
Daniel Aioanei

LAZY SHORTEST PATH COMPUTATION
IN DYNAMIC GRAPHS

Abstract We address the problem of single-source shortest path computation in digraphs

with non-negative edge weights subjected to frequent edge weight decreases such

that only some shortest paths are requested in-between updates. We optimise

a recent semidynamic algorithm for weight decreases previously reported to be

the fastest one in various conditions, resulting in important time savings that

we demonstrate for the problem of incremental path map construction in user-

steered image segmentation. Moreover, we extend the idea of lazy shortest path

computation to digraphs subjected to both edge weight increases and decreases,

comparing favourably to the fastest recent state-of-the-art algorithm.

Keywords single-source shortest path, dynamic graph, livewire, active snake, interactive

image segmentation

2012/09/23; 18:30 str. 1/25

Computer Science • 13 (3) 2012 http://dx.doi.org/10.7494/csci.2012.13.3.113

113

1. Introduction

The problem of shortest path computation has found numerous applications, e.g., in

Internet routing protocols [14, 15] and user-steered interactive image segmentation [3,

4, 12, 9, 10].

In today’s routing protocols, routers exchange link state information so that each

router has a complete description of the network topology in its network area [16].

Link state updates are distributed to all other nodes using flooding. In response to

updates the full Shortest Path Tree (SPT) to all other routers is recomputed, usually

from scratch using a static algorithm such as Dijkstra’s [2]. The SPT recomputing

time constitutes a limiting factor for the size of the routing area [13].

In the field of image analysis, graph search techniques have been employed in

the problem of finding object boundaries in images. Interactive image segmentation

techniques take advantage of the better ability of human operators in object recogni-

tion and the superior quality of computer algorithms in object delineation. Possible

object boundaries are associated with a cost made up of an external energy (e.g.,

image gradients) [4] and possibly an internal energy component (e.g., curvature) [9].

According to the livewire technique, the image is represented as a graph with non-

negative edge costs and the best boundary between the starting point and the user

pointer is selected to be a shortest path in the mentioned graph. For the case of

a static search area, important response time improvements have been reported in

medical image segmentation by stopping Dijkstra’s algorithm as soon as the desired

optimal path is known, without computing a full SPT. The computation would then

resumed as soon as the user pointer is moved to a vertex with optimal distance at

least as high as all the previous pointer positions, since all the shortest paths of lower

distance have already been computed [3]. To achieve more effective user control the

search area can be restricted instead to the union of all local windows traced by the

user, with some fixed or variable window size [10]. In this case the search area is

a dynamic graph, and it is desirable to stop the computation as soon as the shortest

path to the latest position of the user pointer is known. The previous computation

results may then be reused when the user moves the pointer and a new shortest path

needs to be computed in the larger search area that also includes the local window of

the latest pointer position. The approach is equally applicable to centerline extraction

of curvilinear objects, e.g. from microscopy images, if the external energy is based on

the eigenvalues of a modified Hessian matrix [11]. The problem can be generally cast

as shortest path computation in a graph with frequent multiple edge insertions (i.e.,

edge weight decreases), such that in-between batch updates a single shortest path is

of interest rather than a full SPT.

2012/09/23; 18:30 str. 2/25

114 Daniel Aioanei

2. Background

2.1. Related work

Existing algorithms for the computation of single-source shortest paths in dynamic

graphs focus on the maintenance of a full SPT or more generally shortest path graph.

Herein we shortly review the most recent ones that apply to graphs with non-negative

edge costs.

FMN is a dynamic algorithm [8] that tries to visit a smaller number of edges

than Dijkstra, and it has been outperformed [7] by another dynamic algorithm named

DynamicSWSF-FP [17].

DynamicSWSF-FP has been recently optimised and endowed with the ability

to compute an SPT, resulting in the algorithm MFP [1]. Experiments have been

reported in the same paper showing that MFP is outperformed, sometimes by a large

margin, by combining semidynamic algorithms as described next.

BallStringInc [15], as corrected in [1] and BallStringDec [15] are two semidynamic

algorithms that reflect how balls attached to elastic strings, admittedly asymmetric,

naturally rearrange themselves when the length of some of the strings is increased or

decreased, respectively.

Finally, DynDijkInc and DynDijkDec [1] are two simple semidynamic algorithms

with very good performance. DynDijkInc was found to be the second best performing

algorithm for the relatively sparse road system graphs of Connecticut, closely following

after BallStringInc, and the best one for the random graphs with quasi-power-law

vertex degrees. DynDijkDec was the best performing algorithm for both types of

graphs studied in [1].

The combination of BallStringInc and DynDijkDec was the best performer for

road system graphs under mixed edge updates, closely followed by the combination

of DynDijkDec and DynDijkInc (in arbitrary order), which was the best performer

instead for random graphs. It should be noted however that the algorithm DynDijkDec

was anticipated by the algorithm EnhancedLane [10] in the field of interactive image

segmentation.

Still, it is well accepted that static Dijkstra outperforms all non-static algorithms

above certain thresholds of changed edges, after which the non-static algorithms de-

grade rapidly.

2.2. Contributions

For routing networks we are interested in the performance of SPT maintenance under

mixed edge updates. Topological stability, i.e., avoiding substitution of a shortest

path for another one of equal cost, is also of interest. For image analysis, interactive

image segmentation employs a graph subjected to frequent batch edge insertions, i.e.,

decreases of edge costs from infinity to a non-negative value, intermixed with shortest

path computations, and we are interested in the performance of the combination of

these two types of operations.

2012/09/23; 18:30 str. 3/25

Lazy shortest path computation in dynamic graphs 115

First, we create LazyDijkDec by endowing DynDijkDec with the ability to stop

SPT computation as soon as the desired shortest path is found, in such a way that new

edge weight decreases can be immediately incorporated and then new shortest paths

can be computed, all while reusing the (unfinished) path tree computation done before

new updates are received. LazyDijkDec efficiently accommodates the continuous cycle

where each iteration consists of a batch of edge insertions followed by exactly one

shortest path request, as applicable to the interactive image segmentation domain. In

fact LazyDijkDec only brings minor changes to DynDijkDec, and our contribution is to

prove that intermixing early-stopped shortest path computations with batch decreases

is indeed a valid approach. The correctness of DynDijkDec follows as a special case.

Second, we create LazyDijkInc by recasting DynDijkInc as a set of edge weight

decreases in an altered graph, after which other edge weight decreases can be incor-

porated via LazyDijkDec without the need to compute an intermediate SPT between

increases and decreases. However LazyDijkInc does require an SPT as the starting

point, which can be obtained e.g. by processing the queue of LazyDijkDec until empty.

In fact LazyDijkInc only brings minor changes to DynDijkInc, and we prove that such

an approach is indeed valid. The correctness of DynDijkInc follows as a special case.

Our interactive image segmentation experiments show that LazyDijkDec brings

important speedups in incremental path map construction as compared to DynDijk-

Dec (or equivalently, EnhancedLane).

Our experiments on random graphs with quasi-power law distribution (like the

Internet [5]) show that under mixed edge weight changes LazyDijkInc followed by

LazyDijkDec and then SPT computation (hereafter called LazyDynDijk) is faster than

the fastest previously reported approach in similar conditions, namely the chaining

of DynDijkInc and DynDijkDec (hereafter called DynDijkstra), in any order. The

performance differences are significant however only for larger sets of updates.

