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Abstract Considering the phenomenal growth of network systems, congestion remains

a threat to the quality of the service provided in such systems; hence, research

on congestion control is still relevant. The Internet research community regards

active queue management (AQM) as an effective approach for addressing con-

gestion in network systems. Most of the existing AQM schemes possess static

drop patterns and lack a self-adaptation mechanism; as such they do not work

well for networks where the traffic load fluctuates. This paper proposes a self-

-adaptive random early detection (SARED) scheme that smartly adapts its drop

pattern based on a current network’s traffic load in order to maintain improved

and stable performance. Under light- to moderate-load conditions, SARED

operates in nonlinear modes in order to maximize utilization and throughput,

while it switches to a linear mode in order to avoid forced drops and congestion

under high-load conditions. Our conducted experiments revealed that SARED

provides optimal performance regardless of the condition of the traffic load.
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1. Introduction

The Internet has experienced rapid growth in recent years; Cisco has forecasted that

several billion devices will be connected to the Internet in the near future [5]. Con-

sequently, enormous amounts of valuable data will be transmitted over the Inter-

net [1,5,14,17,20,23]; as such, routers will be subjected to huge data traffic. Conges-

tion is a key factor that affects the quality of service (QoS) that is provided in network

systems [4, 11, 12]. Congestion occurs in a network when the amount of generated

traffic exceeds the amount that the network’s resources can handle. With current

advancements in communication networks, congestion control has become a research

focus. A tail-drop queue-management scheme was initially used in routers to pre-

vent congestion. As data traffic is bursty in nature, tail-drop routers were equipped

with fairly large queues in order to absorb traffic burstness and to maintain high link

utilization. With tail-drop, sources will receive a congestion notification only when

a queue is full. Generally, tail-drop routers were used with some shortcomings, such

as large delay, overflow problems, global synchronization, and lock-out phenomena [3].

To address the observed problems of the tail-drop approach, active queue manage-

ment (AQM) was later proposed and recommended for Internet routers [3]. Unlike

tail-drop, the AQM scheme controls congestion by dropping or marking packets be-

fore a queue becomes full where packet dropping or marking events signal sources to

decrease their transmission rates [3, 10].

The random early detection (RED) algorithm [9] is the most popular AQM

scheme; it has been recommended by the Internet Engineering Task Force (IETF)

for routers, and most router vendors have adhered to IETF’s recommendation (e.g.,

Cisco implemented WRED) [21]. RED detects congestion early by computing an av-

erage queue length (avg), which is obtained by applying the exponentially weighted

moving average (EWMA) procedure to the instantaneous queue length and proba-

bilistically dropping packets based on the currently computed avg. Basically, RED

uses two queue thresholds for packet drops; i.e., minth, and maxth. If the computed

avg is below minth, no packet will be dropped; however, if the avg is between minth

and maxth, the drop probability is adjusted based on the recently computed avg.

To this end, the packet-dropping function is defined as a linear function of avg ; it

increases linearly from 0 to maximum packet-dropping probability maxp. Finally, all

incoming packets will be dropped if the observed avg is above maxth [2, 9, 18,21].

Although RED outperforms the tail-drop approach, it was discovered that the ef-

fect of RED’s congestion management is seriously affected once a traffic load changes,

since RED is highly sensitive to its parameter settings and network’s traffic condition

changes frequently; thus, constant tuning of RED’s parameters is required to achieve

the desired performance [2,7,15,16,18,19,24]. Additionally, RED’s poor performance

can also be associated with its linear drop function, which tends to be too aggressive

at low loads and not aggressive enough when avg approaches maxth [19, 27].

To address the shortcomings of RED, several enhanced variants of RED have been

proposed; e.g., gentle RED [7], nonlinear RED [27], adaptive RED [8], double-slope
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RED [26], improved nonlinear RED [25], three-section RED [6], adaptive queue man-

agement with random dropping [13], and change trend queue management [22]. De-

spite all of these enhancements, the self-adaption problem of RED has yet to be

properly addressed.

