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A DENSITY-BASED METHOD
FOR THE IDENTIFICATION OF
DISJOINT AND NON-DISJOINT CLUSTERS
WITH ARBITRARY AND NON-SPHERICAL
SHAPES

Abstract The ability of clustering methods to build both disjoint and non-disjoint par-
titionings of data has become an important issue in unsupervised learning.
Although this problem has been studied during the last decades resulting in se-
veral proposed overlapping clustering methods in the literature, most of existing
methods fail to look for clusters having arbitrary and non-spherical shapes. In
addition, most of these existing methods require to pre-configure the number
of clusters in prior, which is not a trivial task in real life application of clu-
stering. To solve all these issues, we propose in this work a new density based
overlapping clustering method, referred to as OC-DD, which is able to detect
both disjoint and non-disjoint partitioning even when boundaries between clu-
sters have complex separations with arbitrary forms and shapes. The proposed
method is based on density and distances to detect highly dense regions and
connected groups in data without the necessity to pre-configure the number
of clusters. Experiments performed on artificial and real multi-labeled datasets
have shown the effectiveness of the proposed method compared to the existing
ones.
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1. Introduction

Clustering technique has become the subject of many recent research applied in ma-
ny fields, such as in social networks to identify connected groups of users, document
clustering to automatically organize the set of unstructured textual documents into
topics and many other applications. The main idea of clustering is to group homoge-
neous data objects in the same group called cluster or segment. However, in several
applications some data objects are needed to be assigned to more than one group
which leads to organize the data into non-disjoint groups. This kind of issue is refer-
red to as overlapping clustering. This problem occurs in many fields of clustering such
as document clustering where each document can discuss different topics, video classi-
fication where a film can have different genres and emotion detection where a piece of
music can evoke different emotions. For all these applications, overlapping clustering
is more appropriate than conventional clustering to fit existing structures in data.
Many researchers have focused on the overlapping clustering problem by propo-

sing several methods such as OKM (Overlapping K-Means) [10], MOC (Moddel-based
Overlapping Clustering) [4], R-OKM (Regulated Overlapping K-means) [5], KHM-
-OKM [21] and 3WC-OR [1]. However, these methods suffer for several issues. The
main issue of these exiting methods is their inability to detect clusters with arbitrary
and complex shapes which is the case of real-life applications. Another issue of this
method is the necessity to set the number of clusters in prior before beginning the pro-
cess of grouping data. Usually, all these issues can be solved by using a density based
approach to look for high dense regions in data rather than evaluating distances be-
tween data objects. Density based clusters aims to look for high dense groups in data
which leads to detect dense regions surrounded by low density regions [19]. Examples
of existing density based methods are DBSCAN [14], OPTICS [3], DENCLUE [18] and
CLIQUE [27]. Although the effectiveness of density-based methods to detect clusters
with non-spherical shapes, they do not allow the detection of non-disjoint partitioning
of data when such model is required to fit the existing structures.
To deal with this issue, we propose in this paper a new density-based clustering

method, referred to as OC-DD, which is able to discover non-disjoint clusters even
when clusters have arbitrary and non-spherical shapes. OC-DD is based on the mode-
ling of the overall density of the set of data points as the sum of influence functions’
associated with each data object. The resulting overall density function have a num-
ber of local density maxima called local density attractors. These attractors are used
to define clusters by assigning each data object to the nearest attractor in terms of
both density and distance. The rest of the paper is organized as follow: Section 2 gives
basic concepts of overlapping clustering and density based methods and describes the
issue of existing clustering methods which fail to detect overlapping clusters with ar-
bitrary shapes. The proposed solution to deal with this issue is described in Section 3
while experiments and empirical results that show the effectiveness of the proposed
solution are described in Section 4. Finally, Section 5 concludes with a summary and
some directions for future research.
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2. Identification of overlapping clusters:
existing methods and problem description

The issue of identifying overlapping clusters (non-disjoint clusters) has been studied
during the last decades. This issue was firstly introduced by [20] who proposed the
k -ultra-metrics as a measure to look for overlapping clusters. This measure was fur-
ther used to build overlapping hierarchies such as the Pyramids method [13] and the
weak hierarchies method [7]. Other overlapping clustering methods was proposed in
the literature which extend well known conventional methods such as Model-based
Overlapping Clustering (MOC) that generalizes Expectation-Maximization method
(EM) [8] and Overlapping k-means (OKM) [10] method that extends the well-known
k -means [24]. More recent methods was also proposed in the literature which proposed
more sophisticated techniques to fit overlapping structures in data such as the genera-
lized regulated overlapping k-means which proposes to control overlapping boundaries
between clusters [1,5], kernel based methods that proposes to deal with complex data
structures [6, 11] and KHM-OKM [21] which solves the issue of the initialization of
cluster representatives.

