The main idea of the manuscript is to perform a feature selection on financial data

in order to create simple credit scoring models. Wrapper feature selection was chosen

to reduce the feature space; this choice was due to the fact that wrappers generally

outperform filters in terms of accuracy. However, wrapper methods suffer from two

major shortcomings. The first one is a lack of generality. Typically, a single clas-

sifier is used to evaluate the features in a wrapper framework; this makes the final

result dependent on the classifier (meaning that using a new classifier with another

assumption will change the final result). Based on the important limitation of using
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a single classifier, we consider using more than one classifier within a wrapper feature-

selection framework to improve the general accuracy. The adopted methodology to

overcame this first shortcoming is to perform a complete experimental study in which

we investigate the appropriate number of classifiers to use in the study as well as their

nature. The second shortcoming of the wrapper feature-selection method is related

to the search strategy and the way the subsets are generated for further investiga-

tions. Two search strategies are used in the literature. The first one is an exhaustive

search in which all possible feature candidates are evaluated. The second strategy is

heuristic, which helps in getting a valid subset within a reasonable amount of time.

An exhaustive search always guarantees the best solution; however, it is unrealistic if

the number of features is important. Heuristics give a good approximation, but it is

still impossible to look for an optimal subset. The adopted methodology to overcome

this second shortcoming is to perform a first reduction of the search space by using

the prior knowledge of bank experts and heuristics. This will reduce the search space

for the exhaustive search.

2.1. Issue I: using single classifier or combination of classifiers

Using a single classifier in the wrapper process may favor one candidate subset over

others [6, 15]. In fact, the difference in the biases and assumptions of each classifier

may affect the final result in terms of accuracy and execution time [3]. When changing

the classifier, the set of features to be selected may change; this leads to a lack of

generality in the produced model. The level of the computational complexity of the

classifier is also a fundamental factor to be investigated. Classifiers that have a large

computational cost will take much longer to choose the best subset of features than

a low-computational-cost classifier. For example, when a support vector machine

(SVM) is used as an evaluation function in the process of finding the best feature

subset, it may take more time to identify the most relevant features than when using

logistic regression (LR) or the k-nearest neighbors algorithm (KNN).

The wrapper approach can also be based on a combination of the results of several

classifiers. The number of classifiers that are used in the combination framework

affects the evaluation process. If a small number of classifiers is considered, then

it is likely that the level of agreement (degree of matching) among them will be

high. A high agreement among classifiers may subsequently result in more-relevant

features being selected with different levels of accuracy. However, if a large number

of classifiers are used, we may end up getting fewer relevant features. Indeed, the

level of agreement between the classifiers will probably be low since more classifiers

are required to agree on the relevance of a feature.

Based on the important limitation of using a single classifier, we consider using

more than one classifier within a wrapper feature-selection framework in order to

improve the general accuracy. Hence, we look for a mutually approved set of significant

features. Such a set will possibly increase the classification accuracy and reduce the

biases of the individual classifiers.
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2.2. Issue II: subset generation and search strategy

A theoretical ideal feature-selection approach would be based on an exhaustive search

of a full set of features in order to find the optimal subset. However, an exhaustive

search becomes rapidly impractical as the number of features (denoted by d) increases

(even for a moderate number of features) [1, 10, 20] . If we look at different ways

in which feature subsets are generated among many variations, three basic schemes

are available in the literature; forward selection, backward elimination, and random

scheme [8].

Forward selection and backward elimination are considered to be heuristics. Gen-

erally, sequential generation can help in getting a valid subset within a reasonable

amount of time, but it is still impossible to look for an optimal subset. This is due

to the fact that the generation scheme uses a heuristic to obtain an optimal subset

by sequentially selecting the best one (as in the forward case) or removing the worst

one (as in the backward case). Using such a generator will certainly speed up the

selection process; however, it cannot turn back if the search falls in a local optimum.

In fact that the generator has no way of getting out of the local optimum because

what has been removed in each step cannot be added in the next steps. This fact is

an important shortcoming of sequential schemes.

To overcome this problem, one can use a random-generation scheme to add ran-

domness to the fixed rule of sequential generation and avoid getting stuck at some

local optima. Although the random-generation scheme could improve the sequen-

tial results, it does not guarantee finding an optimal subset. This can be further

elaborated in terms of the search strategies [19].

Hence, we propose reducing the number of features by forward selection and

backward elimination in order to minimize the search space so that the exhaustive

search method can handle the generation process within a realistic amount of time. In

this way, the selected feature set is much better in terms of accuracy than those from

forward selection and backward elimination; the feature subsets are also obtained

much faster than with the exhaustive method.

