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Abstract The task of mining association rules has become one of the most widely used

discovery pattern methods in knowledge discovery in databases (KDD). One

such task is to represent an item set in the memory. The representation of

the item set largely depends on the type of data structure that is used for

storing them. Computing the process of mining an association rule impacts the

memory and time requirements of the item set. With the constant increase of

the dimensionality of data and data sets, mining such a large volume of data

sets will be difficult since all of these item sets cannot be placed in the main

memory. As the representation of an item set greatly affects the efficiency of

the rule-mining association, a compact and compressed representation of the

item set is needed. In this paper, a set representation is introduced that is more

memory- and cost-efficient. Bitmap representation takes 1 byte for an element,

but a set representation uses 1 bit. The set representation is being incorporated

in the Apriori algorithm. Set representation is also being tested for different

rule-generation algorithms. The complexities of these different rule-generation

algorithms that use set representation are being compared in terms of memory

and time of execution.
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1. Introduction

Association-rule mining is considered to be one of the most important aspects in the

data-mining domain. The process of the mining of association rules between items

was introduced that generate rules for items in large databases [1]. The main objective

is to find the interesting patterns, correlations, and associations between data items

in such transactions. These data items are stored in the memory for the process of

mining. In order to store the items in the memory, a data structure is needed for

representing the items. One such data structure is an array that consumes 4 bytes

for an item (if it is an integer) [10]. If the data set size is 100, then the number

of consumed bytes will be 100 · 4 = 400 bytes. Depending on the size of the data

set, the number of bytes for storing the items in the memory will also vary. When

a data set is large, the process of mining the item sets will also consume more time

and memory [38, 39]. In this paper, set representation is used for representing item

sets in the memory. This representation is more compressed and efficient than the

other representation, as it consumes only 1 bit for each item. With a compressed and

concise item-set representation, additional storage may not be required. This paper

consists of the following sections:

• representation for item set called set representation;

• data is mined using Apriori algorithm;

• different rule-generation algorithms are used for generating rules.

In this paper, the computation operation is accomplished by using Boolean operators;

this will speed up the mining process. Hence, the process of mining and generating

rules will also be rapid and fast. Then, rule-generation algorithms such as Agar-

wal’s algorithm, Srikant’s algorithm, and NBG’s algorithm will be tested using set

representation with varying item set sizes.

2. Background concepts

The database (D) consists of a set of transactions where each refers to a collection of

items that occur together in the same transaction. Each transaction is unique and is

identified by using an identifier (TID).

• Item: refers to an element that occurs in a given data set. For a given data set D,

the formal representation of an item set is represented by I ={i1, i2, i3, ..., in},
where each {i1, i2, i3, ..., in} element denotes an item.

• Item set: represents a group of items that occur together. An item set is identified

as a set of {i1, i2, i3, ..., in} items that occur together. For example, I={i2, i4, i6}
is an item set.

• Transactional data set: consists of a set of items that happen together in each

transaction; it is represented by a unique identification.
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• Support count: defines the frequency of an item set that occurs throughout an

entire database.

• Confidence: refers to the number of times an item X occurs (an item T also exists

that occurs in the same transaction).

• Frequent item set: an item set whose support count is more than a threshold

value [1–3].

• Association rule: A rule is known as an association rule if it in the form of

X → Y , where X and Y are the set of items, X → Y (where X and Y are the

subsets of I), and X ∩ Y = 0 [1,11].

2.1. Finding association rules

Association-rule mining is probabilistic. RuleX → Y holds for a minimum confidence,

but rule X + Z → Y does not necessarily mean that the rule is valid since it may

not have the required minimum threshold. Similarly, the rule is not transitive. This

means that rule X → Y and Y → Z may have held for a minimum threshold, but it

does not mean that X → Z will hold [1] [3] [2]. The problems with association-rule

mining can be categorized into two parts:

• Generating all of the possible combinations of the items that have support that

is greater than or equal to the support threshold. These item sets are called

frequent item sets.

• Generating rules from a given data set that have support and confidence that are

greater than the minimum threshold value [39].