In addition to these methods, some recent overlapping methods where designed to
deal with specific applications issues such as the identification of non-disjoint groups
from complex social networks [25, 28, 29] and the identification of overlapped genes
expressions in biology [26]. These methods were designed for specific applications and
cannot be generalized for all types of data.

In fact, in real life applications the learning algorithm must allow to detect over-
lapping clusters to fit existing structures in data. These identified disjoint and non-
disjoint clusters may have different shapes and forms. The learning algorithm should
be able to detect clusters with arbitrary shapes [14, 18, 22], including spherical and
non-spherical clusters and should allow overlaps between clusters. We give in Figure 1
examples of spherical and non-spherical clusters.

a) b) c)

Figure 1. Examples of spherical and non-spherical shapes of clusters. Clusters can have
arbitrary shapes: a) three well separated spherical clusters; b) two non-spherical clusters

with concentric shapes; c) two non-spherical clusters with complex shapes
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Figure 1a reports an examples of three well separated clusters having spherical
shapes while Figures 1b and 1c reports examples of clusters having non-spherical and
complex shapes. In order to evaluate the effectiveness of well known overlapping me-
thods to deal with this issue, we build results of the existing OKM and R-OKM
methods on a generated dataset containing two groups with concentric shapes. Each
group contains 100 data object.
The results obtained by OKM and R-OKM are illustrated in Figure 2. This Fi-

gure shows that OKM and R-OKM build clusters with overlaps (the “Green” data
objects) but are not able to detect non-spherical shapes. The two methods fail to iden-
tify the clusters having concentric shapes (one cluster included in another). Another
shortcoming of the these methods is the necessity to fix the number of clusters in prior
in order to build clusters. The number of clusters may be difficult to estimate in real
life applications. In order to deal with all these issues we propose in the next section
a density based overlapping clustering method able to build non-disjoint partitionings
of data even when data contain groups with arbitrary shapes. The proposed method
is based on both densities and distances.

a) b)

Figure 2. Clustering results obtained by applying OKM (a) and R-OKM (b)
in an artificial dataset

3. Proposed method: overlapping clustering
based on density and distances (OC-DD)

To deal with the identification of overlapping clusters with arbitrary and non-spherical
shapes, we propose a new overlapping clustering method, referred to as OC-DD (Over-
lapping Clustering based on Densities and Distances), which is based on density es-
timation. The proposed method defines for each data object a local density estimate
called influence function. The influence function can be seen as a function which
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describes the impact of a data object within its neighborhood. The overall density
of the data objects in the dataset is calculated as the sum of the influence functions of
all data objects. The identification of clusters can be done by identifying high density
points called density-attractors. These density-attractor points are mathematically
defined by the local maxima of the overall density function. Attractors that have an
equally high scores are merged to build a single cluster. A data object can belong
to one or several clusters respecting to his distance from a density attractors points
given a threshold parameter.

Given an input dataset D = {x1, ..., xN} containing N data objects described by
d attributes, the objective of the proposed OC-DD method is to build a non-disjoint
partitionings C = {C1, ..., Ck} of data into k clusters where each data object xi can
be assigned to one or to several clusters. Four main steps are defined in the OC-DD
method to identify the non-disjoint partitioning of data as schematized in Figure 3.

Figure 3. Illustrative schema of OC-DD algorithm
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The first step consists of computing the density function of each data object
based on the used influence function. Then, the second step aims to identify the local
maxima of the overall density function named density-attractors. Once the attractors
are identified, a third step is devoted to compute the densities and distances matrices.
Finally, the last step aims to derive the partitioning of clusters based on distances
between attractors where similar ones are grouped together in the same cluster. We
give in the following details of each step of the proposed OC-DD method.

3.1. Step 1. Density estimation

This step consists of computing the overall density FD of all data objects based on
the local influence function f(xi) of each data object. The local influence function
measures the impact of a data object xi within its neighborhood y and is defined by:

fy(xi) = f(xi; y) (1)

Examples of influence functions that can be used are the square wave function and
the Gaussian function which are defined as follows:
1. Square Wave Influence Function (fSquare):{

0 if d(x, y) > σ
1 otherwise

(2)

2. Gaussian Influence Function (fGauss):

fGauss(x; y) = exp−
d(x, y)2

2σ2
(3)

where d(x, y) ∈ ℜ+0 is the distance between data objects x and y and can be measured
using standard distance functions such as Euclidean and Manhattan distances. The
parameter σ controls the influence of an object in the space. It denotes the spread or
smoothness of the density estimate. For small values of σ, the density function has
several local maxima, whereas for larger values the number of maxima decreases.
Based on the local density estimate of each data object within its neighbor, the

overall density function FD(xi) of the data object xi in the ensemble of data D is
computed as the sum of the local influence function fyj (xi) of all data objects yj ∈ D.
The overall density FD(xi) of a data object xi is defined by:

FD(xi) =
N∑
j=1

fyj (xi) ∀xi ∈ D (4)

This density estimation depends on the used influence function. For example,
when the Gaussian influence function is used, the density estimate of FDGauss(xi) will
be as follows:

FDGauss(xi) =
N∑
j=1

exp−d(xi, yj)
2

2σ2
∀xi ∈ D (5)
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3.2. Step 2. Attractors identification

The second step consists in identifying the set of density attractors {x1∗, . . . , xN ∗}
which are defined as the local maximum of the density function FD(xi) for each data
object xi. The local maximum of the density function FD(xi) for a given data object xi
can be determined by a Hill Climbing algorithm which is based on a gradient ascent
approach as described in [18] and [9]. The idea is to estimate the density gradient and
determining the direction of the largest increase in the density. After that, moving
in the direction of the gradient in small steps until reaching a local maximum. The
estimation of the gradient for a density function is effectively solved by [16] which gives
a good estimation of the gradient for pattern recognition applications. This estimation
of the gradient were used in well known density-based clustering methods such as
DENCLUE [18] and Mean-Shift [9]. The estimation of the gradient for a density
function can be described as follows:

∇FD(xi) =
N∑
j=1

(yj − xi)× fyj (xi) ∀xi ∈ D (6)

When the Gaussian influence function is used the gradient can be defined by:

∇FDGauss(xi) =
N∑
j=1

(yj − xi) exp−
d(xi, yj)2

2σ2
(7)

An object x∗i is called a density-attractor if x
∗
i is a local maximum of the den-

sity function FD(xi). An object xi is density-attracted to a density-attractor x∗i if
∃m ∈ N :| xm − x∗i |¬ TOL with:

x0 = x, xm = xm−1 + δ
∇FD(xm−1)
∥∇FD(xm−1)∥

(8)

where δ < 0 is the size of each step and TOL is the tolerance variation parameter.
A data object x is density attracted to a density attractor x∗ if a gradient ascent
process started at xi and converges to x∗i . In other words, there exist a sequence of
data objects x = x0, x1..., xm, such that |xm − x∗| ¬ TOL, and each intermediate
object is obtained after a slight variation in the direction of the gradient vector.

3.3. Step 3. Densities and distances computation

The step of densities and distances computation consists in computing pair-wise di-
stances between attractors and the pair-wise differences of densities between all data
objects. In this step, the OC-DD method requires in input the estimated densities
and the identified attractors in the previous step and returns pair-wise densities and
distances matrices as described in Figure 4.
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Figure 4. Pair-wise matrices of densities and distances at the end of the third step

3.4. Step 4. Clusters generation

The last step of the OC-DD consists of generating clusters based on densities and
distances matrices. In fact, clusters are build as dense regions in the data space by
looking for data objects having both similar densities and converging to near local
maximum. A cluster Cp containing m data objects {xp1, ..., xpm} is formed when all
these data objects are density attracted to nearly the same attractor x∗i and also ha-
ving nearly the same density estimate FD(xp1) ≃ FD(x

p
2) ≃ .... ≃ FD(xpm). There is

not any rule regarding the number of clusters to which a data object can be assigned
to. The data object can be assigned to several clusters when it is density-attracted to
more than one attractor x∗i . In addition, given that clusters are defined based on re-
gions of higher density, clusters with non-spherical and arbitrary shapes can be easily
identified. Therefore, the proposed OC-DD method can effectively solve the issue of
identifying overlapping clusters with arbitrary shapes and forms. Another advanta-
ge of the proposed OC-DD method is the automatic identification of the number of
clusters. There is no need to pre-configure this number in prior. The number of at-
tractors is considered the right number of clusters in the dataset since it determines
the number of high density regions in the data space.
In order to generate clusters based on the above definition, we define two para-

meters: V TOL and θ. The first, V TOL, determines the maximal tolerated variations
between attractors to be merged together while the second,θ, determines the maxi-
mal tolerated density between data objects to be merged together in the same cluster.
Theoretically, data objects xi and xj are put in the same cluster Cp when these two
conditions are satisfied:

||x∗i − x∗j || < V TOL ∧ ||FD(xi)− FD(xj)|| < θ ∀xi, xj ∈ Cp (9)

In the following, we give a pseudo-code of the main algorithm of the proposed
OC-DD method.
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Algorithm 1 OC-DD algorithm ( TOL, VTOL, θ, σ)

Input: D : a dataset containing N data objects {x1, X2, ...xN} described over ℜd

TOL: the tolerance for convergence parameter,
VTOL: the attractor merge threshold,
θ: the density merge threshold,
σ : the smoothing parameter of the influence function
Output: {C1, ..., Ck} clusters memberships
1: For each data object xi compute the density function (using Equation 4).
2: Run gradient (using Equation 6).
3: Find Density Attractor, x∗i , for eachxi ∈ D using Equation 8
4: Compute pair-wise distances between attractors.
5: Compute pair-wise differences of densities between the data objects.
6. if ||x∗i − x∗j || < V TOL and ||FD(xi)− FD(xj)|| < θ.
Assign a data object xi and xj to the same cluster.