3. New approach for wrapper feature selection

In this section, we design a combination approach for wrapper feature selection. We

consider building a three-stage wrapper feature-selection model.

• At first, a primary dimensionality reduction step based on a similarity study with

the prior knowledge is conducted on the original feature space. This step is used

to reduce the search space.

• Second, the subset-generation step is performed by using a mixture of heuristic

and exhaustive search methods.

• The final step is an evaluation of the effect of the wrapper feature selection by

using multiple classifiers from the same family as well as the effect of combining

multiple classifiers from different families in the wrapper process.
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3.1. Primary dimensionality reduction step: similarity study

The first step of the designed approach aims specifically at selecting fewer redundant

features without a loss of quality. The redundancy is measured by a similarity measure

between a pre-selected set of features and the remaining features in the dataset. The

objective is to enhance the existing set of pre-selected features by adding additional

features as a complement. This enhancement is based on expert knowledge.

Experts from banks typically possess valuable knowledge about which important

features to be included in an analysis based on their experience. Thus, the possible

improvement of an exhaustive search is to use this prior knowledge and eliminate any

redundant features before generating the candidate subsets. Since our goal is to take

advantage of any additional information about this feature, we build a complementary

set of features to be added to those that were pre-selected by bank experts.

First, we split the features into two sets. The first one groups a set of features

that were assumed to be more relevant according to some prior knowledge (selected

by experts), while the second set contains those that remain. Once the two sets are

obtained, we conduct a similarity study on the exiting correlations between the set

of variables by using the mutual information (MI) metric. This metric is used to

measure the relevance of features by taking the amount of information that is shared

by two features into account. Formally, the MI of two continuous random variables

(Xj and Xj′) is defined as follows:

MI(Xj , Xj′) =

∫ ∫
p(xj , xj′)log

p(xj , xj′)

p(xj)p(xj′)
dxjdxj′, (1)

where p(xj , xj′) is the joint probability density function, and p(xj) and p(xj′) are the

marginal probability density functions.

In the case of discrete random variables, the double integral becomes a summa-

tion, where p(xj , xj′) is the joint probability mass function, and p(xj) and p(xj′) are

the marginal probability mass functions. Large values of MI indicate a high correla-

tion between two features, and zero indicates that two features are uncorrelated.

Once the pair-based similarity matrix is obtained, we investigate the levels of

the similarity of each pair of features from the two different sets. If the similarity is

above 80%, the evaluated feature is eliminated; otherwise, this variable is maintained

for further examination.

The first part of Figure 1 shows a simplified flow chart of the dimensionality

reduction before the second step.
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Figure 1. Wrapper approach that combines multiple classifiers for feature selection; Fi

represents feature to be evaluated in each step

3.2. Subset-generation step: combination of
heuristics for reducing set of features

Although the search space is reduced in the previous step, applying an exhaustive

search is still computationally impossible. According to [1], an exhaustive search

can be done only when the number of features is less than ten. Using more than ten

features would be costly in terms of computational time. In fact, an exhaustive search

is an enumeration search method that considers all possible feature combinations. To

reduce the search space to a manageable size, specific heuristics can be used. Our

objective in this second step is to reduce the search space to fewer than ten features

to make an exhaustive search using heuristics possible.

In theory, each search strategy has its particular effects on the selected feature

subset as well as on the performance of the induction algorithm. Therefore, we propose

the use of ensemble methods to combine the results of several heuristics. We use

both sequential forward feature selection and backward feature elimination as part of

a combined feature selection. Figure 2 illustrates the proposed combination process

for an example of ten features. In the first step, the forward-selection and backward-
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elimination methods are simultaneously applied to the reduced feature set, resulting

in two different intermediate feature lists. Each list includes a set of complementary

variables. In the second step, the two lists are merged into one single list of the most

relevant features, while the non-selected features are eliminated. Since some of the

selected features may appear in one of the intermediate feature lists and not in the

other, these features must be re-weighted in order to take their relevance degree into

consideration. A feature that is selected by both forward and backward selection is

considered to be more relevant than another feature that is selected only once.

Consequently, the resulting features are then re-weighted according to their num-

bers of appearances in the intermediate lists. Actually, the weight is equal to 1 if it

appears in the two intermediate feature subsets; otherwise, it is 0.5. In the third step,

a complete search is used on the weighted features.