Finally, our experiments on a larger real-world sparse road system network,

namely the National Highway Planning Network of the USA [6] confirm the per-

formance advantage of LazyDynDijk over DynDijkstra. Surprisingly for a non-static

algorithm, for large sets of updates LazyDynDijk mirrors more closely the perfor-

mance of the faster static Dijkstra algorithm than that of the non-static algorithm

DynDijkstra that it extends.

3. Preliminary

3.1. Generalities

Let G = (V,E,w) be a simple digraph, where V and E are the sets of vertices and

edges, respectively, and w : V × V → R+ ∪ {0,∞} assigns to each edge in E a finite,

non-negative real number, that we call the weight of the edge, and to each ordered

pair of vertices that is not an edge, the value ∞. The semantics of ∞ are the usual

ones of floating-point operations. Given an edge e = (u, v) ∈ E, we call u and v the

tail u = t(e) and the head v = h(e) of the edge, respectively. For a vertex u ∈ V , the

2012/09/23; 18:30 str. 4/25

116 Daniel Aioanei

set of outgoing edges of u is Outu = {e|e ∈ E and t(e) = u}. We call path tree any

subgraph Ts of G with tree structure rooted at a unique, fixed vertex s ∈ V that we

call the source. The set of ancestors anc(v, T) where T is a tree rooted at the source

vertex s is defined as empty if v /∈ T , and as the set of all nodes on the unique path

from the root s to v in T , including v, otherwise. T can be for example the path tree

Ts or an SPT.

The insertion of an edge e is treated as decreasing the value of w(t(e), h(e)) from

∞ to a finite non-negative value and adding the edge to set E. The deletion of edge

e is treated as increasing the value of w(t(e), h(e)) from a finite non-negative value to

∞, and removing e from set E.

A vertex v is reachable if there is at least one path from the source vertex s to v

in G. The length of a path from the source s to a vertex v is defined as the sum of

the weights of the edges it contains. The optimal distance d(v,G) of a vertex v ∈ V
is defined as the length of a shortest path from the source s to v if v is reachable from

s, and ∞ otherwise.

3.2. Data structures

The state of the algorithms consists in a priority queue Q and a tree data structure

Ts having nodes corresponding to some graph vertices.

The root of the tree Ts is the source vertex s and the tree associates a non-

negative finite cost to each node. We define a function c(v, Ts) equal to the finite

cost associated to the vertex v ∈ G when v ∈ Ts, and ∞ if v /∈ Ts. The function

p(v, Ts) denotes the tree parent of v, and it is undefined if v /∈ Ts. Tree manipulation

is represented as assignments to p(v, Ts) and c(v, Ts).

The priority queue Q stores tuples 〈key, value〉 where key is a finite non-negative

real number and value is a vertex from V . Duplicate keys are allowed, but duplicate

values are not (i.e., each vertex can be present at most once in the queue at any

time). The operation Min(Q) retrieves the minimum key from the queue if not

empty, and it is ∞ otherwise. ExtractMin(Q) retrieves and removes a minimum

key entry from the queue, breaking ties arbitrarily when multiple such entries exist.

DecreaseKey(value, key,Q) decreases the key of a value already present in the queue

but associated to a key which compares higher than or equal to the new key, or inserts

a new entry if the value was not previously present in the queue.

3.3. Invariants

We call a vertex v ∈ V correct with respect to graph G = (V,E,w) and path tree Ts if

c(v, Ts) = d(v,G). If c(v, Ts) > d(v,G) the vertex is called overestimated. Otherwise

the vertex is called underestimated.

Informally, the algorithms presented here maintain a path tree Ts with associated

costs which contains a subset of the vertices reachable from the source vertex s in G.

The costs associated by Ts to vertices are always greater than (i.e., overestimated)

or equal to their optimal distance (i.e., correct). On any path in Ts from s to a leaf

2012/09/23; 18:30 str. 5/25

Lazy shortest path computation in dynamic graphs 117

node one encounters, in order, a set of correct vertices, optionally followed by some

overestimated vertices. In other words, the “upper part” of Ts consists of only correct

vertices, while the “lower part” (if any), consists only of overestimated vertices. The

proofs (but not the algorithms) also maintain an SPT Ss of G with the property that

every correct vertex from Ts has the same parent in Ts as in Ss. In other words, the

“upper part” of Ss is identical to the “upper part” of Ts. Besides, the algorithms also

maintain a priority queue Q which contains a subset of the graph vertices together

with the associated cost in Ts. Importantly, Q is maintained such that it contains

all the correct vertices from Ts that have at least one child vertex in Ss that is

overestimated by Ts (either not present in Ts, or present in Ts with too high a cost).

Note that Q can also contain other vertices besides the mentioned “border” vertices.

With such a structure, it turns out that for any vertex v whose cost is less than or

equal to the cost of all vertices in Q, it holds that v is correct, while the path from

s to v in Ts (which is identical to the path from s to v in Ss) indicates a shortest

path in G from s to v. The existence of Ss in the initial condition is trivial, and after

that at each step its existence is proved by construction, by showing how it can be

maintained and modified in parallel to any changes applied to the data structures G,

Ts and Q so as to make the invariants hold after each operation.

More formally, the following invariants are crucial to our developments:

Inv 1. For any edge e in the path tree Ts, it holds that c(h(e), Ts) ≥ c(t(e), Ts)+w(e).

Inv 2. There exists an SPT Ss of G such that the following hold:

Inv 2a. Every correct vertex v reachable in G from s, other than the source s,

has the same parent vertex in Ts as in Ss.

Inv 2b. Every overestimated vertex has a parent in Ss (i.e., it is not the source

s) and its parent in Ss is either correct and present in the queue Q, or it is

overestimated.

Several observations are due about the invariants above. First, Inv 1 guarantees

that we never leave underestimated vertices in the tree, and it immediately follows that

all descendants in Ts of an overestimated vertex are also overestimated, recursively.

Second, since c(v, Ts) is finite iff v ∈ Ts by definition, it is valid to implicitly assume

in Inv 2a that a reachable correct vertex is itself present in Ts. Third, it is valid to

implicitly assume in Inv 2b that an overestimated vertex is present in Ss, i.e., it is

reachable in G from s, since it is not possible to overestimate an unreachable vertex

because its optimal distance is ∞. Fourth, it follows from Inv 1 and Inv 2a that all

vertices on the path in Ts from the root to a correct vertex are also correct and the

same path is also present in Ss. Fifth, the overestimated vertices form full subtrees in

Ss. Indeed, that a correct vertex cannot have an overestimated ancestor in Ss follows

immediately from our previous observation. Sixth, since every reachable vertex has

at least one ancestor in Ss that is correct, e.g. the source, it follows from Inv 2b that

if the queue Q is empty then all vertices are correct. Seventh, for each overestimated

vertex v it holds that c(v, Ts) > Min(Q). Indeed, c(v, Ts) > d(v,G) by virtue of v

2012/09/23; 18:30 str. 6/25

118 Daniel Aioanei

being overestimated and d(v,G) is greater than or equal to the cost of its first correct

ancestor in Ss, which is present in Q according to Inv 2b.

Several properties follow trivially from the operation of the algorithms. The root

of Ts is always the source vertex s and it always has the optimal distance of 0. Also,

for each vertex v, if it is found in Q then it is associated to c(v, Ts) as the key, and

the key is finite. Finally, it is implied that the data structure Ts remains cycle-free

throughout the operation of the algorithms. This property will be explicitly dealt

with whenever structural changes on Ts are performed.