3.5. Computational complexity of OC-DD method

Given that the four steps of OC-DD method are independent, the computational com-
plexity of OC-DD can be determined by the step having the maximal computational
complexity. Therefore, we give in the following an evaluation of the computational
complexity of each step. The first step, density computation, consists in computing
the influence function for each object xi ∈ D. The local influence function of each
data object xi is approximated by O(N) with N the number of data objects. So,
computing all density functions for all data objects can be approximated by O(N2)
which is the estimated computational complexity of the first step. The second step
consists in determining the set of density attractors. This step takes O(N ·m) time
for each object where m is the maximum number of iterations in the gradient de-
scent function. Therefore this step can be evaluated by O(N2 · m). The third step,
densities and distances computation, which evaluates the pair-wise differences of den-
sities between the data objects and pair-wise distances between attractors can be
approximated by O(N2). The final step, clusters generation, can be approximated
by O(N2) since it look for all pair of clusters that can be putt together in the sa-
me cluster. Therefore, based on all these evaluated computational complexity for the
different steps we can proximate the overall computational complexity of OC-DD by
O(N2) +O(N2 ·m) +O(N2) +O(N2) ≃ O(N2 ·m).

4. Experiments

We experimentally evaluated the performance of the proposed method compared to
existing ones in the literature. We begin by describing the different used datasets
and the evaluation methodology and then we give descriptions and discussions of
experimental results.
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4.1. Datasets description

Experiments are performed on both artificial and real datasets. For artificial datasets,
we simulated two datasets containing clusters with complex shapes as in the following:

• Artificial dataset1 contains two clusters where each cluster contains 100 data
objects defined in two dimensional space. the two clusters have a non-spherical
shape.

• Artificial dataset2 contains 359 data objects defined in two dimensional space
classified into 2 separate groups. The first cluster contains 120 data objects and
the second cluster contains 239 data objects. The clusters of this dataset have
a non spherical shapes (2 circles with same center but different radius).

Concerning real datasets, it was selected from different domains where data need
to be assigned to more than one cluster and having different degree of overlaps (from
1 to 4.8):

• Iris dataset: Iris dataset [15] consists of 50 samples from each of three species
of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were measured
from each sample: the length and the width of sepals and petals, in centimeters.
This dataset has no overlaps between clusters (size of overlaps = 1).

• Eachmovie dataset: Video classification grouping movies with respect to genres
based on user rating. EachMovie is composed from 600 films, 6 labels and the
overlap size is equal to 1.14.

• Emotion dataset: Music emotion classification. Grouping music songs with
respect to emotion based on the analysis of music signals. Emotion dataset is
composed from 593 songs, 6 labels and the overlap size is equal to 1.81.

• Yeast dataset: Predicting the Cellular Localization Sites of Proteins. Yeast
dataset is composed from 2417 gene descriptions, 14 labels and the size of overlaps
is equal 4.23.

Table 1 gives statistics description of each simulated and real dataset.

Table 1
Statistics description of simulated and real datasets

Datset Type #objects #dimensions #clusters Avg. overlaps

Artificial dataset1 simulated 100 2 2 1

Artificial dataset2 simulated 359 2 2 1

Iris real 150 4 2 1

Eachmovie real 600 5 6 1.14

Emotion real 593 72 6 1.81

Yeast real 2417 8 14 4.23



A density-based method for the identification . . . 179

4.2. Evaluation methodology and evaluation measures

The quality evaluation of clustering results is not a trivial task. Two approaches can
be used to evaluate the outputs: internal and external approaches. Internal evaluation
is based only on the intrinsic property of the output while external evaluation requ-
ires an existing dataset with known labels called gold standard. Given that external
evaluation measures are well defined for the evaluation of overlapping clusters [2,23],
we considered this approach to evaluate the output of the proposed OC-DD method.
Results are compared based on a comparison between the output of the clustering
(groups) and the known classes in the dataset. We used BCubed measures for over-
lapping clustering proposed by [2] to take into account the multiplicity of the pairs of
observations.
The BCubed technique [2] is based on computing precision and recall for each pair

of observations sharing at least one category or one cluster. In the case of overlapping
clustering, the extended BCubed takes into account the multiplicity of observations
occurrence in clusters and categories. Extended BCubed precision evaluates the amo-
unt to which the decisions made by the evaluated algorithm of placing pairs of objects
together in one or several clusters are correct. The BCubed precision is defined as:

P =
1
|D|
∑
x∈D

1
|Dg∈G(x)|

∑
x′∈E(x,G)

min(|G(x) ∩G(x′)|, |C(x) ∩ C(x′)|)
|G(x) ∩G(x′)|

(10)

where x and x′ are two data objects, G(x) the set of categories (known classes), C(x)
the set of clusters associated to x and |D| is the number of data objects. E(x,G) is the
set of data objects co-occurring with x in at least one candidate cluster, and |Dg∈G(x)|
is the number of data objects for all classes to which the data object x belongs to.
Concerning the extended BCubed recall measure, it aims to evaluate the amount to
which the evaluated algorithm is able of putting together the pairs of objects that
co-occur in classes of data with known labels. The BCubed recall is defined only when
(x, x′) share one or more categories, and it is maximal when the number of shared
categories is lower or equal than the number of shared clusters, and it is minimal
when the two observations do not share any cluster. The Bcubed recall is defined by:

R =
1
|D|
∑
x∈D

1
|Dg∈C(x)|

∑
x′∈E(x,C)

min(|G(x) ∩G(x′)|, |C(x) ∩ C(x′)|)
|C(x) ∩ C(x′)|

(11)

where E(x,C) is the set of data objects co-occurring with x in at least one cluster
and |Dg∈C(x)| is the number of data objects for all obtained clusters to which the
data object x belongs to. If we have less shared clusters than needed, we lose in
term of recall; if we have less categories than clusters, we lose in term precision. The
analysis of recall and precision helps in evaluating the performance of the resulting
clustering. However, for using a unique evaluation measure for the comparison, we
can use the F -measure which is based on both precision and recall. The BCubed
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F -measure provides a trade-off between Extended BCubed precision and Extended
BCubed recall and is defined by:

F −measure = 2 · BCubedPrecision ·BCubedRecall
BCubedPrecision+BCubedRecall

(12)

The fourth measure that we have used in the experiments is the overlap size and
is defined by:

Overlap =
1
|D|
·
∑
xi∈D
|Ai| (13)

where |D| is the number of data objects and |Ai| is the number of clusters to which
the data object xi is assigned to. The size of overlap influences the performance of
overlapping clustering methods. More this size is near to the actual size of overlaps
in the gold standard, more this size is considered better.

4.3. Results on IRIS dataset

IRIS dataset is widely used as a primary test for machine learning purpose, especially
for a preliminary evaluation of clustering and classification methods. The specificity
of the dataset consists that it contains one category of flowers (Iris Setosa) which
is easily to separate from the other two categories (Iris-virginica and Iris-versicolor)
that are very similar. In order to evaluate the performance of the proposed OC-DD
method, we plot obtained clusters of the OC-DD method using the two first axes of
Principal Component Analysis (PCA) technique as described in Figure 5.

a) b)

Figure 5. Obtained clusters using OC-DD on Iris dataset with two values of VTOL projected
on the two first PCA axes: a) V TOL = 1; b) V TOL = 1.5
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Clusters are build using two values of VTOL parameter which presents the ma-
ximal considered distance between attractors to be merged into a single cluster. Re-
ported results first show the ability of OC-DD to build overlapping clusters. We show
in Figure 5a the ability of OC-DD to build overlaps between the two similar flowers
categories. Second, we show the ability of the proposed OC-DD method to build di-
sjoint clusters when data are well separated. We also show the impact of the VTOL
parameter on the performance and behavior of the method: smaller values increase the
number of clusters until reaching N clusters while larger values considerably reduce
the number of clusters until grouping all observations into a single cluster.
In order to empirically evaluate the performance of OC-DD compared to existing

methods, we report in Table 2 values of Precision (P), Recall (R), F -measure (F) and
the average size of overlaps obtained using OC-DD, OKM [10], R-OKM [5]
and ALS [12] methods. Obtained results show that OC-DD gives a better value of
F -measure compared to existing ones. The obtained F -measure increases from 0.65
obtained using OKM to reach 0.842 by using OC-DD. The improvement of results is
achieved due to the important improvement of precision. Second, we show the ability
of OC-DD to give a good estimation of the number of clusters (between 2 and 4)
without requiring to estimate this number in prior as done for all existing methods.

Table 2
Empirical results on Iris dataset

Method
BCubed Evaluation Size of

P. R. F. nbclust. Overlap

OC-DD(σ = 0.34, VTOL = 1, θ = 0.02) 0.74 0.97 0.84 4 1.20

OC-DD(σ = 0.002, VTOL = 3, θ = 100) 0.51 0.84 0.63 4 1.17

OKM 0.48 ±0.03 0.99 ±0.01 0.65 ±0.02 3 1.48 ±0.05

R-OKM 0.58 ±0.13 0.98 ±0.06 0.71 ±0.08 3 1.32 ±0.19

KHM-OKM 0.53 ±0.01 0.99 ±0.01 0.67 ±0.01 3 1.40 ±0.03

ALS 0.43 ±0.04 0.93 ±0.03 0.68 ±0.03 3 1.52 ±0.09

4.4. Ability to detect arbitrary and non-spherical shapes

In order to evaluate the ability of OC-DD to detect overlapping clusters with arbitrary
shapes, we plot obtained clusters build by OC-DD on two artificial datasets containing
clusters with non-spherical shapes. First, we show the limit of using the existing OKM
method which fails to build the right clusters in the first and the second artificial
dataset as illustrated in Figure 6b and Figure 7b. We show some red and blue points
in high dense region which represents only a single dense cluster. This problem is
solved by using the proposed OC-DD method. We also show that overlaps are built
in the surface between the first and the second dense region. For the second dataset
which contains two concentric shapes of clusters, we show that OKM completely fails
to build clusters in this dataset. However, using OC-DD we show that our proposed
method succeed in detecting two disjoint clusters which fits the existing structures in
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this dataset as described in Figure 7a. We remark that our method can produce both
disjoint and overlapping clusters based on the existing structures in data.