Figure 2. Combined wrapper’s feature selection-search strategies

3.3. Evaluation step: effects of using multiple classifiers

Many classification methods have been proposed to deal with the credit-worthiness

problem on the basis of information from past applicants. The most common sta-

tistical methods for evaluating applicants’ solvency are logistic regression (LR) and

discriminant analysis (DA) [12]. Unfortunately, this category of methods needs some
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fundamental assumptions on the data [17], such as the normality distribution and

absence of multi-collinearity. In addition to statistical methods, different machine-

learning and artificial-intelligence methods have been used; e.g., Decision Tree (DT),

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and many oth-

ers. Although the majority of these methods are simple and do not need assumptions

on the data, those methods need a good mechanism to search for optimal model

parameters and feature subsets.

Each of these individual methods produces a single discrimination rule and has

some qualities and restrictions that may influence the feature-evaluation process. No

one can generalize the superiority of one classifier over another for all applications.

Rather than trying to optimize the accuracy of one classifier, it is better to integrate

multiple classifiers. This approach has been recognized to be successful, as it achieves

better performance and has a higher precision of predictability in the learning process

[2,5,16]. Here, the same ensemble concept is adopted. Figure 1 shows how the results

of a set of classifiers are merged to form a new evaluation function.

3.3.1. Classifier selection and arrangement approaches

The chosen algorithms in this study are representative of the most popular family of

machine-learning classifier models that were selected to form committees of experts

in order to test various classifier-combination schemes. We focus only on the general

aspect of each family. Among the most popular classifier models, four were selected:

DT, SVM, KNN, and ANN.

For the combination of classifiers, two different classifier arrangement approaches

are used within the wrapper-evaluation process; namely, the same-type approach, and

the mixed-type approach. The same-type approach combines only classifiers from

the same family and uses them within the wrapper framework to select the relevant

features, while the mixed-type approach combines classifiers from different families.

Table 1
Summary of used classifiers within each family

DT ANN KNN SVM

J48 Multi-layer Perceptron (MP) K=1 (1NN) Polynomial (SVMP)

RandomForest (RF) Voted Perceptron (VP) K=5 (5NN) Radial (SVMR)

For the same-type combination approach, we combined two classifiers for each of

the four families of algorithms; these were as follows: two classifiers from the DT fam-

ily, two from the ANN family, one from the KNN family (with two different numbers

of neighbors – K=1, and K=5), and one from the SVM family (with two different

kernels: polynomial and radial kernel functions). All of the considered classifiers are

summarized in Table 1.

Concerning the mixed-type arrangement approach, we investigate how classifiers

from different families work together and how their interaction affects the selection
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of the features. The classifiers are combined so that each is used with every other

one from a different nature. This leads to the construction of a total of 76 mixed-

type classifier combinations (described in Tables 2–3), which include 24 two-classifier

mixed-type combinations and 52 three-mixed-type combinations.

Table 2
Summary of possible combinations of pairs of selected classifiers

Possible combinations

(J48+ SVMP), (J48+ SVMR), (J48+ MP), (J48+ VP), (J48 +1NN),

(J48+5NN), (RF+ SVMP), (RF+ SVMR), (RF+ MP), (RF+ VP),

(RF +1NN), (RF+5NN),( SVMP + MP), (SVMP + VP), (SVMP +1NN),

(SVMP +5NN), (SVMR + MP), (SVMR + VP), (SVMR +1NN),

(SVMR +5NN), (MP +1NN), (MP +5NN), (VP +1NN), (VP +5NN).

Table 3
Summary of all possible combinations of three classifiers

Possible combinations

(J48 +RF + SVMP), (J48 +RF+ SVMR), (J48 +RF + MP), (J48 +RF +VP),

(J48 +RF +1NN), (J48 +RF +5NN), (J48+ SVMP+ SVMR), (J48+ MP + VP),

(J48 +1NN+5NN), (J48+ SVMP + MP),( J48+ SVMP + VP), (j48+SVMP +1NN),

(J48+ SVMP +5NN), (J48+ SVMR + MP), (J48+ SVMR + VP), (J48+ SVMR +1NN),

(J48+ SVMR +5NN), (J48+ MP +1NN), (J48+ MP +5NN), (J48+ VP +1NN),

(J48+ VP +5NN), (RF + SVMP+ SVMR), (RF + MP + VP), (RF +1NN+5NN),

(RF + SVMP + MP), (RF + SVMP + VP), (RF+SVMP +1NN), (RF + SVMP +5NN),

(RF + SVMR + MP), (RF + SVMR + VP), (RF+SVMR +1NN), (RF + SVMR +5NN),

(RF + MP +1NN), (RF + MP +5NN), (RF + VP +1NN), (RF + VP +5NN),

(SVMP+SVMR + MP), (SVMP+SVMR +VP), (SVMP+SVMR +1NN), (SVMP+SVMR
+5NN),

(SVMP + MP + VP), (SVMP +1NN+5NN), (SVMP + MP +1NN), (SVMP + MP +5NN),

(SVMP + VP +1NN), (SVMP + VP +5NN), (SVMR + MP + VP), (SVMR +1NN+5NN),

(SVMR + MP +1NN), (SVMR + MP +5NN), (SVMR + VP +1NN), (SVMR + VP +5NN).
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3.3.2. Aggregation rules

Traditionally, an experimental study is performed to compare the performance of

several classifiers and select the best ones in order to build a multi-classifier system.