Other additional constraints are needed for checking the generation of rules; these are

as follows:

• Syntactic constraints

These are the constraints that involve restricting the antecedent and the conse-

quent of a rule. A combination of the structures of the rule may require that

some predefined X appears in the consequent part, while some of the structures

of the rule appear in the antecedent part. In a check-out basket transaction,

for example, a user specifies an additional restriction on the rule such that the

antecedent part may contain only ‘milk’ and ‘cheese’ [1].

• Support constraints

The support constraint is of a primary importance for the generation of candidate

item sets; this gives the statistical significance and level of interest of a rule. If

the support count is not high, then the importance of the rule decreases. This

rule is not important enough for consideration, and it is less preferred. If there

are many generated rules that satisfy the minimum support count, then the more

applicable the rule will be. This is critical from a business point of view as well

as statistically [1].
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• Confidence constraints

This is the metric that defines a rule’s strength; it indicates how the degree of

the items in an antecedent is related to the items in the consequent part. Using

the confidence constraint, an association rule is considered to be either irrelevant

or interesting. Rules that are greater than a minimum confidence are considered

to be more relevant than those with a confidence count that is lower than the

minimum value [1]. There are other ways of optimizing rule generation, such as

reducing the number of checks at run time [28].

3. Related work

Over the years, many algorithms have been developed that have enhanced the process

of mining in many ways (such as faster execution and less space consumption). The

algorithms that have been produced are quantitative association rules like [2], gener-

alized rules such as [1], and sequential patterns such as [9,39]; big graphs [8] have also

been introduced. Improved Apriori algorithms have been introduced (such as [17]).

The NOV-CFI algorithm is an algorithm that deals with closed frequent item sets [30].

Mining algorithms have been used in many applications such as providing guidance

to students [35] and helping students for selecting courses [24]. In [1], the authors

addressed how to mine patterns. An idea called a local dependency item set was

discovered; it considers a user’s level of interest from a local view on how the mining

of patterns can be done. Even when the support count is low, the patterns that are

associated with such items are not deleted. However, a disadvantage of this algorithm

is apparent when the size of a data set is large. Storing item sets in the memory will

not only require more time but also increase the computational cost. An algorithm

called CRAR (the concurrent relational association-rule-mining algorithm) is used to

discover RAR in large data sets. However, it is a CPU-bound algorithm that requires

higher-level processors or multiple processors to increase its computation. Using this

algorithm, a lot of resources are needed for computation, which increases computation

time and costs [15]. ACAR (atomic class association-rule mining) is applied to prune

to specific rules (redundant and inconsistent rules); it solves the problem of rules that

are defective that are caused due to an imbalance. This algorithm divides a data set

into classes (i.e., true and false sets); then, rules will be generated for each. Although

it predicts any defect on an association, it also consumes more time if a data set

is very large [33]. To reduce the computational cost and the number of tasks, the

following criteria need to be considered:

• To reduce the number of passes over a database.

An algorithm such as FP is a major improvement as compared to the traditional

Apriori algorithm (where the number of passes is only two). Frequent item sets

are generated without producing candidate item sets by using only two passes of

a database [20].
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• To reduce the sample of a database.

The authors of [40] used sampling for representing an association-rule-mining

algorithm; this algorithm has two phases. Those rules that are not frequent in

the first phase are used for constructing the set in the second phase. These rules

may not be frequent in the first phase but are frequent in the entire database. The

authors of [14] introduced a novel approach called sampling error estimation that

identifies the sample size of mining association rules. It gives an appropriate size

without generating association rules. The generation of rules can be efficiently

produced by executing a sample size to obtain the result. However, obtaining

a particular size is the main issue for data-mining tasks.

• To use parallelization.

Parallelization has been known to increase the speed of the execution of a process.

The association-rule-mining technique has also adapted for this approach. For ex-

ample, [13] introduced an algorithm called FPM (fast parallel mining) that is used

for parallelizing Apriori. Then, other techniques such as DDM (Apriori-based

D-ARM) were also introduced [31]; this uses a tree structure and avoids the gen-

eration of candidate item sets. It uses constraint during the mining process and

generates only those rules that have high levels of interest to a user. PaMPaHD

is a map reduce-based algorithm that mines frequently closed item-set mining;

it is used for high-dimensionality data sets [6]. The publication [7] has provided

a promising direction for research in parallelization for item-set mining problems.