In this paper, a self-adaptive random early detection (SARED) algorithm is pro-

posed. Unlike RED (and some of its enhanced variants), SARED does not merely

consider avg as a congestion indicator; it also considers the ratio of the total capacity

demand of the current traffic to the available output (bottleneck) link’s capacity as

another congestion indicator (such a ratio is regarded as traffic load). Based on this

information, SARED smartly adjusts its drop pattern. In SARED, maxp is adapted

based on an observed network’s traffic-load (load) condition. SARED basically op-

erates in two modes; i.e., linear, and nonlinear modes (also based on a currently

observed load). With a high load, it switches to linear mode in order to be aggressive

for avoiding congestion and forced packet drops while maximizing link utilization and

avoiding global synchronization. At low and moderate loads, SARED operates in

nonlinear modes, where its degree of nonlinearity is increased as a load decreases in

order to be very gentle so as to avoid link under-utilization and maximize throughput.

Subsequently, SARED works well in different load scenarios [19].

The rest of this paper is organized as follows. Section 2 presents related works,

Section 3 presents the self-adaptive RED algorithm, and Section 4 presents SARED

with a gentle slope. The results of the experiments that were conducted for the

analysis of the proposed algorithm are presented in Section 5, and Section 6 concludes

the paper.

2. Related works

The random early detection (RED) algorithm was proposed by S. Floyd and V. Ja-

cobson in [9] as an active queue management (AQM) scheme. The RED algorithm

works by detecting early congestion via average queue length (avg), which is obtained

by using Equation (1):

avg = (1− w)avg′ + wq(t) (1)

where q(t) is the current queue length at time t > 0, avg′ is the previously obtained

average queue length, and w is the predefined weight parameter to compute the avg

(where 0 < w < 1).

The obtained avg is compared with the two queue’s thresholds: minimum thresh-

old (minth) and maximum threshold (maxth). When the avg is less than the min-

imum threshold, all of the incoming packets are allowed into the queue. When the

avg is greater than the maximum threshold, each arriving packet is dropped with

a probability of 1. However, when the avg is between the minimum and maximum

thresholds, packets are dropped with probability as a function of avg, which increases
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linearly from 0 to maximum drop probability maxp. The RED drop function is given

by Equation (2):

pRED(avg) =



0 avg < minth

avg −minth

maxth −minth
×maxp minth ≤ avg < maxth

1 maxth ≤ avg

(2)

Even though the RED algorithm provides better performance than the tail-drop

approach, several works have revealed that RED suffers from some shortcomings,

such as sensitivity to parameter settings and the lack of a self-adaptation mechanism

[2,7, 15,16,18,19,24].

In order to improve the throughput of RED, Floyd proposed gentle RED (GRED)

in [7]. In GRED, another queue threshold (2maxth) was introduced after maxth.

If the observed avg is between maxth and 2maxth, then packets are dropped with

probability. This increases linearly from maxp to 1, thereby making it gentler than

RED when avg exceeds maxth.

In [8], Floyd et al. proposed adaptive RED as an enhanced version of RED. In

adaptive RED (ARED), maxp is adapted using an additive-increase multiplicative-

decrease policy in order to keep the average queue length within a target range of

halfway between maxth and minth. In ARED, maxp is also constrained to remain

within a range of 0.01 to 0.5. The implementation of ARED will lead to poor perfor-

mance in a complex network environment where traffic intensity fluctuates rapidly.

In [26], Zheng and Atiquzzaman considered low throughput as an important

limitation of RED and proposed double-slope RED (DS-RED). DS-RED uses two

different drop probability distributions in order to perform better than RED. How-

ever, DS-RED operates almost similarly to GRED [7], as two linear drop functions

were defined with different slopes in both of them. DS-RED inherits RED’S aggres-

siveness, as it relies on linear drop functions (and parameterization is still a problem

in DS-RED).

