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Abstract The Internet of Things (IoT) and cloud-based collaborative platforms have

emerged as new infrastructures over the recent decades. The classification of

network traffic in terms of benign and malevolent traffic is indispensable for

IoT/cloud-based collaborative platforms for optimally utilizing channel capac-

ity for transmitting benign traffic and blocking malicious traffic. The traffic-

classification mechanism should be dynamic and capable enough for classifying

network traffic in a quick manner so that malevolent traffic can be identified

at earlier stages and benign traffic can be speedily channelized to the destined

nodes. In this paper, we present a deep-learning recurrent LSTM RNet-based

technique for classifying traffic over IoT/cloud platforms using the Word2Vec

approach. Machine-learning techniques (MLTs) have also been employed for

comparing the performance of these techniques with the proposed LSTM RNet

classification method. In the proposed research work, network traffic is clas-

sified into three classes: Tor-Normal, NonTor-Normal, and NonTor-Malicious

traffic. The research outcome shows that the proposed LSTM RNet accurately

classifies such traffic and also helps reduce network latency as well as enhance

data transmission rates and network throughput.
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1. Introduction

The Internet of Things (IoT) and cloud computing have become a promising col-

laborative infrastructure to suffice the on-demand requirements of users. The IoT

infrastructure is comprised of three main components: front-end devices with sensing

capabilities, a back-end storage and computing facility, and a communication network

that connects front-end to back-end for communication. As every coin is comprised of

two sides, an IoT/cloud collaborative environment similarly allows for seamless con-

nectivity; however, each connected device is at risk for vulnerable attacks. In order to

suffice the on-demand resource requirements of IoT users, the IoT must depend upon

cloud services. The connectivity among those IoT devices is prone to more possibili-

ties for security threats and adversaries. Hence, there is a need to address the issues

that surface in the security and privacy of IoT/cloud-based communications; only

then we can take advantage of the enormous benefits brought about by an IoT/cloud

collaborative environment.

The IoT connects a huge number of diverse devices that are heterogeneous in

nature by using wired or wireless communication [13]. The devices in the IoT envi-

ronment are highly mobile and cover a wide geographical area while moving from one

region to another [5]. Hence, with the advent of the IoT, different types of wireless

technologies have been researched and employed to provide seamless services to IoT

users. However, the IoT has transformed the conventional way of connectivity into

a high-tech connectivity, where everything can be connected anytime and anywhere;

however, there is a huge risk involved for connecting devices and users. There are more

possibilities for adversaries to attack IoT devices. There has been a rapid upsurge in

IoT traffic, and it has become fairly challenging to detect and prevent network abuse.

Along with their benefits of enormous connectivity and usability, IoT devices also

make individuals and organizations more vulnerable. The use of heterogeneous com-

munication technologies has given rise to various critical issues such as traffic load

balancing, traffic channelization, throughout, responsiveness, space sharing among

devices, and so forth [17]. The newer concept of software-defined networks holds the

capability of more scalable network architectures, which are sorely needed in the IoT

environment [18]. The IoT uses newer technologies to make networks more scalable

and secure in order to fulfill the needs of IoT users [24], [28].

It is indeed a difficult task to protect network traffic in the IoT environment,

where everything is connected seamlessly and multiple protocols are involved in the

smooth functioning of the IoT. This requires an inclusive approach for detecting

malicious traffic in the flow and deflect this abnormal traffic by segregating it on

time. Attacks from malicious traffic are increasing day by day; for example, a Mirai-

based DDoS attack impacted major sites such as Amazon, AirBnB, PayPal, Netflix,

Visa, and so on.

Several researchers have presented studies in which software-defined networks

control the traffic over the IoT environment [1, 2, 15, 19, 22], but the use of machine-

learning (ML) and deep-learning (DL) methods in the Internet of Things is still to be
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researched more in order to classify the traffic, segregate malicious traffic from benign

traffic, and predict the traffic load on channels for the optimal utilization of channels.