If Ts is a path tree of graph G, and together with the queue Q, they respect

the above invariants, we say that the state of the algorithm consisting of Ts and Q is

compatible with G.

4. Algorithms

We assume that all updates are applied to the graph separately and that the latest

updates are visible in the graph when the algorithms request the Outu set for a vertex

u ∈ V . In fact, this is the only way the algorithms interact with the underlying graph.

Procedures operating on a set of changed edges do a single pass through the set of

changed edges and only access Outu for any vertex u after the iteration procedure

finishes, providing enough leeway for the time and modality in which the underlying

graph applies the changes. We also assume, without reducing generality, that the set

of vertices |V | is fixed.

In the pseudocode we use the prime(’) notation to indicate the updated value of

w and G. In the proofs we use the prime(’) notation to indicate the latest value of

whichever entity it is applied to.

4.1. Relaxation

The basic building block is that of relaxation of an edge, which is a common concept

in shortest path algorithms. Let G = (V,E,w) and G′ = (V,E′, w′) be two digraphs

such that G′ can have an extra edge in comparison with G, or otherwise it has the

same edges and for at most one edge it can have a different weight, and that is a lower

weight. Formally, there is an edge (u, v) ∈ E′ such that w(u, v) ≥ w′(u, v) and for all

(a, b) ∈ V × V s.t. a 6= u or b 6= v, it holds that w(a, b) = w′(a, b). We define the

operation of relaxation as in Alg. 1.

Proof 1 (Alg. 1 restores Inv 1 and Inv 2 with respect to G′) Here we prove

that the postcondition of Relax holds at the end. Inv 1 holds trivially. Let Ss by

an SPT of G with respect to which Inv 2 holds as required by the precondition. We

identify a few possible cases:

1. d′(v,G′) = d(v,G). Then Ss is a valid SPT in G′ and d′(a,G′) = d(a,G),∀a ∈ V .

Two cases arise:

(a) Test in line 2 fails. Then nothing changed in the state of the algorithm and

Inv 2 holds with respect to T ′s = Ts and S′s = Ss as before.

2012/09/23; 18:30 str. 7/25

Lazy shortest path computation in dynamic graphs 119

(b) Test in line 2 passes. Inv 1 of the precondition implies that v /∈ anc(u, Ts)
so no cycles are introduced in the path tree in line 3.

i. v overestimated in G′ at the end. Then c(v, Ts) > c′(v, T ′s) >

d′(v,G′) = d(v,G) so v was also overestimated in G at the beginning.

Then no vertices changed correctness status, and no correct vertices in

G′ changed parent in the path tree. So Inv 2 holds with respect to T ′s
and S′s = Ss as before.

ii. v correct in G′ at the end. Since u satisfies v’s optimal distance in

T ′s, u must also be correct in G′, and thus in G. Based on Inv 2a,

anc(u, Ts) = anc(u, Ss). It follows that v /∈ anc(u, Ss) so we can define

the SPT S′s by starting from Ss and making the parent of v to be u, no

matter which parent v had in Ss. Since the only vertex that may change

either correctness status or parent in T ′s compared to Ts is v, Inv 2a

holds with respect to T ′s and S′s. Because v ∈ Q′ thanks to line 5, Inv 2b

also holds with respect to T ′s and S′s.

2. d′(v,G′) < d(v,G). It is clear that v is reachable in G′ and u must be a parent of

v in any SPT of G′. It should also be noted that for any vertex a ∈ V such that

d′(a,G′) < d(a,G), the inequality d′(b,G′) < d(b,G) also holds for all vertices

b ∈ des(a, Ss). In other words, the vertices that have their optimal distance

strictly decreased form full subtrees of Ss. Furthermore, all the shortest paths in

G′ from the root to vertices that change optimal distance go through (u, v). Let

S′s be an SPT of G′ that encodes the same optimal paths as in Ss from the root

to vertices that do not change optimal distance. Such an SPT can be constructed

for example by starting from any SPT S∗s of G′, and then for each vertex whose

optimal path in Ss is still an optimal path in G′, give it back its path from Ss.

Procedurally, the parent links of S∗s can be changed to match those of Ss if the

cost stays optimal, while traversing Ss depth-first, visiting the children in Ss of

a vertex v only if v’s parent in S∗s matches, or was made to match, v’s parent in

Ss, therefore avoiding cycles of zero-weight edges. We’ll show that Inv 2 holds

with respect to T ′s and S′s thus constructed.

All vertices outside the subtree rooted at v in S′s keep in T ′s and S′s the same

correctness status and parent as in Ts and Ss, thus according to the precondition

they do not break Inv 2. In the subtree of S′s rooted at v, all vertices other than

v are overestimated in T ′s. Thus we only have to show that when v is referenced

in Inv 2, it does not break it.

(a) For Inv 2a we need to show that if v correct in G′ then p′(v, T ′s) = u. Indeed,

u is the only vertex in V that can satisfy the optimal distance of v in G′

since otherwise d′(v,G′) would be equal to d(v,G). It means that the test

on line 2 passed and therefore p′(v, T ′s) = u.

(b) For Inv 2b, it is sufficient to show that:

i. If v is correct in G′ then v ∈ Q′. Indeed, if v correct in G′ it means

the test on line 2 passed and line 5 ensures v ∈ Q′.

2012/09/23; 18:30 str. 8/25

120 Daniel Aioanei

ii. If v overestimated in G′ and u correct in G′ then u ∈ Q′. We show

that this situation is not even possible. Indeed, c(u, Ts) + w′(u, v) =

c′(u, T ′s)+w
′(u, v) = d′(u,G′)+w′(u, v) = d′(v,G′) < d(v,G) ≤ c(v, Ts),

so the test on line 2 must have passed and as a result c′(v, T ′s) =

c(u, Ts) +w′(u, v) = d′(v,G′), so v is correct in G′, thus the contradic-

tion.

Algorithm 1 Relax

Require:

path tree Ts rooted at s ∈ V , queue Q compatible with G = (V,E,w);

(u, v) ∈ V × V , weight = w′(u, v) ≤ w(u, v)

Ensure: Ts, Q compatible with G′ = (V,E′, w′)
1: t← c(u, Ts) + weight

2: if t < c(v, Ts) then

3: p(v, Ts)← u

4: c(v, Ts)← t

5: DecreaseKey(v, t, Q)

6: end if

To start with one can make the invariants hold by making Q = {(0, s)} and Ts
consist of only one node, namely the sources with a cost of 0, while Ss can be taken

to be any SPT of G (e.g., produced by the static Dijkstra’s algorithm). Otherwise Q

can be made empty, Ts can be any SPT of G (as required for example by Alg. 6), and

Ss = Ts.

It should be noted that the technique we propose in case 2 of the proof of Relax

for the construction of S′s is of more general use. It can be applied in conjunction

with any SPT maintenance algorithm in the most general case of multiple mixed

edge weight changes to ensure that shortest paths that remain optimal after updates

(potentially with a different length) do not change unnecessarily. This property is

important in routing protocols [15], and it is a way to define the topological stability

of SPT maintenance algorithms. A stronger version of stability has been addressed

before for the semidynamic case, when the edge weight changes are either all increases

or all decreases [15], but it should be noted that the simple chaining of semidynamic

algorithms that individually ensure topological stability does not preserve topological

stability under mixed edge weight changes.