However, many alternative approaches that are based on combining multiple classifiers

have emerged over the recent years [6, 7], which can be basically classified into two

classifier-combination scenarios. In the first scenario, all of the classifiers use the same

representation of the input example. In this case, each classifier (for a given input

example) produces an estimate of the same posterior class probability. In the second

scenario, each classifier uses its representation of the input example. For multiple

classifiers that use distinct representations, many existing schemes can be considered

where all of the representations are used jointly in order to make a decision. Examples

of these combination rules are the the average rule, minimum rule, maximum rule,

and majority voting rule.

The arithmetic mean (also known as the average) gives an aggregated value

that is smaller than the greatest argument and greater than the smallest one. The

resulting aggregation is “a middle value.” The minimum and maximum are also

basic aggregation operators; the minimum gives the smallest value of a set, while

the maximum gives the greatest one. Majority voting is also a common classifier

combination method; it is used particularly in classifier ensembles when the class

labels of the classifiers are crisp. Majority voting does not require any parameter to

be trained nor any additional information for the later interpretation of results.

4. Experimental Investigations

4.1. Dataset description and evaluation metrics

To evaluate the performance of the proposed multi-classifier wrapper feature-selection

model in credit scoring, we considered four different real-world credit datasets: the

Australian, German, and HMEQ credit datasets (which are extracted from the UCI

repository of machine-learning databases), and a credit dataset from a Tunisian bank.

Table 4 displays the main characteristics of the used datasets.

Table 4
Summary of datasets used in experiments

Names Australian German HMEQ Tunisian

Total instances 690 1000 5960 2970

Nominal features 6 13 2 11

Numeric features 8 7 10 11

Total features 14 20 12 22

Number of classes 2 2 2 2
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• The Australian credit dataset presents an interesting mixture of attributes: con-

tinuous, nominal with small numbers of values, and nominal with larger numbers

of values (with few missing values). This dataset composed of 690 instances,

where 307 were creditworthy and 383 were not. All of the attribute names and

values were changed to meaningless symbols for confidentiality.

• The German credit dataset is often used by credit specialists for classification

purposes. This dataset covered a sample of 1000 credit consumers, where 700

instances were creditworthy and 300 were not. For each applicant, 21 numeric

input variables were available: 7 numeric, 13 categorical, and 1 target attribute.

• The HMEQ credit dataset was composed of 5960 instances that described recent

home equity loans, where 4771 instances were creditworthy and 1189 were not.

The target was a binary variable that indicated whether or not an applicant

eventually defaulted. For each applicant, 12 input variables were recorded (where

10 were continuous features, 1 was binary, and 1 was nominal).

• The Tunisian credit dataset covered a sample of 2970 instances of credit con-

sumers, where 2523 instances were creditworthy and 446 were not. Each credit

applicant was described by a binary target variable and a set of 22 input variables,

where 11 features were numerical and 11 were categorical.

For each dataset, any missing values were replaced with the mean or mode (the

value that appears the most often) of the features depending on the type of variable

(numerical or categorical). In addition, we performed a discretization process for all

of the continuous variables in each dataset in order to simplify the interpretations of

the results.

The performance of the designed model (including the three stages) was evaluated

once for all of the stages. Given the difficulty of the first stage of the model (which

depended on the expert recommendations and on the specificity of the credit-scoring

application), we considered that all of the presented variables in the datasets resulted

from the first stage of our model. Concerning the evaluation measures, we used

standard information-retrieval performance measures: precision, recall, F-measure,

and ROC area.

4.2. Results and discussion

The precision, recall, F-measure, and ROC area of the feature subsets that were

selected from different combinations are given in Tables 5, 6, 7, and 8 for the four

datasets using a ten-fold cross validation. The best results are shown in bold. Two

approaches for wrapper evaluation are presented; namely, the same-type and mixed-

type approaches. The results for the first approach are investigated in Section (4.2.1),

and those for the second approach are presented in Section (4.2.2).