• Adding additional constraints on the methods of generating an algorithm. Some

users want to limit the structure of any generated rules. The authors of [16]

introduced a category-based algorithm; this reduces complexity by passing the

subsets of item sets.

4. Apriori algorithm

An algorithm processes data and executes a task according to ideas and methods [42].

One such algorithm is the Apriori algorithm; it forms the foundation of association-

rule generation, which was introduced by Agarwal. The algorithm makes multiple

scans over a database, and the support count of each item set is calculated. These

item sets are called candidate item sets. A count is associated with each item set,

which maintains the frequency of the item set. Each item set that has support that

is greater than the minimum support is added to the next level, which is then used

to find the next candidate item set. An item set that is smaller than the threshold

is not extended further, and an item set whose support is greater than the minimum

support is considered to be large. Apriori works on the principle that the subsets

of any frequent item set will also be frequent. So, if a subset of an item set is not

large, then the item set will not be frequent [1,3,4]. During a pass, it is possible that

a candidate item set can be discarded if it is not large. This is a pruning process

that saves both memory and computational tasks. Item sets that are not large are
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deleted, and only those item sets that have support that is greater than the minimum

support are kept. These item sets are used to generate new item sets. The algorithm

stops when no item set has support that is greater than the minimum support [1,3,4].

5. Rule-generation algorithm

After generating candidate item sets, rules are produced based on a confidence thresh-

old. These rules are generated from frequent item sets whose confidence values are

greater than or equal to the minimum confidence level. Those rules that have a con-

fidence level that is above the threshold level are considered for generating rules.

Some algorithms are used for extracting rules from item sets. The different algo-

rithms that are introduced for rule generation are as follows:

• Agarwal’s Algorithm

Agarwal introduced the first algorithm for generating rules from frequent item

sets. A rule is produced by using one item or element in the consequent part.

Rule X → Y is defined for a frequent item set of I = {I1, I2, I3, . . . , Ik} k ≥ 2,

where the antecedent of the rule is subset X of I in such a way that X has only

k − 1 items and the consequent has I − X items. The rule is then generated

with a confidence value that is greater than the minimum threshold. The only

disadvantage of this rule is that it is not capable of generating all of the rules.

A rule generates only n rules for n frequent item sets, although there are 2n –

two rules [1].

• Srikant’s Simple Algorithm

This algorithm is a generalized form of the previous algorithm. In this algorithm,

the consequent part is not limited to one item or element. First, all of the

non-empty subsets from the frequent-item sets are found first. For each subset

(say x), this is checked; then, the rule is generated in the form of x = (l−x) if the

confidence value is greater than the specified threshold. Although the algorithm

can generate all of the rules, it also wastes time when checking the rules. For

example, if item set WXY Z is used for rule generation, then subsets WXY ,

WX, and W will lead to check the following rules: WXY → Z, WX → Y Z,

and W → XY Z. If rule WXY → Z has a confidence value that is below the

minimum threshold, then the confidence value of WX → Y Z will not be more

than the threshold level. However, this algorithm will check for a second rule;

thus, it will waste a lot of time in redundancy checking [2].

• Srikant’s Faster Algorithm

This algorithm is an improvement on the previous algorithm, as it eliminates the

unnecessary time for redundancy checking. If c is a subset of a, then the support

of c cannot be more than the support count of a. Hence, the confidence of rule

a = (l → a) cannot be lower than that of rule c = (c → a). The algorithm works

on the same principle as that of the downward closure property in frequent item
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sets. This property states that the subsets of a frequent item set will also be

frequent. The only drawback of this algorithm is that, for a different antecedent,

it generates the same consequent several times and, thus, wastes time. For exam-

ple, if A ⊆ B generates rules for A, all of the consequent items will be generated.

The task will be repeated for B even though many of these have been generated

already [2].

• Faster Rule-generation Algorithm

This algorithm is also known as NBG’s algorithm, which overcomes the limitation

of Srikant’s algorithm. It can generate all of the rules that satisfy the minimum

confidence and avoids the unnecessary time for checking redundant rules. This

algorithm does not generate subsets; thus, the time will be significantly reduced

in the rule generation. It will only generate rules for those item sets that are

already stored in the memory. Thus, the algorithm not only saves time but also

the memory requirements for storing item sets [18].