In [27], Zhou et al. proposed nonlinear RED (NRED) by substituting the linear

drop function defined in RED with a nonlinear drop function; apart from this alter-

ation, all of the other features of RED are retained in NRED. Zhou et al. believed

that the nonlinear drop function used in NRED makes it gentler than RED with low

loads and more aggressive with heavy loads. However, NRED did not address RED’s

lack of self-adaptation problem and will perform poorly when used in very-high-load

scenarios.

To improve the throughput of NRED, Zhang et al. proposed improved nonlinear

RED (MRED) in [25]. MRED uses a nonlinear drop function when avg is between

minth and maxth; however, when avg falls to between maxth and 2maxth, the drop

probability increases linearly from maxp to the maximum of 1 (as in GRED [7]).

Basically, MRED is considered to be an improved version of NRED and GRED.
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In [6], Feng et al. proposed three-section RED (TRED). TRED works by dividing

the section of the queue from minth to maxth into three sections. It was assumed

that the load is low when avg falls in the first section, moderate when it falls within the

middle section, and high when it falls within the last section. Subsequently, nonlinear

drop functions are defined for the first and last sections, where a linear drop function

is defined for the middle section. Results of the analysis conducted in [6] have shown

that TRED improved throughput at low load and maintained low delays at high load.

Karmeshu et al. [13] believed that the use of avg to calculate dropping probability

in terms of minth and maxth (as done in RED and some of its enhanced versions)

is ineffective during heavy-load situations, since the maxth threshold will frequently

be crossed (resulting in frequent packet dropping). As such, they proposed another

AQM scheme called adaptive queue management with random dropping (AQMRD).

In AQMRD, not only is the avg used to define packet drop probabilities but also its

rate of change. This is done in order to make the queue size and delay low regardless

of how frequently the traffic load changes. However, the dropping strategy introduced

in AQMRD is very aggressive, which leads to poor link utilization and high loss rates.

In [22], Tang and Tan proposed another adaptive AQM, which they called change

trend queue management (CT-AQM). CT-AQM works by predicting the change trend

in an average queue length based on its rate of change coupled with the network

environment to define the packet drop probabilities. The AQMRD proposed in [13] is

very similar to CT-AQM, since both of them use the rate of change in average queue

lengths. The results of the analysis conducted in [22] showed that CT-AQM was

successful in lowering the loss rate and improving the throughput for different load

situations. However, CT-AQM introduces high delays and allows more packets into

a queue, which may lead to congestion when used in a complex network environment.

In this paper, self-adaptive RED (SARED) is proposed. Unlike other enhanced

RED versions with static drop patterns, SARED considers the current traffic load

and automatically adapts its drop pattern and maxp. SARED is based on nonlinear

RED, and its exponent is regulated based on the observed network’s load condition;

i.e., as the load decreases, the value of the exponent is increased so as to achieve more

throughput and avoid link under-utilization. However, when the load becomes high,

SARED will switch to linear mode, subsequently becoming more aggressive in order

to maintain stable performance.

3. Self-adaptive Random Early Detection algorithm

Many research findings have revealed that traditional RED and some of its enhanced

variants cannot provide the desired performance for networks where the traffic load

is ever fluctuating. However, traffic load is naturally unpredictable in networks; as

such, there is a need to have an effective AQM scheme that will provide the desired

performance regardless of how the traffic load changes. Most AQM schemes use

the computed average queue length (avg) as a congestion indicator; based on this, the

packet-dropping probability is defined while ignoring the network’s traffic load, which
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directly affects the observed average queue length. In this paper, the self-adaptive

random early detection (SARED) algorithm is proposed, which considers not only

the computed average queue length as a congestion indicator but also the current

traffic load; based on this information, the packet-dropping probability is defined. In

SARED, the data-arrival rate from each flow (source) at time t is considered; i.e.,

λn(t), n = 1, ..., N , where N is the number of active flows at time t (Fig. 1). Then,

the total data arrival rate at the router at time t is given by Equation (3):

λ(t) =

N∑
n=1

λn(t) (3)