The use of ML methods can improve the performance of IoT platforms in terms of

reducing congestion, enhancing the throughput, and optimizing the utilization of the

bandwidth. Hence, dynamic techniques that are based on ML and DL are presented

in this paper to classify traffic in order to segregate malicious traffic from benign

traffic in Tor- and NonTor-based IoT/cloud platforms. This approach eventually

improves the network throughout and minimizes network congestion by identifying

unwanted traffic.

Artificial intelligence (AI) and machine-learning (ML) methods are able to pro-

vide solutions for complex and dynamic problems. AI has transformed the conven-

tional techniques to connect things on the Internet. Nowadays, AI and ML techniques

have had a tremendous impact on IoT-enabled sectors. These techniques have the abil-

ity to gain knowledge automatically and improve upon previous solutions. In the IoT,

devices can join and leave anytime due to their dynamic nature; it is mandatory to

devise a mechanism that is suitable for coping up with the dynamic nature of the IoT

environment. It is very difficult to identify IoT traffic and ascertain the load of dy-

namic and enormous traffic. The IoT channel could be bottle-necked with malicious

or unwanted data; therefore, it is the need of the hour to classify IoT traffic in a dy-

namic way and predict channel load to better utilize the IoT network. Conventional

techniques are not capable enough to predict loads in such a dynamic environment

nor classify traffic in an efficient way in order to enhance the network throughput.

Hence, we are proposing a newer technique that is based on deep learning to classify

the network traffic in IoT/cloud collaborative platforms.

This paper is structured in four segments. The first segment offers information on

the background details of an IoT/cloud-based collaborative platform; it also provides

information on the benefits of using machine learning-based techniques in the collab-

orative IoT/cloud environment. The second part of this paper provides a detailed

study of the existing research work that is related to our problem statement. The

third section provides a detailed explanation of the proposed techniques for classifying

traffic. The last section of the paper concludes our research work and also provides

future directions.

2. State of the art

Numerous approaches and techniques have been presented by researchers to classify

network traffic [4,10,12,16,25], but the Internet of Things requires newer approaches

for handling the dynamic environment to classify IoT traffic. We have surveyed

existing techniques in this section to provide insights into the research contributions

made by others in the area of our research work.

Port-based techniques: Traffic identification with a port number is the oldest

technique for classifying traffic. Port-based identifiers use TCP or UDP packet headers

to attain information about port numbers. The comparison is done by matching the
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assigned TCP/UDP with the extracted port numbers. It is the fastest and oldest

method for traffic identification [21, 23]. This method has certain limitations, as

applications like Napster and Kazaa do not register their port numbers. Such an

application may access other port numbers to avoid the access-control restrictions

imposed by operating systems. In other cases, server port numbers are allocated

dynamically. IoT devices can transmit an enormous amount of data anytime; this

method is not suitable for IoT-based applications.

Payload-based classification: Many applications use the session and application

information of a packet rather than a port number [18]; these techniques analyze the

available information in the application layer payload of a packet. In [26], a method for

utilizing application-level signatures was presented for identifying the traffic of P2P

application by looking into traces of packets. Later, the identified signatures are used

to develop online filters. High-speed network links can be efficiently tracked by using

these filters. In [20], a combination of payload and port-based techniques are presented

to classify network applications. The procedure begins with identifying a port number

and then locating the signature. In the case of the absence of a signature, the packet is

examined for specified protocols. This technique allows for the identification of errors

(if any). In [14], the authors proposed a deep packet inspection (DPI) system that

could examine an encrypted payload; however, it can only process HTTPS traffic.

These approaches avoid a dependency on port numbers, but these techniques are not

sufficient enough when dealing with encrypted traffic.