6. Data structure used in association-rule mining

An item set in association-rule mining uses different data structures for storing

the items in the memory. Some of the data structures that are used for represent-

ing the item set are as follows:

• Linked list: used to store data of similar types. The advantage of using a linked

list is that the size of the linked list is not fixed. The items in a linked list can

be added dynamically. A linked list has two parts: one for storing data, and the

other for storing a pointer. Items are added sequentially; so, each element requires

8 bytes (4 + 4) if integers are used in the linked list. Some of the algorithms

that use linked-list representation are the transaction mapping algorithm [36],

trie-based Apriori [12], and the FP-growth algorithm [20]. Suppose item set

I = {1, 5, 10, 19, 23, 28, 31} uses a linked list for a 32-bit system; the total amount

of memory consumption would total 7 · (2 · Integers) = 56 bytes (as shown in

Figure 1).

Figure 1. Linked-list representation

• Array: a data structure that is used for storing items of the same type. The

size is fixed, and the items are indexed. Items can be inserted contiguously,

and each item is identified by a unique index. The algorithms that use arrays

for representation are the H-Mine algorithm [29] and a variation of the FP-

tree algorithm [19]. A more compact representation was also discussed in [10].
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To represent item set I= {1, 5, 10, 19, 23, 28, 31}, memory that uses array

requires 32 · integers for a 32-bit system (which is shown in Figure 2). If integers

are used, the total memory requirement would be 32 · 4 bytes = 128 bytes.

Figure 2. Array representation

• Bitmap: this maps domains to bits where items are represented by using

1 byte [5]. Each item in an item set is marked by ‘1’ if the item occurs in the

item set; if not, then it is marked by ‘0.’ Each item takes 1 byte for storing each

element in an item set [34]. The HV SM algorithm [37] and LCM Ver. 3 [41] use

bitmaps to represent an item set. Another mining algorithm (known as sequen-

tial pattern mining) utilizes a bitmap representation [41]. V IPER is another

algorithm that employs bit vectors [31]. Another bit-wise parallel algorithm was

also introduced for representing item sets in [27]; in this, items are stored con-

tiguously in the memory. Using bitmap representation, item set I= {1, 5, 10,
19, 23, 28, 31} requires 32 · 1 byte = 32 bytes for a 32-bit system (shown in

Figure 3).

Figure 3. Bitmap representation

7. Motivation

Data keeps on growing exponentially with increases in the rates of data in streaming,

the stock market, social media, etc. There is a need to understand the complexity

of this data and signify the opportunities that the data brings [21]. There are many

algorithms that have been introduced for mining data in order to cope with the

expensive computational task. There have also been many discussions on how to

handle the memory management of item sets [7, 32]. One of the main challenges is

to store item sets in the memory [26]. A database that contains large transactions

will eventually generate more candidate item sets. Sometimes, storing these item sets

in the memory becomes infeasible [43]. Representing this item set in the memory

is the crucial part. Item sets can be represented by using the three data structures
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(as discussed in Section 6). The three data structures that are discussed are linked

lists, arrays, and bitmaps. An array data structure needs 4 bytes to store each

item, while a linked list consumes 8 bytes. In comparison with all three of the data

structures, bitmap is better since it consumes only 1 byte for each item (as discussed

in [27] and [31]). The main disadvantage of the representation is that it can store up

items to a maximum size of 32-bit item sets. It performs efficiently for small databases

but not for large ones. In this paper, a set representation is represented for an item

set in a more concise representation. In this representation, the size of an item set

is the maximum size of the domain. An item set can be represented in the form of

a bit, where the presence of an element is represented by ‘1’ and the absence of one

by ‘0.’ In this way, only 1 bit is used for representing an element in an item set. This

will eventually reduce memory consumption and increase the efficiency of the mining

algorithm.

8. Set representation

Set representation takes 1 bit for each item. The items are stored successively one

item after another. In [25], the authors used a model called a machine-oriented data

model for representing subsets. It uses Boolean operations for speeding up the data-

mining process. However, the size of any item set that is taken under consideration is

only 32 bits. Moreover, the size of an item set may never be less than 32 bits. Another

representation of an alternative way of representing data is by using strings of bits.