4.2. Computation of Shortest Paths

Procedure ShortestPath computes a shortest path to a vertex by extracting the min-

imum from the queue and relaxing its outgoing edges until the cost of the vertex of

interest is less than or equal to the minimum cost in the queue.

Proof 2 (Alg. 2 finds a shortest path to v, if any, preserving Inv 1 and Inv 2)

We prove the postcondition and that the returned path is indeed optimal. We have

2012/09/23; 18:30 str. 9/25

Lazy shortest path computation in dynamic graphs 121

seen that from Inv 2b it follows that vertices with c(v, Ts) ≤ Min(Q) are correct.

Assuming no intervening graph updates, because of the strict inequality in procedure

Relax, a vertex that is removed from Q is not enqueued for the second time. Note

that the operation of the algorithm remains unchanged if we assume that in line 2 we

only peek at the minimum p, and then later remove p from Q after the outgoing edges

have been processed. Clearly, p remains a minimum (though not necessarily the only

one) during the edge relaxation loop. Under the peeking assumption, the invariants

still hold until after the outgoing edges have been relaxed. We only have to show

that removing a just-expanded minimum of the queue does not break the invariants.

Since we have seen that p is correct prior to the dequeue operation (due to Inv 2b),

the only invariant that still requires specific treatment after the dequeue operation is

Inv 2b, the others being trivial. But all children of p in S′s (in fact, in any SPT of

G′), are correct in T ′s because the relaxation of the edge from p to any such child

gives the child its optimal cost. Therefore p does not have any overestimated children

in S′s that would require p to be present in Q, so Inv 2b also holds after the dequeue

operation.

Algorithm 2 ShortestPath

Require:

path tree Ts rooted at s ∈ V , queue Q compatible with G = (V,E,w);

v ∈ V
Ensure: Ts, Q compatible with G

1: while c(v, Ts) > Min(Q) do

2: p = ExtractMin(Q)

3: for e ∈ Outp do

4: Relax(p, h(e), w(e))

5: end for

6: end while

7: return path in Ts from s to v if v ∈ Ts; NULL otherwise

An SPT can be obtained by looping until the queue becomes empty as shown in

procedure ShortestPathTree.

Proof 3 (Alg. 3 computes an SPT of G and empties Q) The correctness of

the algorithm follows immediately from the correctness of Alg. 2.

Finally, ShortestPathOfMany can find a shortest path to a vertex with minimum

cost out of a set of target vertices and it is useful in the interactive image segmentation

domain.

Proof 4 (Alg. 4 finds a shortest path to the closest v ∈ D, if any) The cor-

rectness of the algorithm follows immediately from the correctness of Alg. 2.

2012/09/23; 18:30 str. 10/25

122 Daniel Aioanei

Algorithm 3 ShortestPathTree

Require:

path tree Ts rooted at s ∈ V , queue Q compatible with G = (V,E,w);

Ensure: Ts is an SPT of G; Q is empty

1: while ∞ > Min(Q) do

2: p = ExtractMin(Q)

3: for e ∈ Outp do

4: Relax(p, h(e), w(e))

5: end for

6: end while

7: return Ts.

Algorithm 4 ShortestPathOfMany

Require:

path tree Ts rooted at s ∈ V , queue Q compatible with G = (V,E,w);

D ⊂ V
Ensure: Ts, Q compatible with G

1: m← min({c(v, Ts)|v ∈ D})
2: while m > Min(Q) do

3: p = ExtractMin(Q)

4: for e ∈ Outp do

5: Relax(p, h(e), w(e))

6: if h(e) ∈ D then

7: m← min(m, c(h(e), Ts))

8: end if

9: end for

10: end while

11: return NULL if m =∞; path in Ts from s to any v ∈ D s.t. c(v, Ts) = m otherwise

4.3. Semidynamic algorithms

LazyDijkDec processes a set of edge weight decreases simply by relaxing each edge

exactly as in Step 1 of DynDijkDec of [1], and it is included here for completeness.

Proof 5 (Alg. 5 restores Inv 1 and Inv 2 with respect to G′) The correct-

ness of the algorithm follows immediately from the correctness of Alg. 1.

LazyDijkInc performs the same operations as Steps 1 and 2 of DynDijkInc in [1],

starting from a state where Ts is an SPT and Q is empty, and it is included here for

completeness. The set of locally affected vertices is defined to consist of those vertices

v ∈ Ts such that on the path from root s to v in Ts at least one edge with increasing

cost is encountered. The set of locally unaffected vertices is defined to consist of those

vertices v ∈ Ts such that on the path from root s to v in Ts there are no edges with

increasing cost. Note that since Ts is an SPT, it contains all reachable vertices.

2012/09/23; 18:30 str. 11/25

Lazy shortest path computation in dynamic graphs 123

Algorithm 5 LazyDijkDec

Require:

path tree Ts rooted at s ∈ V , queue Q compatible with G = (V,E,w);

set of edges ε− whose weights are decreased

Ensure: Ts, Q compatible with G′

1: for ei ∈ ε− do

2: Relax(t(ei), h(ei), w
′(ei))

3: end for

Algorithm 6 LazyDijkInc

Require:

path tree Ts rooted at s ∈ V is an SPT of G = (V,E,w); queue Q is empty

set of edges ε+ whose weights are increased

Ensure: Ts, Q compatible with G′

1: Lu ← locally unaffected vertices with respect to ε+

2: La ← locally affected vertices with respect to ε+

3: Remove all vertices of La from Ts.

4: for all v ∈ Lu do

5: for e ∈ Outv do

6: Relax(v, h(e), w′(e))
7: end for

8: end for

Proof 6 (Alg. 6 restores Inv 1 and Inv 2 with respect to G′) We prove that

the invariants hold at the end of LazyDijkInc. Let’s consider the graph G∗ which

would be obtained from G after removal of all edges with the tail in Lu and the head

in La. Then line 3 makes the path tree Ts become an SPT of G∗ since locally affected

vertices are unreachable in G∗ and all the other vertices maintain their correct status.

Then we evolve G∗ by adding back all the missing edges that will make G∗ identical

to G′. Each such edge is relaxed to its new value in line 6, which according to the

postcondition of Relax makes the invariant hold with respect to the graph with the

edge added back (with its new weight). Therefore after the last edge is relaxed the

state of the algorithm will be compatible with G′.

It should be noted that for each edge with both the tail and the head in Lu
operation Relax will not perform any changes, because all vertices in Lu stay correct

with respect to G, G∗ and G′ all throughout the algorithm, and thus their cost cannot

be further decreased. That makes the operation of LazyDijkInc identical to Steps 1

and 2 of DynDijkInc.

We call LazyDynDijk the chaining of LazyDijkInc followed by LazyDijkDec and

then ShortestPathTree, and we call DynDijkstra the chaining of DynDijkInc and Dyn-

2012/09/23; 18:30 str. 12/25

124 Daniel Aioanei

DijkDec. The order chosen for DynDijkstra is arbitrary [1] and it does not influence

the results.

4.4. Time complexity

Herein we assume that the priority queue Q executes the operations Min(Q)

and DecreaseKey(value, key,Q) in O(1) amortised time, while the operation

ExtractMin(Q) runs in O(log|V |) amortised time, where the | · | notation denotes the

size of the set it is applied to. One such common data structure is the Fibonacci heap.