a) b)

Figure 6. Comparison of obtained clusters with OC-DD and the existing OKM method
on Artificial dataset 1: a) OC-DD; b) OKM

a) b)

Figure 7. Clusters obtained by OC-DD on Artifitial dataset 1
using the first two components of PCA: a) OC-DD; b) OKM

We also built empirical results of Bcubed precision, recall, F -measure and overlap
size build in these artificial datasets using the proposed OC-DD method and compared
to those obtained using OKM, R-OKM and ALS as reported in Table 3. We show
the large improvement of results such as the improvement of F -measure from 0.68 by
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using OKM to reach 0.87 using our proposed method in the first artificial dataset.
We also show from this table that the the improvement of results in the second
artificial dataset is more important than those obtained in the first dataset given that
concentric shapes are impossible to detect using all evaluated existing methods which
only detects clusters with spherical shapes. The obtained results on artificial datasets
confirm the ability of our proposed method to identify overlapping clusters having
arbitrary and non-spherical shapes.

Table 3
Comparison of BCubed precision, recall, F -measure and overlap size obtained on artificial

dataset1 and artificial dataset2

Dateset Method
BCubed Evaluation Size of

P. R. F. nbclust. Overlap
OC-DD(σ = 0.3,
VTOL = 2, θ = 0.3)

0.54 1 0.7 2 1.40

OC-DD(σ = 0.3,
VTOL = 3, θ = 0.3)

0.52 1 0.69 2 1.38

Artificial OC-DD(σ = 0.2,
VTOL = 102, θ = 0.12)

0.76 0.99 0.87 2 1.17

Dataset1 OKM 0.53 ±0.02 0.97 ±0.04 0.68 ±0.03 2 1.4 ±0.12
R-OKM 0.64 ±0.16 0.9 ±0.19 0.75 ±0.17 2 1.22 ±0.04
KHM-OKM 0.54 ±0.02 0.98 ±0.02 0.69 ±0.02 2 1.4 ±0.04
ALS 0.55 ±0.02 0.99 ±0.02 0.71 ±0.02 2 1.48 ±0.08
OC-DD(σ = 0.2,
VTOL = 50, θ = 0.15)

0.94 0.94 0.94 2 1

OC-DD(σ = 0.2,
VTOL = 45, θ = 0.15)

0.90 0.90 0.90 2 1

Artificial OC-DD(σ = 0.2,
VTOL = 102, θ = 0.12)

0.69 0.75 0.72 3 1.26

Dataset2 OKM 0.32 ±0.04 0.84 ±0.06 0.46 ±0.05 2 1.52 ±0.11
R-OKM 0.49 ±0.08 0.59 ±0.10 0.54 ±0.09 2 1.1 ±0.26
KHM-OKM 0.34 ±0.02 0.87 ±0.01 0.48 ±0.02 2 1.47 ±0.05
ALS 0.30 ±0.05 0.89 ±0.06 0.45 ±0.05 2 1.58 ±0.08

4.5. Empirical results on real multi-labeled datasets

In order to evaluate the effectiveness of the proposed method on real datasets, we
compare obtained results of OC-DD to those obtained using OKM, R-OKM, KHM-
-OKM and ALS methods on three multi-labeled datasets. Tables 4, 5 and 6 report
best obtained BCubed precision, recall, F-measure and overlaps size using OC-DD,
OKM, R-OKM, KHM-OKM and ALS on Eachmovie, Emotion and Yeast datasets
respectively. Given that all the compared methods are sensitive to the initialization
of centroids, we used the same initialization for all methods. We note also that the
variance of results of all these methods is very high that can reach 0.6 in several
datasets. The initialization of the parameter for each compared method can highly



184 Chiheb-Eddine Ben Ncir

influences the obtained results. For this reason, we empirically tested several values
of parameters for each method and we only report best obtained results. The high
variances of results is also shown in the obtained results of our proposed method when
varying the parameters value. We reported in each dataset results of the proposed
method using several parameters values in order to give an analytic analysis of the
initialization of the parameters for our proposed methods.