4.2.1. Results and discussion for same-type approach

When looking at the results that were produced by the DT family in Tables 5, 6, 7,

and 8, we notice that the J48 classifier achieves the best individual results in most
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cases for the German, HMEQ, and Tunisian datasets; however, the individual results

that were produced by SVM were slightly better in the Australian dataset.

Table 5
Performance comparison of new wrapper method and other feature-selection methods

for Australian dataset

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.867 0.855 0.855 0.862

RF 0.863 0.851 0.851 0.858

Average 0.782 0.925 0.848 0.863

Product 0.864 0.852 0.853 0.859

Maximum 0.930 0.794 0.856 0.859

Minimum 0.866 0.855 0.855 0.862

Majority Vote 0.782 0.922 0.846 0.865

Support Vector Machine

SVMP 0.921 0.794 0.853 0.855

SVMR 0.930 0.799 0.860 0.862

Average 0.787 0.925 0.850 0.864

Product 0.866 0.855 0.855 0.861

Maximum 0.859 0.848 0.848 0.856

Minimum 0.927 0.794 0.855 0.858

Majority Vote 0.781 0.915 0.848 0.857

Artificial Neural Network

MP 0.860 0.849 0.850 0.856

VP 0.859 0.848 0.848 0.855

Average 0.862 0.851 0.851 0.857

Product 0.783 0.919 0.861 0.860

Maximum 0.862 0.851 0.851 0.857

Minimum 0.862 0.851 0.851 0.857

Majority Vote 0.864 0.853 0.854 0.858

K-Nearest Neighbor

1NN 0.865 0.852 0.852 0.860

5NN 0.859 0.848 0.848 0.855

Average 0.812 0.890 0.849 0.877

Product 0.811 0.866 0.838 0.883

Maximum 0.820 0.880 0.849 0.875

Minimum 0.824 0.823 0.822 0.876

Majority Vote 0.853 0.851 0.851 0.882
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Table 6
Performance comparison of new wrapper method and other feature-selection methods

for German dataset

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.735 0.750 0.723 0.635

RF 0.686 0.716 0.665 0.570

Average 0.740 0.930 0.824 0.583

Product 0.732 0.933 0.820 0.568

Maximum 0.741 0.930 0.825 0.585

Minimum 0.744 0.929 0.826 0.591

Majority Vote 0.740 0.934 0.826 0.635

Support Vector Machine

SVMP 0.490 0.700 0.576 0.500

SVMR 0.708 0.728 0.709 0.627

Average 0.695 0.722 0.678 0.583

Product 0.682 0.714 0.664 0.568

Maximum 0.697 0.723 0.680 0.585

Minimum 0.702 0.726 0.685 0.591

Majority Vote 0.699 0.724 0.679 0.584

Artificial Neural Network

MP 0.719 0.738 0.717 0.634

VP 0.703 0.726 0.701 0.614

Average 0.769 0.896 0.827 0.634

Product 0.769 0.894 0.825 0.645

Maximum 0.758 0.894 0.820 0.643

Minimum 0.717 0.737 0.712 0.625

Majority Vote 0.764 0.904 0.828 0.625

K-Nearest Neighbor

1NN 0.699 0.724 0.677 0.582

5NN 0.691 0.718 0.688 0.598

Average 0.745 0.917 0.822 0.592

Product 0.739 0.937 0.826 0.601

Maximum 0.749 0.899 0.817 0.597

Minimum 0.745 0.917 0.822 0.592

Majority Vote 0.742 0.914 0.819 0.587



Efficient multi-classifier wrapper feature-selection model . . . 147

Table 7
Performance comparison of new wrapper method and other feature-selection methods

for HMEQ dataset

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.859 0.864 0.844 0.795

RF 0.857 0.860 0.838 0.785

Average 0.867 0.982 0.921 0.793

Product 0.863 0.983 0.918 0.787

Maximum 0.914 0.899 0.906 0.809

Minimum 0.855 0.852 0.853 0.806

Majority Vote 0.868 0.979 0.920 0.797

Support Vector Machine

SVMP 0.633 0.796 0.705 0.555

SVMR 0.843 0.804 0.724 0.619

Average 0.827 0.977 0.896 0.701

Product 0.809 0.815 0.759 0.662

Maximum 0.816 0.822 0.774 0.683

Minimum 0.800 0.819 0.778 0.691

Majority Vote 0.824 0.987 0.898 0.682

Artificial Neural Network

MP 0.693 0.638 0.664 0.677

VP 0.81 0.827 0.789 0.607

Average 0.868 0.871 0.869 0.877

Product 0.835 0.977 0.902 0.602

Maximum 0.811 0.829 0.793 0.734

Minimum 0.838 0.974 0.901 0.732

Majority Vote 0.911 0.930 0.920 0.879

K-Nearest Neighbor

1NN 0.852 0.837 0.791 0.803

5NN 0.837 0.824 0.766 0.812

Average 0.821 0.998 0.901 0.891

Product 0.850 0.825 0.766 0.881

Maximum 0.889 0.997 0.940 0.889

Minimum 0.821 0.996 0.900 0.842

Majority Vote 0.832 0.996 0.907 0.844
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Table 8
Performance comparison of new wrapper method and other feature-selection methods