It follows that Alg. 1 runs in O(1) amortised time, while Alg. 2, Alg. 3 and Alg. 4 have

the same time complexity as the static Dijkstra algorithm, namely O(|E|+|V | log|V |).
Then Alg. 5 runs in O(|ε−|) and Alg. 6 runs in O(|ε+|+ |V |+ |E|), giving LazyDyn-

Dijk a time complexity of O(|ε+|+ |ε−|+ |E|+ |V | log|V |), which is the same as static

Dijkstra’s O(|ε−|+ |E|+ |V | log|V |) given that |ε+| ≤ |E|.

4.5. Example

In Fig. 1 we present an example graph and a set of operations applied to it that show

how the algorithms above operate changes in the data structures Ts and Q. After

each operation we also show the SPT Ss that results by applying the constructive

approach detailed in the proofs above, restoring the invariants Inv 1 and Inv 2 with

respect to Ts, Q and Ss after each operation.

Below we point out a few key points about the steps in the example of Fig. 1:

Fig. 1a. Initially we assume that no graph edges are present. As a starting point, we

chose the first of two options presented in Section 4.1, namely Q contains only

a, while Ts has only the source node a with a cost of 0, and Ss can be taken to

be any SPT rooted at a. In this case the only reachable node is a, so Ss has a

as the only node.

Fig. 1b. After introducing a few edges but without making any other vertex reach-

able, Ts, Q and Ss remain unchanged.

Fig. 1c. The introduction of an edge from a to b results in b being a correct node,

while Ss becomes an SPT that has the same structure of the correct nodes a and

b as Ts. Visually, within the dashed boxes the blue and red arrows link the same

vertices, as required by Inv 2a. It should be noted that the relaxation algorithm

did not compute a full path tree of the graph, while the proof already has an

SPT containing all 5 vertices to maintain. Note also that in this case the only

overestimated vertex whose parent in Ss is correct is d. Since b, which is the

parent in Ss of d, is indeed present in Q, Inv 2b also holds.

Fig. 1d. The introduction of a new edge from b to c with the indicated weight does

not change the optimal distance of any vertex in the graph, but it results in c

becoming a correct vertex. In particular, the optimal cost of vertex c remains

equal to its previous value of 3. However, this operation results in modifications

of Ss according to Case 1(b)ii of the proof of Alg. 1, which are made to comply

with the choice taken by Alg. 1 to assign c as a child of b in Ts. Therefore,

2012/09/23; 18:30 str. 13/25

Lazy shortest path computation in dynamic graphs 125

a) Initial state.

Correct vertices.

a 0 0 b - - c - - d - - e - -

b) Executed LazyDijkDec([(b->d, 2), (d->c, 0), (c->e, 1)]).

1

0

Correct vertices.

a 0 0 b - - c - - d - - e - -
2

c) Executed LazyDijkDec([(a->b, 1)]).

c - 3 e - 4d - 3b 1 1

1

0

Correct vertices.

a 0 0
21

d) Executed LazyDijkDec([(b->c, 2)]).

e - 4d - 3b 1 1

1

0

Correct vertices.

a 0 0
21

c 3 3

2

e) Executed LazyDijkDec([(b->d, 1)]).

e - 3b 1 1

1

0

Correct vertices.

a 0 0
11

c 3 2

2

d 2 2

Correct vertex.

f) Executed ShortestPath(d).

e - 3

1

0

Correct vertices.

11
c 2 2

2

a 0 0 b 1 1 d 2 2

c 2 2

g) Executed ShortestPathTree.

e 33

1

0

Correct vertices.

11

2

a 0 0 b 1 1 d 2 2 c 2 2

h) Executed LazyDijkInc([(b->c, 3)]).

e 33

1

0

Correct vertices.

11

3

a 0 0 b 1 1 d 2 2

a 0 0 b 1 1

i) Executed LazyDijkInc([(b->d, 4)]).

e - 5

1

0

Correct vertices.

41
c 4 4

3

d 5 5 c 4 4 d 5 5a 0 0 b 1 1

j) Executed ShortestPathTree.

e 55

1

0

Correct vertices.

41

3

Figure 1. Example of graph with 5 vertices named a, b, c, d and e, respectively, with

operations applied as described in the subfigure labels.

The notation [. . .] denotes a list of items, while the notation (t → h,w) denotes an edge from tail

t to head h with weight w and the dash symbol − denotes positive infinity. In the figure each

vertex is represented by a box. The source vertex box has a green border, while all the others
have black borders. The boxes of vertices present in Q have a light grey background, while all

the other vertex boxes have white background. A vertex box contains three items, which are in
order from left to right: an identifier of the vertex v written in black, its cost c(v, Ts) in blue and

its optimal distance from the source vertex d(v,G) in red. All graph edges are drawn as arrows

labelled with the weight of the edge, in black. The edges of Ts are indicated with blue arrows,
while the edges of Ss are indicated with red arrows. All correct vertex boxes, i.e., the vertex

boxes in which the second and third items are equal, are enclosed for ease of visualisation within

one or more dashed boxes. The operations performed on the starting empty graph of subfigure a)
are indicated, in order, in the labels of the subfigures b), c), d), e), f), i) and j). Each subfigure
depicts the state of G, Ts, Q and Ss after the operation indicated in its label has been performed.

2012/09/23; 18:30 str. 14/25

126 Daniel Aioanei

although a → b → d → c is still a shortest path for c, Ss is modified so that it

contains for vertex c the shortest path a → b → c, thereby maintaining Inv 2a.

The only overestimated vertices are d and e, and their parents in Ss, namely b

and c, are both correct. Since both b and c are present in Q, Inv 2b holds.

Fig. 1e. The decreased weight of the edge from b to d makes node c become over-

estimated, so it does not matter any longer for Inv 2a. The relaxation of the

edge makes node d become correct. After the modification of Ss according to the

procedure described in Case 2 of Alg. 1, since d becomes correct, its parent in Ts
is proved according to Case 2a to become b, as can be seen in the figure, thereby

ensuring that Inv 2a holds. Similarly, Case 2(b)i proves that d is in Q, as also

seen in the figure, thereby ensuring that Inv 2b holds.

Fig. 1f. The computation of a shortest path to d does not even need to extract c from

Q, because its optimal cost is equal to that of d, thereby leaving its neighbour e

untouched.

Fig. 1g. Alg. 3 ensures that Ts becomes an SPT (equal to Ss) and that Q is empty,

thereby making it possible to perform next a (batch) edge weight increase oper-

ation.

Fig. 1h. Increasing the weight of an edge that is not present in Ts = Ss does not

result in any changes in either Ts, Q or Ss, because it cannot affect any shortest

paths. Therefore a (batch) weight increase operation can still be performed.

Fig. 1i. Increasing the weight of the edge from b to d, vertices a and b are locally

unaffected, while vertices d, c and e are locally affected. Therefore d, c and e are

first removed from Ts and then the outward edges from a and b are relaxed. The

proof of Alg. 6 shows that all invariants hold after the operation is completed, as

can also be seen in the figure. Therefore edge weight decreases and shortest path

computations can be resumed at this point with no need to compute a full SPT.

Fig. 1j. However, we finish this example with a full SPT computation showing that

vertex e, which was overestimated at the end of the previous step, becomes

correct.