Table 4
Comparison of obtained results of OC-DD with existing methods on Eachmovie dataset

Method
BCubed Evaluation Size of

P. R. F. nbclust. Overlap
OC-DD (σ = 0.002, VTOL = 2, θ = 1000) 0.54 0.79 0.64 5 1.54
OC-DD (σ = 0.002, VTOL = 3, θ =1000) 0.51 0.84 0.63 3 1.17
OC-DD (σ = 0.03, VTOL = 20, θ = 32) 0.41 0.84 0.56 4 1.21
OC-DD (σ = 0.03, VTOL = 40, θ = 32) 0.41 0.91 0.57 3 1.21
OKM 0.39 ±0.09 0.91 ±0.08 0.55 ±0.09 3 1.70 ±0.21
R-OKM 0.74 ±0.14 0.71 ±0.18 0.73 ±0.16 3 1.13 ±0.45
KHM-OKM 0.45 ±0.01 0.91 ±0.02 0.60 ±0.05 3 1.13 ±0.15
ALS 0.36 ±0.19 0.82 ±0.16 0.50 ±0.03 3 1.73 ±0.15

Table 5
Comparison of obtained results of OC-DD with existing methods on Emotion dataset

Method
BCubed Evaluation Size of

P. R. F. nbclust. Overlap
OC-DD (σ = 0.02, VTOL = 45, θ = 100) 0.43 0.68 0.53 5 1.67
OC-DD (σ = 0.002, VTOL = 50, θ = 100) 0.47 0.63 0.54 3 1.14
OC-DD (σ = 0.002, VTOL = 42, θ = 100) 0.44 0.61 0.51 6 1.69
OKM 0.35 ±0.07 0.54 ±0.11 0.43 ±0.09 6 2.35 ±0.17
R-OKM 0.86 ±0.18 0.27 ±0.07 0.35 ±0.03 6 1.26 ±0.26
KHM-OKM 0.36 ±0.02 0.54 ±0.03 0.43 ±0.02 6 2.31 ±0.11
ALS 0.30 ±0.12 0.97 ±0.10 0.46 ±0.10 6 3.46 ±0.23

Table 6
Comparison of obtained results of OC-DD with existing methods on Yeast dataset

Method
BCubed Evaluation Size of

P. R. F. nbclust. Overlap
OC-DD(σ = 0.002, VTOL = 1.35, θ = 1000) 0.75 0.47 0.58 13 3.8
OC-DD(σ = 0.002, VTOL = 1.34, θ = 1000) 0.75 0.45 0.56 15 3.96
OC-DD(σ = 5, VTOL = 6, θ = 1000) 0.13 0.77 0.23 8 4.22
OC-DD(σ = 0.5, VTOL = 1.33, θ = 1000) 0.15 0.63 0.24 17 4.02
OKM 0.59 ±0.08 0.48 ±0.09 0.53 ±0.08 14 4.80 ±0.25
R-OKM 0.75 ±0.13 0.18 ±0.18 0.29 ±0.16 14 3.04 ±1.36
KHM-OKM 0.61 ±0.03 0.50 ±0.03 0.55 ±0.03 14 4.88 ±0.12
ALS – – – – –
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Table 4 shows that R-OKM can give the best obtained results on multi-labeled
datasets having a small size of overlaps which is the case of Eachmovie dataset (actual
overlaps = 1.14). Obtained F -measure of R-OKM is equal to 0.728 which coincides
with the nearest build overlap size equal to 1.13. OC-DD gives acceptable results in
this dataset (F -measure equal to 0.632) and outperforms those obtained with OKM
and ALS.

In the Emotion dataset which has an overlap size more important than Eachmo-
vie, reported results show the effectiveness of the proposed method which gives the
best obtained results compared to OKM, R-OKM and ALS as reported in Table 5.
This table shows that the best obtained F -measure with OC-DD is equal to 0.532
while the best obtained F -measure using existing methods is equal to 0.466 (using
ALS). This improvement is explained by the improvement of both precision and re-
call compared to the other methods that give large sizes of overlaps (more large than
expected) such as the case of ALS. ALS gives an overlap size equal to 3.54 while
the actual overlaps in the Emotion dataset is only 1.81. This table also shows that
the proposed method can give a good estimation of the number of clusters (5 and
6 clusters) while this number is given in prior for existing methods.

These results are also confirmed on Yeast dataset which has the largest number
of data objects, the largest number of labels (14 classes) and the largest number of
overlaps (4.23) as reported in Table 6. We show that results of ALS cannot be reported
given the high computing complexity of this method. We also show that OC-DD and
OKM give the best obtained results of F -measure.

4.6. Scalability and parameters discussion

Although the effectiveness of the proposed method on both artificial and real multi-
labeled datasets, it suffers from the issue of scalability and parameters initialization
as the case of most of density-based methods. In order to evaluate the scalability of
the proposed method, we give in Table 7 running times of the proposed method on
real multi-labeled datasets. This table shows that OC-DD can scale well with datasets
containing thousand of data objects. For example, In Yeast dataset which contains
2407 data objects, OC-DD returns results in approximately 137 seconds. The value
of TOL parameter can largely improves the running times. A small values of TOL
makes the second step of OC-DD computationally high. A good initialization of this
parameter can largely accelerate the step of building attractors and then can accelerate
the overall process of OC-DD. We note here that the proposed method can be applied
to more large datasets if a good data pre-processing is realized. For example, rather
than using single data objects, hyper rectangles (hyper-cubes) representation can
be built before the clustering step which will create summarized cubes that only
contain very small dense regions (populated cubes) using a density estimation method
with a very small bandwidth window σ. This structure allows to OC-DD an easy
manipulation of data by considering only populated cubes.