Let µ be the bandwidth of the bottleneck link; then, the traffic load at time t is

denoted by ρ(t) and expressed by Equation (4):

ρ(t) =
λ(t)

µ
(4)

minth

Packets Arrival

maxth

λ(t) μ

avg

Figure 1. SARED’s queue

If ρ(t) < 1, then the traffic load is low for the bottleneck link; therefore, packets

will not accumulate in the queue. If this state is maintained for a long time, then

link under-utilization will occur. If ρ(t) ≈ 1, then the traffic load is moderate for the

bottleneck link; hence, the performance will be optimal. However, if ρ(t) > 1, then

the traffic load will be high for the bottleneck link, and packets will accumulate in the

queue and wait to be sent. If this state is maintained for a long time, congestion

and overflow may likely occur. SARED adapts its drop pattern based on the current

network’s load; i.e., for a high load, SARED operates in linear (aggressive) mode in

order to avoid congestion and forced drops while maintaining high link utilization

and avoiding global synchronization. For low to moderate loads, however, SARED

operates in nonlinear (gentle) modes, where the its degree of nonlinearity depends on

the observed load condition.

Note that, with SARED, different load states can also be formed based on the

number of connections multiplexed over the bottleneck link.

In SARED, maximum drop probability maxp is also defined based on the current

network’s load state (i.e., high maxp for a high load and low maxp for a low load),
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and average queue length (avg) is computed using Equation (1). If avg < minth,

then no packet will be dropped; if avg ≥ maxth, then all of the arriving packets will

be dropped with a probability of 1. However, if minth ≤ avg < maxth, then the

packet-dropping probability increases linearly or nonlinearly from 0 to the current

maxp. The drop function of SARED is presented in Equation (5), and an illustration

of its packet-dropping probability curve is shown in Figure 2:

pSARED =



0 avg < minth(
avg −minth

maxth −minth

)⌊n⌋

×maxp minth ≤ avg < maxth

1 avg ≥ maxth

(5)

n = k
1
x , k ≥ 2 (6)

maxp =
1

ϵ
(1− k−x) (7)

where k is a nonlinear index of the scheme, and ϵ > 0 is the maximum drop probability

regulator.

0 minth maxth

1

maxp With increase 

in load

With decrease 
in load

With increase 
in load

With decrease 
in load

avg

Packet drop probability

Figure 2. SARED’s packet-dropping probability curve

The value of x is varied based on network’s load condition and used as a drop

mode adapter.
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The values of x are defined for three load conditions (i.e., low, moderate, and

high) as follows:

• x < 1 if ρ(t) < 1,

• x ≈ 1 if ρ(t) ≈ 1,

• x ≥ k if ρ(t) > 1.

Note that, with SARED, the load scenarios can be extended to more than three if

desired.

SARED’s drop behavior can be explained as follows:

Basically, SARED adapts its maxp based on a network’s load condition (a high

maxp for high loads, and a low maxp for low loads) (Fig. 2). Additionally, when avg

falls within the minth and maxth in SARED, a drop function that increases linearly

or nonlinearly from 0 to the current maxp is defined. Since the exponent of SARED’s

drop function is defined based on the load condition, its degree of nonlinearity is set

to increase as the load becomes low. Conversely, as the load switches from low to

moderate, its degree of nonlinearity is decreased, and when the load becomes high,

SARED switches to linear mode. Subsequently, SARED can operate in two modes

based on the load situation: linear, and nonlinear. It operates in nonlinear (gentle)

modes for low to moderate loads and switches to linear (aggressive) mode for high

loads (as presented in Algorithm 1). These features of SARED make it self-adaptive

and will work well for a wide range of loads (see Table 1 for a complete list of the

algorithm’s parameters).