5. Experiments

The experiments were performed on an Intel CPU core running at 1.6 GHz. We used

Java 7u4 and restricted the memory capacity of the Java Virtual Machine to 1 G. For

the queue implementation we used a Fibonacci heap all throughout. For all tests we

measured the execution time, and we also counted the following types of elementary

operations: queue extractions, key decreases in the queue, graph edge traversals,

graph edge weight accesses and tree edge visits where applicable. Cumulative cost

computations have been performed in double precision floating point arithmetic.

2012/09/23; 18:30 str. 15/25

Lazy shortest path computation in dynamic graphs 127

5.1. Interactive Image Segmentation

5.1.1. Setup

We adopted the version of EnhancedLane [10] that makes the computed paths optimal

independently of the order in which the user pointer is moved, i.e., by defining the

search area as the union of all windows where the user pointer has been detected since

the tracing operation of the latest segment was started, as explained in Fig. 2.

The window size was fixed to 90 × 90 pixels. We adopted the G-wire technique

[9] in order to include a curvature internal energy component, resulting in a graph

with the number of vertices equal to eight times the number of pixels in the image,

based on the 8-neighbour system. Each graph vertex corresponds to an image pixel

and one of the eight directions from which one can arrive at the image pixel (Fig. 3a).

Directed graph edges are created between each pair of graph vertices that correspond

to image pixels that are 8-neighbours and the direction of arrival encoded by the head

is compatible with the pixel location corresponding to the tail vertex (Fig. 3b).

The curvature component proposed in [9] is proportional to |vk+1−2vk + vk−1|2,

where v represents the vector of (x, y) coordinates of consecutive pixels on the path

~v and | · | stands for the Euclidean distance. We found this curvature energy to be

incompatible with lines that are not perfectly horizontal, vertical or diagonal. Indeed,

in such cases in the absence of other strong energy components such a line would be

approximated by two segments, one perfectly horizontal or vertical, and the other one

diagonal, rather than sticking to the line as closely as possible, and that would require

another strong stretching energy component to correct. We used instead a curvature

energy for three consecutive pixels based on the angle formed at the middle one:

Ec(0) = 1, Ec(π/4) = 0.75, Ec(π/2) = 0.5, Ec(3π/4) = Ec(π) = 0 where the angle
6 (vk−1, vk, vk+1) is the [0, π]-normalized angle of the vectors ~vk−1vk and ~vk+1vk. Our

curvature energy opposes sharp bends with angles less than or equal to π/2 while it

is indifferent to the others.

For any three image pixels a, b and c such that a and b are neighbours, and also

b and c are neighbours (c could be the same as a), we assigned to the directed graph

edge with the tail encoding image pixel b arriving from a and the head encoding

the image pixel c arriving from b the cost of |c − b| ∗ [0.05 + 0.95(2 − |∇I(b)| −
|∇I(c|)/2+Ec(6 (a, b, c))], where ∇I is the [0, 1]-normalized image gradient computed

after Gaussian convolution with a standard deviation of 2.5.

Therefore the resulting empirical total energy function for a path ~v is E =∑
k |vk+1 − vk| ∗ [0.05 + 0.95(2− |∇I(vk)| − |∇I(vk+1|)/2 + Ec(6 (vk−1, vk, vk+1))].

The graph was represented implicitly by keeping track only of the search area,

while edge costs were computed on-demand.

We used a dataset of 51 greyscale pictures with 32 bits per pixel and image

sizes from 341055 to 1920000 pixels with an average of 748610.6 pixels per image.

The images consist of pictures of animals in nature whose contour we delineated.

Every time the user moved the pointer, the search area was expanded by union with

the new window centered at the user pointer position, and the shortest path was

2012/09/23; 18:30 str. 16/25

128 Daniel Aioanei

Figure 2. Incremental path map update when the user traces starting at position 1, then

moves to positions 2, 3 and 4. Each time the mouse pointer is moved, a new window is added

to the search area for the optimal path. Initially the search area consists only in the window

centered at 1, but the optimal path is trivial and consists of only the starting point. Then

when the mouse pointer is moved to position 2, the search area consists of the union of the

windows centered at 1 and 2, therefore an optimal path needs to be found from position 1

to position 2 in the graph corresponding to the union of windows 1 and 2. After the optimal

path is found, the mouse pointer is detected at position 3, adding the window centered at 3

to the search area. Finally, the window centered at 4 is added to the search area, and the

shortest path between 1 and 4 needs to be found in the search area consisting in the union of

all four windows. Because the user generally moves the mouse pointer continuously, shortest

path computations need to be as fast as possible to ensure a good user experience.

a) b)

Figure 3. Directed graph based on the 8-neighbour system. (a) There are eight possible

ways to arrive at an image pixel, shown as dashed arrows, and each of them will have its

own vertex in the graph. (b) Two neighbouring image pixels are considered on the SE-NW

axis. The eight graph vertices of each image pixel are shown as in (a), and continuous arcs

represent the directed edges having the tail corresponding to the image pixel closer to the

NW corner and the head corresponding to the image pixel closer to the SE corner. Note

that only one of the eight graph vertices corresponding to the latter image pixel serves as

the head of edges from the vertices corresponding to the former image pixel.

2012/09/23; 18:30 str. 17/25

Lazy shortest path computation in dynamic graphs 129

Table 1

Interactive Image Segmentation Statistics for 51 images totalling 40276 detected movements

of the user pointer.

Unit of measurement DynDijkDec LazyDijkDec

Mean Median Mean Median

106 ops 56.66 54.81 39.90 40.67

ms 14.90 2.97 11.86 2.41

computed from the latest seed point (fixed by the user) to the latest pointer position.

More exactly, the shortest path to the set of eight graph vertices corresponding to

the pointer position was computed using procedure ShortestPathOfMany in the case

of LazyDijkDec, and trivially selecting the vertex with the shortest distance and its

shortest path in the case of DynDijkDec (or, equivalently, EnhancedLane).

To ensure the reproducibility of the results, we recorded all user operations after

which we replayed via an automated procedure the same steps taken by the user in

a UI-free manner 100 times, measuring for each user pointer movement the response

time and taking the average. The response times were measured end-to-end and

they also include geometrical computations related to the union of the windows. The

number of elementary operations was also recorded. Static Dijkstra was too slow to

be applied the same procedure and it was omitted.

5.1.2. Results

Summary statistics about the elementary operations performed per image and the

response time per user pointer movement are listed in Table 1. One-sided Wilcoxon

signed-rank tests show that the speedup of LazyDijkDec as compared to DynDijkDec

(or, equivalently, EnhancedLane) is statistically significant both in terms of number

of elementary operations (p = 2.66× 10−10) and response time (p = 1.63× 10−22).

Dividing the total number of elementary operations of DynDijkDec by the to-

tal number of elementary operations of LazyDijkDec we obtain 1.42. For the total

response time we get a ratio of 1.26.

5.2. Random graphs

5.2.1. Setup

To generate the random graph test data we used the approach of [1] with slightly

different configurations. The number of vertices (graphSize) and the number of edges

were kept the same and are given in Table 2. The percentage of changed edges

(pce) took values in the set {0.1, 0.2, 0.5, 1, 2, 5, 7, 9, 20, 50, 75, 100}. The percentage

of increased edges (pie) were picked from the set {10, 30, 50, 70, 90}. The percentage

of changed weight in the decrease case (pcwDec) took values in {5, 10, 20, 40, 60, 90},
while the one in the increase case (pcwInc) in {100, 200, 1000}. Note that since the

2012/09/23; 18:30 str. 18/25

130 Daniel Aioanei

Table 2

Artificial Random Graph Statistics.

vertices # edges

200 17300

400 61400

800 220400

changed weight in the decrease case is a percentage smaller than 100%, edge weights

never become negative. All edge weights have been rounded to the closest integer.