The authors proposed an algorithm that used BitSet computations between item

sets. They applied fuzzy rules in real and synthetic databases that used restriction

for obtaining a summarized result. Suppose a set representation takes only 32 · 1 bit

= 32 bits or 4 bytes in item set I = {1, 5, 10, 19, 23, 28, 31} (which is given in

Figure 4).

Figure 4. Set representation

In set representation, each item in a transaction is represented by a bit (unlike

bitmap, which requires 1 byte for each element). If an item is present in the trans-

action, then ‘1’ is marked; otherwise, ‘0’ is indicated. The maximum size of the item

set will be the maximum size of the attributes or the length of the transaction. The

size of the item set does not have a limit. For a 32-bit system, an item set whose size

is greater than 32 bits cannot be represented. An item set whose size is greater than

32 bits can be represented by using set representation. If the size of an item set is
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more than 32 bits, the first item set’s size is 32 bits, and the next one will again be

32 bits for a 32-bit system. A data set is first pre-processed and then represented

using set representation. The maximum size of an item set will be the size of the

attributes. If the maximum size of an item set is 64, then two item sets are needed

(where the first one contains the first 32 bits and the second comprises the next 32).

An item is represented by marking ‘1’ on an item set if the item is present and ‘0’ if

it is absent in a transaction. Each position on a item set represents an item where

the first item set contains the first 32 items, the second represents the next 33 items,

and so on. Suppose the 35th item is present in a transaction; then, a second item set

is used where the 3rd position is marked as 1.

8.1. Set operations

In association-rule mining, operations are performed using item sets. How an item set

is stored is crucial, as it affects the way an operation is performed. Set representation

uses Boolean operators for its computations. This process speeds up computational

tasks (which is needed during the mining process). Although bitmap uses the same

Boolean operations for their computations, there is a difference between a set and

a bitmap. Each item consumes 1 byte for storage using bitmap representation, while

set representation consumes only 1 bit. The operations that are needed to be per-

formed are as follows:

• Union operation: combines those items that are present in both first and second

item sets. An OR operation is needed to find the union operation between two

item sets; the complexity of such an operation is 0(1). An example of a union

operation is shown in Figure 5.

Figure 5. Union operation
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• Intersection operation: contains the common items that are present in both first

and second item sets. An AND operation is used to find the intersection between

the two item sets and takes an order of 0(1) complexity (which is shown in

Figure 6).

Figure 6. Intersection operation

Figure 7. Set difference operation
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• Set difference: consist of the item/s that is/are present in the first item set but

not in a second one. A bit-wise operation is used to find the set difference of the

two item sets, which takes only a 0(1) complexity (shown in Figure 7).

• Superset: checks whether an item set is a a superset of another item set. This

operation is performed using a bit-wise operation.

• Subset: similar to a superset operation that checks whether a particular item set

is a subset of another item set.

• Membership: checks whether an item is a member of an item set or not.

9. Apriori algorithm using set representation

In this paper, the item-set representation called “set representation” has been incorpo-

rated in rule-mining algorithms. In set representation, items are represented by using

a horizontal layout where the items’ IDs are stored. The size of an item set in this rep-

resentation will be the maximum size of the item. Each item is labeled ‘1’ if the item is

present in an item set and ‘0’ if the item is absent from the transaction. Each item

consumes only 1 bit for each item. For example, item set I= {1, 10, 19, 23, 31} is

represented by set representation. The maximum size of the item set will be 32 be-

cause the maximum item number is 32. If each item takes 1 bit for storing, then the

total memory consumption for storing will be 32 · 1 bit = 32 bits or 4 bytes. The

basic rule generation that is called for in the Apriori algorithm is implemented by us-

ing set representation. The generated item sets are stored in the memory using only

1 bit per element instead of consuming 4 bytes per element. Thus, this saves memory

storage for representing an item set in the memory. Rule-generation algorithms have

different operations, such as membership, superset, subset, union, set difference, and

intersection operations. All of these operations take only O(1), which improves the

time complexity. Hence, mining algorithms will improve their efficiency in regards

to time and memory when using set representation [23].