Table 1
Algorithm’s parameters

Saved variables Fixed parameters Other

avg : current average

queue length
w : queue weight

λ(t): current total

incoming traffic flow (Mbps)

avg′: calculated previous

average queue length

minth: queue’s minimum

threshold
ρ(t): current traffic load

tqueue idle time: start of

queue idle time

maxth: queue’s maximum

threshold
q(t): current queue length

count : packets since last

marked packets

µ: bottleneck link capacity

(Mbps)

f(t): linear function

of time t

n: exponent of nonlinear

drop function
k: nonlinear index

Pa: current packet-marking

probability

x : drop mode adapter
ϵ: regulator of maximum

drop probability

maxp: current maximum

drop probability
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Algorithm 1: SARED
Data: minth, maxth, w, µ, k, ϵ

1 initialization;
2 avg ← 0;
3 count← −1;
4 x← 0;
5 n← 0;
6 maxp ← 0;
7 for each packet arrival do
8 Return λ(t) [Mbps];

9 ρ(t)← λ(t)
µ

;

10 if ρ(t) < 1 then
11 x← 0.25;
12 else if ρ(t) ≈ 1 then
13 x← 1;
14 else if ρ(t) > 1 then
15 x← k;

16 end

17 n← k
1
x ;

18 maxp ← 1
ϵ
(1− k−x);

19 if queue is nonempty then
20 avg ← (1− w)avg′ + w · q(t);
21 else
22 m← f(t− tqueue idel time);
23 avg ← ((1− w)m · avg′);
24 end
25 if avg < minth then
26 No packet drop;
27 Set count← −1;
28 else if minth ≤ avg < maxth then
29 Set count← count+ 1;
30 Calculate drop probability Pa;

31 Pb ←
(

avg−minth
maxth−minth

)⌊n⌋
×maxp;

32 Pa ← Pb
1−count·Pb

;

33 Mark arriving packet with Pa;
34 Set count← 0;
35 Drop packet;

36 else if maxth ≤ avg then
37 Drop arriving packet;
38 Set count← 0;

39 else
40 count← −1
41 When queue becomes empty;
42 Set tqueue idle time ← t;

43 end

44 end
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4. SARED with gentle slope

In SARED, the discontinuity of the packet-dropping probability from maxp to 1 can

be replaced with a gentle slope. In this case, the region of the queue from minth

to maxth should be extended to 2maxth, and as avg varies from maxth to 2maxth,

then the packet-dropping probability should increase linearly from maxp to 1 (as done

in [7, 25]). The drop function of SARED in this mode is presented in Equation (8)

and depicted in Figure 3. Although the results that were obtained in [7, 25] revealed

that such an approach did not yield a significant performance improvement in RED,

an analysis of SARED in this mode is reserved for future work.

pSARED =



0 avg < minth(
avg −minth

maxth −minth

)⌊n⌋

·maxp minth ≤ avg < maxth(
avg −maxth

maxth

)
· (1−maxp) +maxp maxth ≤ avg < 2maxth

1 avg ≥ 2maxth

(8)

0 minth maxth

1

maxp

avg

Packet drop probability

2maxth

Figure 3. SARED’s packet-dropping probability curve with gentle slope

5. Simulation experiments

Simulation experiments were conducted to validate the effectiveness of the SARED

algorithm. The double dumbbell network topology presented in Figure 4 was used

for simulation with an NS-2 simulator.
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Figure 4. Simulation topology

The topology considers two routers (A and B) connected via a bottleneck link

that is shared by N TCP flows that are generated by the FTP sources. The bottleneck

link has a capacity of 10 Mbps and a propagation delay of 20 ms. The network’s hosts

are connected to the routers via links (each with a capacity of 10 Mbps), and their

propagation delays are distributed between 5 and 10 ms. During the simulation,

three levels of load scenarios were used: low, moderate, and high. For the low-load

scenario, N = 10 flows were used; for the moderate-load scenario, N = 50 flows

were used; and for the high-load scenario, N = 150 flows were used. An active

queue-management scheme was implemented at Router A, whose queue capacity was

140 packets. New Reno TCP implementation was used. For a network with a given

number of TCP flows, a 200-second simulation was conducted. For the computation of