186 Chiheb-Eddine Ben Ncir

Table 7
Running times of OC-DD on real multi-labeled datasets
Datset Method Running times (seconds)

OC-DD(TOL = 0.01) less than 1
Eachmovie OC-DD(TOL = 0.001) 1

OC-DD(TOL = 0.0001) 6
OC-DD(TOL = 0.01) 1

Emotion OC-DD(TOL = 0.001) 2
OC-DD(TOL = 0.0001) 8
OC-DD(TOL = 0.01) 6

Yeast OC-DD(TOL = 0.001) 30
OC-DD(TOL = 0.0001) 74

Concerning the issue of parameters initialization, we note that four important
parameters need to be initialized for the OC-DD method which are σ, TOL, VTOL
and θ. The parameter σ determines the degree of the influence of an object in its
neighborhood. Like all density based methods, the quality of the resulting clustering
depends on an appropriate choice of this parameter. Small values of the smoothing
parameter σ give very rough estimates of densities while larger bandwidths give smo-
other estimates. In practice, the choice of the smoothing parameter σ should be in
the interval [σmin, σmax]. σmax is the minimal value when the global density func-
tion only has a density attractor and σmin is the maximal value when the function
has N different density attractors. Choosing a good σ can be done by considering
different σ and determining the largest interval between σmin and σmax where the
number of similar attractors remains constant. This fact ensures that the number of
density attractors is constant for a long interval of σ. For the second parameter TOL,
it describes whether a density-attractor is significant allowing a reduction of the num-
ber of density-attractors. If TOL is large, low-density clusters may be neglected, but
when it is small, high-density clusters that are close may be merged. If TOL is set to
zero, each object may become a cluster of its own. A good choice of TOL helps the
method to focus on the dense regions and to save the computational time. A good

initialization of this parameter may be between the constant ∥DN∥ ·
√
2 · π · σ2

d
and

the minimum density value as recommended in the works of [17, 18]. We note here
that the choice of TOL and the previous parameter σ is dependent. A large difference
between TOL and σ makes the choice of the right value of σ difficult since it will
difficult to find the largest interval where density attractors still constant.
The third and the fourth parameter, θ and VTOL, determine the maximal dif-

ference of densities and the maximal distance between attractors to be merged into
a single cluster. Both parameters are complementary and are directly used to build
the final clustering results. These two parameters must be simultaneously controlled
and can be initialized by the average values of densities and distances for all data ob-
jects. To configure θ, we recommend to evaluate several values which are near to the
average of density for all data objects. Concerning the choice of the parameter VTOL,
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we recommend to compute the average of distances between the pair of data objects
and evaluate several values by slightly varying the average value. Small values of θ
and VTOL will generate several clusters whereas large values force the algorithm to
create a very small number of clusters. We also note that the value of θ is dependent
to the value of density smoothing σ. We show in Figure 8 how the value of θ can be
chosen in Iris dataset given the different values of σ. We show that small values of
the smoothing parameter σ requires more large values θ in order to identify the set
of 3 clusters in Iris dataset.

a) b)

Figure 8. Initialization of the value of θ given the value of the smoothing parameter σ in order
to detect a minimal number of 3 clusters in the Iris dataset: a) density value of each data

object for σ = 0.34; b) density value of each data object for σ = 0.20

5. Conclusion

In this paper, we focused on building disjoint and non-disjoint clusters having arbi-
trary and non-spherical shapes. We show the limit of all existing methods to build
such types of clusters. The proposed density-based method solves this issue and looks
for arbitrary clusters having different forms and shapes. We showed the ability of
the proposed method to build both disjoint and non-disjoint clusters and has shown
a good performance on both artificial and real multi-labelled datasets even when data
contain non-spherical and arbitrary shapes. Another advantage of the proposed me-
thod compared to existing ones is the ability to give a good estimate of the number
of clusters. This number is required to be initialized in prior for all existing methods.
An interesting future direction of the proposed work is to give an automatic in-

itialization of the different parameters in order to look for the best combination of
values giving the best clustering results. Another important direction for the impro-
vement of this work is to improve the scalability of the proposed method in order to
make possible building clusters on huge and big data. In fact, making calculations for
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each data point is not obvious to achieve rapid results in an acceptable time, espe-
cially when it comes to operate on large and huge datasets. One could investigate the
use of other heuristics such as the Genetic Algorithm to replace the highly consuming
Hill Climbing algorithm. In addition, parallel frameworks would be beneficial for the
scalability improvement of OC-DD which allows parallel and distributed processing
of high computational steps.
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