10. Experimental evaluation

The memory consumption of using different data sets has been discussed. It can

be seen that the memory consumption is better in an array than it is in a linked

list. Array representation has been used for a comparison with set representation.

The rule-generation algorithms that have been discussed (such as Agarwal’s al-

gorithm, Srikant’s simple algorithm, Srikant’s faster algorithm, and NBG’s algo-

rithm) have been implemented using both array and set representation. These al-

gorithms have been tested against three data sets that have 50 attributes with 1000,

5000, and 20,000 transactions, respectively. With varying support counts = 1, 2.5, 5,

and 10 %, the two representations showed varying performance levels. The following

tables show the execution times and space requirements by the two different item-set

representations. The three data sets were used for testing the performance of both

the array and set representations. These data sets can be openly accessed through the
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following link: [22]. The three data sets were generated randomly to be used for these

experiments. The number of attributes remained the same for all three data sets, but

the sizes of the data sets varied. The data sets that were used in this experiment are

as follows:

• First data set: 1000 transactions with 50 attributes (see Fig. 8). The results of

the time and memory requirements for the four different mining algorithms using

this data set are shown in Table 1 (for 1% support), Table 2 (2.5%), Table 3 (5%),

and Table 4 (10%).

• Second data set: 5000 transactions with 50 attributes (see Fig. 9). The four al-

gorithms are implemented using both set and array representations by measur-

ing the memory and time consumption. Using this data set, the results are

represented in Table 5 for 1% support, Table 6 (2.5%), Table 7 (5%), and

Table 8 (10%).

• Third data set: 20,000 transactions with 50 attributes (see Fig. 10). The per-

formance of the four algorithms can be observed by measuring the space and

time that are required for their execution. The data set is tested against the

algorithms using set and array representations. The results are shown in Table 9

for 1% support, Table 10 (2.5%), Table 11 (5%), and Table 12 (10%).

Table 1
Algorithms using array and set representation for 1000-transaction data set with 1% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 45,327.7 22,835 41,127.5 14,148

Srikant’s 2nd Algorithm 40,855.6 21,848 38,547.9 13,774

Agarwal Algorithm 38,383.6 21,484 36,660.7 13,577

NBG’s Algorithm 28,227.6 21,105 27,511.3 13,416

Table 2
Algorithms using array and set representation for 1000-transaction data set

with 2.5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 35,362.7 21,845 33,366.3 15,746

Srikant’s 2nd Algorithm 37,854.5 21,559 32,547.9 14,223

Agarwal Algorithm 34,150.5 21,244 31,392.3 13,896

NBG’s Algorithm 28,210.6 21,044 26,166.4 13,519



218 Carynthia Kharkongor, Bhabesh Nath

Table 3
Algorithms using array and set representation for 1000-transaction data set with 5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 21,745.1 21,575 15,578.1 14,746

Srikant’s 2nd Algorithm 19,311 21,248 15,423.33 13,823

Agarwal Algorithm 17,330.8 21,192 15,352.5 13,296

NBG’s Algorithm 17,077.5 21,140 15,226.4 13,360

Table 4
Algorithms using array and set representation for 1000-transaction data set with 10% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 125.92 21,245 98 13,374

Srikant’s 2nd Algorithm 108.674 21,259 93.736 13,310

Agarwal Algorithm 106.449 21,136 87.788 13,290

NBG’s Algorithm 97 21,024 82.903 13,284

Figure 8. Time and memory requirements for 1000-transaction data set

with support count = 10%

Table 5
Algorithms using array and set representation for 5000-transaction data set with 1% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 911,524 26,004 825,072 19,876

Srikant’s 2nd Algorithm 853,748 24,652 786,289 18,620

Agarwal Algorithm 817,218 23,233 748,117 16,363

NBG’s Algorithm 750,427 22,900 588,567 15,485
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Table 6
Algorithms using array and set representation for 5000-transaction data set

with 2.5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 909,012 25,374 828,970 18,276

Srikant’s 2nd Algorithm 838,804 23,468 788,277 17,078

Agarwal Algorithm 716,551 22,901 680,261 16,163

NBG’s Algorithm 624,141 22,134 526,363 14,985

Table 7
Algorithms using array and set representation for 5000-transaction data set with 5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 367,680 23,645 330,607 15,390