For each combination of graphSize, pce, pie, pcwDec, pcwInc, we performed

2× 3× 25 = 150 SPT computations as described next. Two graphs were first gener-

ated with graphSize vertices and number of edges as in Table 2. Edge weights were

integers uniformly chosen from 1 to 106 inclusive. The choice of the range of initial

weights together with pcwInc makes all cumulative cost computations free of round-

ing error. For each graph, three groups of edges were randomly selected, each of size

corresponding to pce. For each group of edges, pie indicates how many of the edges

would have their cost increased, while the others will have their cost decreased. Then

25 vertices were randomly selected as shortest path sources.

5.2.2. Results

We analyse the effect of the factors pce, pie, pcwDec and pcwInc on the performance

of the algorithms.

Based on pce it can be seen in Fig. 4 that for each graph size there is a pce

threshold above which static Dijkstra becomes faster than the non-static algorithms

tested. The pce threshold in the tested scenarios varies around 5-9% and it decreases

with increasing number of vertices. LazyDynDijk always crosses the static algorithm

line slightly later, after which it degrades more slowly than DynDijkstra.

For the analysis based on pie, we used pce maximum thresholds of 9, 7 and 5

for 200, 400 and 800 vertices, respectively, so that we fall in the region where both

non-static algorithms are faster than static Dijkstra. In this range LazyDynDijk is

only marginally faster than DynDijkstra, as seen in Fig. 5. For all three graph sizes

we find that the average number of operations and execution time increase first with

increasing pie reaching a maximum at a pie value of 75 and decrease afterwards.

This finding is consistent with the observation of Ref. [1] that the execution time of

DynDijkstra first increases and then decreases as one gradually increases pie from 10

to 90.

For the analysis based on pcwDec we used the same pce maximum thresholds

of 9, 7 and 5 for 200, 400 and 800 vertices, respectively. Both LazyDynDijk and

DynDijkstra show an increasing trend in the number of operations and execution time

with increasing pcwDec. The reason is that larger decreases of the edge weights are

2012/09/23; 18:30 str. 19/25

Lazy shortest path computation in dynamic graphs 131

10
-1

10
0

10
1

10
2

pce (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im
e
(m
s
)

Dijkst r a

DynDijkst r a

LazyDynDijk

0

10

20

30

40

50

60

70

80

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

a)

10
-1

10
0

10
1

10
2

pce (%)

0

1

2

3

4

5

T
im
e
(m
s
)

Dijkst r a

DynDijkst r a

LazyDynDijk

0

50

100

150

200

250

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

b)

10
-1

10
0

10
1

10
2

pce (%)

0

5

10

15

T
im
e
(m
s
)

Dijkst r a

DynDijkst r a

LazyDynDijk

0

200

400

600

800

1000

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

c)

Figure 4. Comparison of mixed edge weight changes by pce for random graphs with (a) 200,

(b) 400, (c) 800 vertices. Each point represents the average over 5 × 6 × 3 × 150 = 13500

executions.

more likely to result in structural changes to the SPT. Also in this case, LazyDynDijk

has a slight edge over DynDijkstra, as seen in Fig. 6.

We also analysed the results based on pcwInc with the same pce maximum thresh-

olds as above. Both the execution time and number of operations are mostly flat lines

for all three tested algorithms. The reason is that both non-static algorithms trim

the SPT based only on which edges have their weight increased, without taking into

account the amount of weight increase. Also in this case, LazyDynDijk has a slight

edge over DynDijkstra (not shown).

5.3. Real road network

5.3.1. Setup

In order to prepare the road system network graph, The National Highway Planning

Network (NHPN) [6] for the whole U.S. was preprocessed using OpenJUMP [18] by

2012/09/23; 18:30 str. 20/25

132 Daniel Aioanei

0 20 40 60 80 100
pie (%)

0.0

0.2

0.4

0.6

0.8

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

10

20

30

40

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

a)

0 20 40 60 80 100
pie (%)

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

20

40

60

80

100

120

140

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

b)

0 20 40 60 80 100
pie (%)

0

2

4

6

8

10

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

100

200

300

400

500

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

c)

Figure 5. Comparison of mixed edge weight changes by pie for random graphs with (a) 200,

(b) 400, (c) 800 vertices using pce thresholds of 9, 7 and 5, respectively. Each point represents

the average over 8×6×3×150 = 21600, 7×6×3×150 = 18900 and 6×6×3×150 = 16200

executions, respectively.

transforming the connected components into “simplified multistrings”, extracting the

largest connected component and exporting the geometry in CSV format.

The weight of each edge was then computed using the haversine formula and

scaled as an integer from 0 to 106. After replacing each undirected edge with two

opposite directed edges and removing duplicates, we obtained a strongly connected

graph with 135820 vertices and 344138 directed edges, therefore averaging only 2.53

edges/vertex. Such low edge-to-vertex ratios are expected since they are a hallmark

of real road networks [19].

For the tests we used the same setup procedure as for the random graphs (see

Section 5.2.1), with the only difference that for each pce, pie, pcwDec and pcwInc

configuration, instead of generating 2 random graphs, we always used the same NHPN

graph performing 1× 3× 25 = 75 SPT computations.

2012/09/23; 18:30 str. 21/25

Lazy shortest path computation in dynamic graphs 133

0 20 40 60 80 100
pcwDec (%)

0.0

0.2

0.4

0.6

0.8

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

10

20

30

40

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

a)

0 20 40 60 80 100
pcwDec (%)

0.0

0.5

1.0

1.5

2.0

2.5

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

20

40

60

80

100

120

140

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

b)

0 20 40 60 80 100
pcwDec (%)

0

2

4

6

8

10

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

100

200

300

400

500

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

c)

Figure 6. Comparison of mixed edge weight changes by pcwDec for random graphs with

(a) 200, (b) 400, (c) 800 vertices using pce thresholds of 9, 7 and 5, respectively. Each

point represents the average over 8 × 5 × 3 × 150 = 18000, 7 × 5 × 3 × 150 = 15750 and

6× 5× 3× 150 = 13500 executions, respectively.

5.3.2. Results

As in Section 5.2.2, we analyse the effect of the factors pce, pie, pcwDec and pcwInc

on the performance of the algorithms.

Based on pce, LazyDynDijk outperforms DynDijkstra at all pce thresholds, while

static Dijkstra becomes faster than both tested non-static algorithms after a pce

threshold somewhere above 0.2. At larger pce values, however, the performance of

our algorithm LazyDynDijk follows more closely that of static Dijkstra, strongly out-

performing DynDijkstra in terms of both number of operations and execution time,

as seen in Fig. 7a.