ρ(t), the current data flow rate at the queue was obtained from the queue-monitoring

object. The input parameters used for the performance analysis were minth = 20,

maxth = 120, w = 0.002, k = 2, and ϵ = k (Tab. 1).

x =


0.25 if ρ(t) < 0.75

1 if ρ(t) ≥ 0.75

k if ρ(t) ≥ 1.25

(9)

For the analyses of RED and TRED, maxp = 0.1 was used. The queue-length

changes of RED over time in the low-, moderate-, and high-load scenarios are pre-

sented in Figures 5, 8, and 11, respectively, the queue-length changes of TRED over

time in the three scenarios are presented in Figures 6, 9, and 12, respectively, and

the queue-length changes of SARED over time in the three scenarios are presented in

Figures 7, 10, and 13, respectively.
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Figure 5. RED (Low load)
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Figure 6. TRED (Low load)
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Figure 7. SARED (Low load)

The results presented in Figure 5 show that, for RED in the low-load scenario,

there were several instances when the queue length was zero (0); this signaled poor

link utilization. Figure 6 shows that, with TRED in the low-load scenario, there were

some moments when the queue length was zero (0); this also indicated poor link uti-

lization. The results presented in Figure 7 show that SARED tried to maximize the

link utilization even at a low load by maintaining a queue length that was well above

the minth threshold value. From the results presented in Figures 8 and 9, it can be

observed that RED and TRED provided better link utilization in the moderate-load

scenario; however, it can be noted that the average queue length of SARED (Fig. 10)

at a moderate load was above that of RED and TRED. From Figures 11 and 12, it

can be observed that, for RED and TRED in their respective high-load scenarios, the

queue length hit the maximum threshold value (maxth) several times. This indicated

several forced drops and, subsequently, global synchronization [2, 15,24]. The results

presented in Figure 13 show that SARED avoided forced drops in the high-load sce-

nario by maintaining the queue at lengths that were below the maximum threshold

value (maxth).
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Figure 8. RED

(Moderate load)
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Figure 9. TRED

(Moderate load)
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Figure 10. SARED

(Moderate load)
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Figure 11. RED (High load)
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Figure 12. TRED (High load)
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Figure 13. SARED (High load)
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Table 2 presents the results of an analysis of the throughput. It can be seen that

SARED tried to maximize the throughput even at a low load; however, the throughput

of the RED, TRED, and SARED approached the maximum limits in their respective

high-load scenarios.

Table 2
Throughput [Mbps]

Load Scenario RED TRED SARED

Low 9.57 9.68 9.98

Moderate 9.94 9.95 9.99

High 9.99 9.99 9.99

Furthermore, an analysis of the delay was conducted. It can be observed from

Table 3 that the delays of SARED in the low- and moderate-load scenarios were

higher than those of RED and TRED. This is because SARED had a lower packet

drop rate than RED and TRED in these load situations; hence, it allowed for more

packets to accumulate in the queue. As such, the packets’ queuing delay increased,

which ultimately affected the overall delay that was encountered by the packets.

However, at a high load, the delay observed with SARED was lower than that of

RED and TRED. This is because SARED had a higher drop rate in that situation;

hence, less packet accumulation in the queue. Subsequently, the packets experienced

a lower delay with SARED than with RED and TRED at high loads.

Table 3
Delay [ms]

Load Scenario RED TRED SARED

Low 81.43 89.76 120.13

Moderate 127.01 127.30 141.32

High 177.62 177.62 165.05

6. Conclusion

In this paper, a self-adaptive RED (SARED) algorithm was proposed. Unlike RED

and some of its enhanced versions with static drop patterns, SARED considers the

average queue length as well as the current traffic-load condition to adapt its maximum

drop probability and drop pattern. At high loads, SARED operates in linear mode

to avoid congestion and forced drops while maximizing link utilization and avoiding

global synchronization. To prevent link under-utilization and improve the throughput

at low and moderate loads, SARED operates in nonlinear mode, where its degree

of nonlinearity is increased as its load decreases (and vice versa). These features of

SARED make it work well in different load scenarios.
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