for Tunisian dataset

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.722 0.850 0.781 0.597

RF 0.797 0.846 0.801 0.695

Average 0.858 0.985 0.917 0.652

Product 0.859 0.985 0.918 0.655

Maximum 0.866 0.985 0.921 0.653

Minimum 0.861 0.986 0.919 0.644

Majority Vote 0.858 0.987 0.917 0.649

Support Vector Machine

SVMP 0.722 0.850 0.781 0.500

SVMR 0.797 0.837 0.805 0.566

Average 0.861 0.962 0.909 0.666

Product 0.710 0.842 0.770 0.500

Maximum 0.860 0.968 0.911 0.563

Minimum 0.798 0.839 0.803 0.661

Majority Vote 0.859 0.968 0.910 0.656

Artificial Neural Network

MP 0.802 0.843 0.800 0.577

VP 0.826 0.857 0.816 0.562

Average 0.856 0.979 0.913 0.677

Product 0.865 0.984 0.921 0.659

Maximum 0.867 0.975 0.918 0.668

Minimum 0.888 0.855 0.871 0.731

Majority Vote 0.866 0.981 0.920 0.657

K-Nearest Neighbor

1NN 0.785 0.843 0.794 0.680

5NN 0.792 0.844 0.800 0.685

Average 0.855 0.977 0.912 0.775

Product 0.852 0.993 0.917 0.756

Maximum 0.864 0.925 0.893 0.746

Minimum 0.863 0.932 0.896 0.704

Majority Vote 0.866 0.985 0.921 0.753
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The good performance of the wrapper using DT classifiers was guided by the

nature of this family, which is well-known for its highly accurate performance on

financial data [13]. Another important fact that can easily be seen in Tables 5, 6, 7,

and 8 is the improvement of the results when using the combination processes of DT,

which gave better results than the individual DT classifiers in all of the datasets. The

combination rules for DT featured approximately the same performance. Concerning

the results of the SVM family, we notice some differences among the individual results

from the polynomial and radial SVMs in Tables 5, 6, 7, and 8. For the four datasets,

we noticed that the performance with the radial SVM was slightly better. This result

was due to the nature of the two kernels. In general, a polynomial kernel looks for

linear characteristics within datasets, while a radial kernel identifies the linear and

non-linear aspects of datasets. We also noticed that the same-type combinations

with SVM improved the overall performance in the large datasets. This improvement

was due to the selected features within the combination process (which were more

suitable for the classification task). For example, a combination of majority vote

with minimum and average rules gave significantly higher ROC area and F-measure

rates in the Tunisian and HMEQ datasets. The good performance of the obtained

combinations that used the SVM family was the result of their natural simplicity.

Concerning the results of the ANN and KNN families, Tables 5, 6, 7, and 8 show

that both the KNN and ANN classifiers always gave better results when the size of

the dataset was small (as in the cases of the German and Australian datasets). For

these datasets, the KNN and ANN combination rules resulted in higher classification

performance.

We investigate the influence of the classifier family on the selected features. It

is interesting to know whether the observed results were only due to the types of

classifiers or if they were a result of their interactions with the aggregation meth-

ods. Hence, we use a two-way ANOVA to analyze whether the mean values of the

F-measure significantly changed along with the levels of the two independent variables

(the classifier and aggregation methods). The first independent variable classifier

presented the first factor in the ANOVA analysis, where DT, SVM, ANN, and KNN

presented the levels of this variable. The aggregation method presented the second

factor in ANOVA, where {Average, Product,Maximum,Minimum,MajorityV ote}
presented the levels of this second factor. To test the interaction, we use the hypothe-

ses presented below.