For the analysis based on pie we used a pce maximum threshold of 0.2 so that

we fall clearly in the region where both non-static algorithms are faster than static

Dijkstra. In this range LazyDynDijk is slightly faster than DynDijkstra both in terms

of number of operations and execution time. As seen in Fig. 7b, the worst case

2012/09/23; 18:30 str. 22/25

134 Daniel Aioanei

10
-1

10
0

10
1

10
2

pce (%)

0

100

200

300

400

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

500

1000

1500

2000

2500

3000

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

a)

0 20 40 60 80 100
pie (%)

0

50

100

150

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

200

400

600

800

1000

1200

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

b)

0 20 40 60 80 100
pcwDec (%)

0

50

100

150

T
im
e
(m
s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

200

400

600

800

1000

1200
O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

c)

10
2

10
3

pcwInc (%)

0

50

100

150
T
im

e
(m

s
)

Dijkst r a

DynDi jkst r a

LazyDynDijk

0

200

400

600

800

1000

1200

O
p
e
r
a
ti
o
n
s
(0
0
0
s
)

d)

Figure 7. Performance evaluation on the NHPN road system graph. (a) Comparison of mixed

edge weight changes by pce. Each point represents the average over 5 × 6 × 3 × 75 = 6750

executions. (b) Comparison of mixed edge weight changes by pie using the pce threshold of

0.2. Each point represents the average over 2×6×3×75 = 2700 executions. (c) Comparison

of mixed edge weight changes by pcwDec using the pce threshold of 0.2. Each point represents

the average over 2 × 5 × 3 × 75 = 2250 executions. (d) Comparison of mixed edge weight

changes by pcwInc using the pce threshold of 0.2. Each point represents the average over

2× 5× 6× 75 = 4500 executions.

for DynDijkstra is when the modified edge set is about half increases and about

half decreases, as previously found for other road system networks [1]. Conversely,

LazyDynDijk shows an almost linear performance improvement with increasing pie,

showing that the performance behaviour of LazyDynDijk can be qualitatively different

from that of DynDijkstra even in the region where both algorithms are faster than

static Dijkstra.

For the analysis based on pcwDec we used the same pce maximum threshold of

0.2. As expected, both LazyDynDijk and DynDijkstra show a generally increasing

trend in the number of operations and execution time with increasing pcwDec. Also

in this case, LazyDynDijk maintains a slight edge over DynDijkstra, as seen in Fig. 7c.

2012/09/23; 18:30 str. 23/25

Lazy shortest path computation in dynamic graphs 135

We also analysed the results based on pcwInc with the same pce maximum thresh-

old of 0.2. Like in the random graph case, both the execution time and number of

operations are mostly flat lines for all three tested algorithms, with LazyDynDijk

being only slightly faster than DynDijkstra, as seen in Fig. 7d.

6. Conclusion

By exploiting the idea of postponing shortest path computations until actually needed,

we improved upon a recent, perhaps fastest-yet algorithm for shortest path compu-

tation in dynamic graphs. The improvements we obtained come in two forms. First,

when batch edge weight decreases are just as frequent as shortest path requests, the

speedup comes from stopping the computation as soon as the required shortest path

is found. As a practical application, we report in interactive image segmentation an

improvement of about 1.42 in the number of elementary operations and about 1.26

in measured response time. Second, when an SPT needs to be maintained in the face

of mixed edge weight changes, we process the multiple increases first by recasting

the problem as decreases in an altered graph, which can then be followed by other

decreases without having to compute an intermediate SPT. This procedure results

in slightly faster SPT computation when few edges change weight, and significantly

better degradation behaviour for larger sets of updates.

All throughout the experiments the reported execution time improvement was

consistent with the reduction in the number of elementary operations. It follows that

the improvements observed are qualitatively independent of implementation details

such as the choice of the priority queue data structure or edge weight data type, thus

making the technique widely applicable.

References

[1] Chan E. P. F., Yang Y.: Shortest path tree computation in dynamic graphs. IEEE

Trans. Comput., 58(4):541–557, 2009.

[2] Dijkstra E. W.: A Note on Two Problems in Connection with Graphs. Numerical

Mathematics, 1:269–271, 1959.

[3] Falcao A. X., Udupa J. K., Miyazawa F. K.: An ultra-fast user-steered image seg-

mentation paradigm: live wire on the fly. IEEE transactions on medical imaging,

19(1):55–62, 2000.

[4] Falcao A. X., Udupa J. K., Samarasekera S., Sharma S., Hirsch B. E.,

de A. Lotufo R.: User-steered image segmentation paradigms: Live wire and

live lane. Graphical Models and Image Processing, 60(4):233 – 260, 1998.

[5] Faloutsos M., Faloutsos P., Faloutsos C.: On power-law relationships of the

internet topology. In SIGCOMM ’99: Proceedings of the conference on Appli-

cations, technologies, architectures, and protocols for computer communication,

pp. 251–262, New York, NY, USA, 1999. ACM.

2012/09/23; 18:30 str. 24/25

136 Daniel Aioanei

[6] Federal Highway Administration (FHWA).: The National Highway Planning

Network, 08 2005.

[7] Frigioni D., Ioffreda M., Nanni U., Pasqualone G.: Experimental analysis of

dynamic algorithms for the single source shortest path problem. J. Exp. Algo-

rithmics, 3:5, 1998.

[8] Frigioni D., Marchetti-Spaccamela A., Nanni U.: Fully dynamic algorithms for

maintaining shortest paths trees. J. Algorithms, 34(2):251–281, 2000.

[9] Kang H. W.: G-wire: a livewire segmentation algorithm based on a generalized

graph formulation. Pattern Recogn. Lett., 26(13):2042–2051, 2005.

[10] Kang H. W., Shin S. Y.: Enhanced lane: interactive image segmentation by

incremental path map construction. Graph. Models, 64(5):282–303, 2002.

[11] Meijering E., Jacob M., Sarria J.-C. F., Steiner P., Hirling H., Unser M.: Design

and validation of a tool for neurite tracing and analysis in fluorescence microscopy

images. Cytometry. Part A: the journal of the International Society for Analytical

Cytology, 58(2):167–176, 2004.

[12] Mortensen E. N., Barrett W. A.: Intelligent scissors for image composition. In

SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graph-

ics and interactive techniques, pp. 191–198, New York, NY, USA, 1995. ACM.

[13] Moy J. T.: OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley

Professional, New York, 1998.

[14] Narváez P., Siu K.-Y., Tzeng H.-Y.: New dynamic algorithms for shortest path

tree computation. IEEE/ACM Trans. Netw., 8(6):734–746, 2000.

[15] Narváez P., Siu K.-Y., Tzeng H.-Y.: New dynamic spt algorithm based on a ball-

and-string model. IEEE/ACM Trans. Netw., 9(6):706–718, 2001.

[16] Perlman R.: A comparison between two routing protocols: OSPF and IS-IS.

IEEE Network, 5(5):18–24, 1991.

[17] Ramalingam G., Reps T.: An incremental algorithm for a generalization of the

shortest-path problem. J. Algorithms, 21(2):267–305, 1996.

[18] Steiniger S., Bocher E.: An overview on current free and open source desktop

GIS developments. International Journal of Geographical Information Science,

23(10):1345–1370, 2009.

[19] Zhan F. B., Noon C. E.: Shortest path algorithms: An evaluation using real road

networks. Transportation Science, 32(1):65–73, January 1998.

Affiliations

Daniel Aioanei
Department of Biochemistry “G. Moruzzi”, University of Bologna, Via Irnerio 48, 40126
Bologna, Italy, aioaneid@gmail.com

Received: 9.03.2012

Revised: 2.06.2012

Accepted: 9.07.2012

2012/09/23; 18:30 str. 25/25

Lazy shortest path computation in dynamic graphs 137