Srikant’s 2nd Algorithm 334,243 22,759 326,194 14,389

Agarwal Algorithm 330,514 21,844 323,074 14,171

NBG’s Algorithm 323,921 21,086 317,121 13,411

Table 8
Algorithms using array and set representation for 5000-transaction data set with 10% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 1001.98 21,845 888.83 14,646

Srikant’s 2nd Algorithm 995.78 21,244 700.98 14,123

Agarwal Algorithm 713.755 21,099 408.9 13,596

NBG’s Algorithm 625 20,286 300.385 13,299

Figure 9. Time and memory requirements for 5000-transaction data set

with support count = 10%
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Table 9
Algorithms using array and set representation for 20,000-transaction data set

with 1% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 951,524 29,996 885,072 20,756

Srikant’s 2nd Algorithm 863,791 25,947 752,006 19,096

Agarwal Algorithm 745,721 22,380 620,122 17,951

NBG’s Algorithm 617,842 21,758 588,567 16,973

Table 10
Algorithms using array and set representation for 20,000-transaction data set

with 2.5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 877,161 26,374 828,970 19,876

Srikant’s 2nd Algorithm 798,804 23,568 758,277 18,620

Agarwal Algorithm 696,651 23,001 680,261 16,363

NBG’s Algorithm 654,141 22,647 526,363 14,485

Table 11
Algorithms using array and set representation for 20,000-transaction data set

with 5% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 394,676 24,085 320,446 15,991

Srikant’s 2nd Algorithm 354,243 23,159 319,806 15,125

Agarwal Algorithm 348,560 21,929 312,374 14,548

NBG’s Algorithm 316,085 21,690 302,370 13,903

Table 12
Algorithms using array and set representation for 20,000-transaction data set

with 10% support

Array Representation Set Representation

Algorithms Time Memory Time Memory

[ms] [kb] [ms] [kb]

Srikant’s 1st Algorithm 1088.86 22,845 923.3 15,646

Srikant’s 2nd Algorithm 1005.8 21,244 801.075 14,823

Agarwal Algorithm 944.876 21,132 501.09 14,096

NBG’s Algorithm 863.61 21,044 415.385 13,419
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Figure 10. Time and memory requirements for 20,000-transaction data set

with support count = 10%

As seen from the tables above, there were many candidate item sets that were

generated with low support counts. So, the memory consumption was higher with

the candidate item sets that had low support counts as compared to those candidate

item sets with high support counts. The execution times of the algorithms were

greater for those item sets with low support counts, whereas the execution times

were lower for those with higher support counts. These tables also show that the

representation of the item sets also affected the performances of these algorithms.

Using array representation, the memory consumption was nearly double that of set

representation. The execution time was better in set representation than it was in

array representation. The reason for this was that set representation only stored

1 bit for each element whereas array representation needed 4 bytes. The different set

operations (membership, subset, superset, union, and set difference) take only O(1) in

BitSet representation. In this experiment, the system that was used was an Intel(R)

Core(TM) i5 with 4 GB RAM, a 64-bit operating system. The experiments were

performed using both array and set representation. The execution times and memory

consumption were calculated from the program itself. The memory consumption was

calculated by taking the peak value of the memory at any instance of time.

11. Conclusion

This paper represents a more compact representation of item sets as compared to

array representation. As seen from the results, the set representation provided bet-

ter performance as compared to array representation. While increasing the sizes of

the data sets, the number of generated candidate item sets will grow; the memory

consumption for the item sets will also increase. The mining process for generating

candidate item sets will also increase since the size of the data set will be large. Us-

ing set representation, only 1 bit is required for storing an item as opposed to array

(which requires 4 bytes). From the tables, it can be observed that, for the same

data-set size, the memory and time consumption were greater for array representa-

tion than they were for set representation. Using set representation, the efficiency of

the mining algorithm was enhanced since the amount of memory that was required
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to store and perform the computation process was less. The time duration for the

generation of candidates was also reduced; hence, the time for the generation of rules

was also minimized. The mining algorithms will be more cost- and time-effective –

especially when a data set is large. Thus, set representation gives a more compact

representation that further increases the efficiency of rule-mining algorithms and their

complexity in terms of memory and time.
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