For the first factor (Classifier), H0 and H1 are given by the following:



H0 : µ1
DT = µ1

SVM = µ1
ANN = µ1

KNN – performances of classifiers are equal

versus

H1 : ∀t, µ1
t ̸= µ1

i , i, t ∈ {DT, SVM,KNN,ANN}, i ̸= t – at least one classifer’s

mean performance is different than the others.
(2)
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H0 and H1 for Factor 2 (i.e., the aggregation method) would be as follows:

H0 : µ2
Aver = µ2

Prod = µ2
Max = µ2

Min = µ2
MajV – performances of aggregation

methods are equal

versus

H1 : ∀t, µ2
t ̸= µ2

i , i, t ∈ {Aver, Prod,Max,Min,MajV }, i ̸= t – at least one

aggregation method’s mean performance is different than the others.
(3)

The results that were obtained from the two-way ANOVA are summarized in

Table 9.

Table 9
Tests of between-subject effects in wrapper framework

Source Type III Sum

of Squares

DF Mean Square F Sig. (p-value)

Aggregation Method 0.013 4 0.003 0.768 0.550

Classifier 0.063 3 0.021 5.081 0.003

Aggregation Method

* Classifier Error

0.015 12 0.001 0.301 0.987

0.247 60 0.004 – –

Corrected Total 0.338 79 – – –

Dependent Variable: F-measure

Table 10
Multiple comparison table for classifier levels in wrapper framework

Classifier (I) Classifier (J) Mean difference (I−J) Sig.

ANN DT –0.01405 0.900

KNN –0.003 0.999

SVM 0.05790* 0.030

DT ANN 0.01405 0.900

KNN 0.01105 0.948

SVM 0.07195* 0.004

KNN ANN 0.003 0.999

DT –0.01105 0.948

SVM 0.06090* 0.020

SVM ANN –0.05790* 0.030

DT –0.07195* 0.004

KNN –0.06090* 0.020

The obtained results of the two-way ANOVA (shown in Table 9) show that we

do not have a significant interaction between the two factors; this indicates that the

impact on the outcome of any specific level change of the F-measure in one factor is
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the same for every fixed setting of the other factors (p-value = 0.003). When ANOVA

gave a significant result for one of the classification methods, this indicated that at

least one classifier’s results differed from the other classifiers. Yet, the ANOVA test did

not indicate which classifier’s results influenced the rejection ofH0. In order to analyze

the pattern of the differences between the means, we follow the ANOVA results by

pairwise comparisons. The results of these pairwise comparisons for the classifiers are

given in Table 10. This table shows that there was a statistically significant difference

between the obtained results from SVM and the others classifications.

4.2.2. Results and discussion for mixed-type approach

Given the large number of combinations, the mixed-type approach was evaluated us-

ing only the Australian dataset; these results are summarized in Tables 11 and 12.

The first table presents the results for the two-classifier mixed combination, while the

second presents those for the three-classifier mixed combination. We investigated

the impact of the type of classifier and the combination number (two or three) on the

feature-selection results.

Table 11
Total number of evaluated subsets and selected features by two classifiers,

mixed-type combinations, and associated F-measure rates for Australian dataset

Lowest F-measure lies

between 0.847 and 0.855

Intermediate F-measure
lies between

0.856 and 0.859

Highest F-measure lies
between 0.860 and 0.874

j48+1NN (79.3) J48+ SVMP (106.4) J48+ MP (116.7)

RF+SVMR (82.2) J48+ SVMR (106.4) RF+SVMP (79.3)

RF+MP (111.6) J48 + VP (120.7) RF+1NN (96.4)

RF+VP (104.5) j48+5NN (105.4) SVMP+VP (88.4)

RF+5NN (96.4) SVMP+MP (112.5) SVMP+1NN (79.3)

SVMP+5NN (116.6) SVMR+MP (112.7) MP+5NN (121.7)

SVMR+1NN (79.3) SVMR+VP (116.7) VP+5NN (117.7)

SVMR+5NN (127.9)

MP+1NN (107.6)

VP+1NN (127.6)

From Tables 11 and 12, we notice that a combination with few classifiers can

achieve the selection of the feature that gives the best F-measure with a smaller num-

ber of evaluated subsets. More specifically, the two-classifiers’ combinations produced

an F-measure that was within a range of [0.860to0.874] with a number of evaluated

subsets that did not exceed 121 evaluations. On the other hand, the three-classifiers’

combination gives the same rate but with a much higher number of evaluated subsets.

Table 11 shows that combining DT classifiers with ANN or KNN classifiers gener-

ally yields the lowest F-measures (RF+MP, RF+VP, RF+5NN, and J48+1NN); this
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was due to the difference in the nature between these three types of classifiers. Actu-

ally, ANN classifiers identify the relationships between features based on the available

prior knowledge about the actual features in a dataset. However, KNN classifiers se-

lect the most relevant features with the closest distance to a set of specified features

that are called neighbors. For this family, the resulting features depend on the number

of chosen neighbors. DT classifiers are theoretically different from ANN and KNN,

which use a statistical measurement to evaluate the relevance of the features.

Table 12
Total number of evaluated subsets and selected features by three classifiers,

mixed-type combinations, and associated F-measure rates for Australian dataset

Lowest F-measure lies

between 0.847 and 0.855

Intermediate F-measure lies
between 0.856 and 0.859

Highest F-measure lies
between 0.860 and 0.874

J48+RF+MV (136.7) J48+RF+SVMP (82.2) J48+RF+1NN (79.3)

J48+RF+5NN (131.9) J48+RF+SVMR (75.2) J48+VP+1NN (139.7)

J48+1NN+5NN (114.7) J48+RF+MP (144.10) RF+MP+VP (111.6)

J48+SVMR+MP (146.7) J48+MP+VM (126.7) RF+SVMP+MP (132.6)

J48+SVMR+1NN (75.2) J48+SVMP+SVMR (75.2) RF+SVMP+VP (120.8)

J48+SVMR+5NN (141.10) J48+SVMP+MP (126.7) RF+SVMP+1NN (116.7)

J48+MP+5NN (122.7) J48+SVMP+VP (139.6) RF+SVMR+MP (126.9)

J48+VP+5NN (112.7) J48+SVMP+1NN (118.6) RF+SVMR+VP (135.7)

RF+1NN+5NN (79.3) J48+SVMP+5NN (139.10) SVMP+1NN+5NN (108.7)

RF+SVMP+5NN (94.5) J48+SVMR+VP (189.7) SVMP+MP+1NN (132.8)

RF+SVMR+1NN (88.3) J48+MP+1NN (165.10) SVMR+MP+5NN (132.10)

RF+SVMR+5NN (117.8) RF+SVMP+SVMR (82.2) SVMP+VP+1NN (118.10)

RF+MP+1NN (130.7) MP+SVMP+SVMR (139.6) SVMR+1NN+5NN (108.7)

RF+MP+5NN (133.10) VP+SVMP+SVMR (120.5) SVMR+MP+1NN (132.9)

RF+VP+1NN (130.7) 1NN+SVMP+SVMR (82.2) SVMR+MP+5NN (149.9)

RF+VP+5NN (123.10) 5NN+SVMP+SVMR (75.2) SVMR+VP+5NN (149.9)

SVMP+MP+VP (109.5)

SVMP+VP+5NN (153.11)

SVMR+MP+VP (109.5)

SVMR+VP+1NN (122.8)

Table 12 shows that the majority of those combinations with SVM classifiers

selected sets of features that achieved the best rates of F-measure – especially the

case when SVM classifiers were combined with KNN classifiers. The fact that these

combinations led to high F-measure values despite the fact that they consider clas-

sifiers from different families could be due to the existence of particular similarities

between these two families. KNN classifiers use a distance metric to decide which are

the most relevant features for a target variable, while SVM classifiers use a distance

metric to select the most relevant features by measuring the distance between each

feature in accordance with the hyper-plane that separates the best class from the

target concept.
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5. Conclusion

The results that were obtained in this study imply that using feature selection as

a pre-processing task helps credit-scoring models to be simpler to understand and

faster to build and to have fewer features and better classification performance.

The main goal of our study was to get a robust and simple credit-scoring model;

hence, we based our work on the idea that improving a credit-scoring model that

detects applicants with bad credit (even by one percent) could lead to a significant

decrease in losses for financial institutions. We addressed this issue by emphasizing

that a more accurate credit scoring model could be achieved by using the most rel-

evant features; from this comes the importance of feature selection. These merits

might encourage us to carry out the necessary feature-selection processes in financial

institutions.

In this study, we developed an ensemble wrapper feature-selection approach for

a credit-scoring application. The proposed approach was composed of three stages.

In the first stage, we performed a dimensionality reduction by using bank experts’

knowledge. In the second stage, a heuristic was used to reduce the search space to

fewer than ten features (which makes an exhaustive search easier). In the final stage,

the generated subsets were evaluated using a multi-classifiers process that involved two

arrangement approaches; namely, the same-type and mixed-type approaches. From

the three stages, we showed that the use of prior information on relevant features

effectively induced a significant gain in complexity with improved generalization. Also,

we showed that the number of classifiers and their nature had an important impact

on wrapper feature-selection results.

Future research would have to be done in order to draw more-generalized conclu-

sions. Specifically, increasing the number of used classifiers in our evaluation frame-

work can be used to consolidate the obtained conclusions, and other real datasets

could also be included.
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