Statistical techniques: In [9], the authors used a probability density function

for protocol fingerprints; this function considered inter-arrival time and threshold

time for the normalization of the packets.Groups of protocols such as HTTP, POP3,

and SMTP were considered for the research study. The accuracy achieved by their

proposed work was 91%. Wang and Parish [30] presented a similar method where they

used multiple classifiers for the identification of network traffic. The experimental

outcome achieved an 87% accuracy. Protocols such as IMAP, FTP, TELNET, and

TCP were considered for the experimental study.

Machine learning-based approaches: In [32], the authors proposed an end-to-end

traffic-classification mechanism in the IoT which made use of deep learning-based

capsule networks for forming an integrated classification model which extract fea-

tures and classifies the traffic into classes. In [29], the authors applied an encrypted

traffic classification in their work. The validation of the method is made on the ba-

sis of public non-VPN and ISCX VPN traffic datasets to achieve better accuracy

than the techniques that existed at that time. In [3], the authors applied a BNN

(Bayesian neural network) to classify P2P-based protocols; they achieved good accu-

racy. In [11], the authors identified VPN-based traffic and classified the traffic into

different classes by using k-NN and C4.5 ML classifiers. In [31], the authors attempted

to identify the traffic (such as Facebook, Twitter and Skype)at application layer and

aligned the applications by using Random Forest, J48, Bayes Net, and k-NN. In [27],

the authors collected and synthesized network traffic traces from diverse IoT devices
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such as cameras, appliances, lights, and health-monitors. Then, they analyzed the

traces by classifying them on the basis of statistical attributes such as burstiness in

the data rates, signaling patterns, and activity cycles. Their classification approach

distinguished IoT traffic from non-IoT traffic and achieved a 95% accuracy.

Many research endeavors were made by researchers to classify network traffic, but

traffic segregation on the Internet of Things is still an unexplored area where traffic

is huge and dynamic. It is inappropriate to use traditional techniques to segregate

IoT-based traffic and protect the data from unauthorized access. It is the need of

the hour to put research endeavors toward newer AI-based intelligent techniques that

are suitable for the IoT environment. Hence, we propose deep-learning and machine-

learning methods for classifying IoT-based traffic.

3. Proposed work

IoT traffic is growing rapidly at the present time due to the emergence of newer tech-

nologies and applications. Machine learning can certainly help classify traffic and

predict traffic load in order to provide seamless services to IoT users. Most of the

traffic is to be channelized on the cloud to exploit cloud services for fulfilling the re-

source or service requirements of users. We are proposing deep-learning and machine-

learning techniques in this paper to accurately classify network traffic. The traffic in

an IoT/cloud collaborative environment is categorized into three classes: Tor-Normal,

NonTor (NT)-Normal, and NonTor (NT)-Malicious. Tor-based tiny networks allow

users to exploit Internet services in a secure way over IoT/cloud platforms by using

a special line of Onion routers that are integrated with secured protocols. NonTor

traffic is comprised of both benign and malicious data. The malicious data that was

considered for our research study was comprised of non-human, distributed denial-

of-service (DDoS), and MCA (malicious cyber attacker) traffic. Non-human traffic is

the IoT traffic that is generated by scripts, bots, and implicitly programmed codes

for surfing the web without any human intervention. In an IoT/cloud environment,

malicious traffic also refers to URLs that are used by MCAs to host malware, viruses,

or phishing scams that can potentially harm IoT networks and devices. A DDoS at-

tack is also considered to be a malicious attempt to interrupt the services of network

servers by overfeeding the servers with a huge amount of false traffic from thousands

of source locations. Malicious traffic is to be identified at the earliest possible time

and blocked or deflected to free up the channel for normal traffic.

Our motive is to classify traffic using machine-learning and our proposed deep-

learning techniques to enhance the security and integrity of IoT data. The contribu-

tion of the paper has been summarized below and also depicted in Figure 1.

1. At the beginning, we took online data that was available at ’Amazon Cloud’ for

training our machine learning-based system. A standard dataset is considered

to train the ML- and DL-based models for classifying the traffic into Tor-based

benign, NonTor-based benign, or NonTor-based malicious traffic classes.
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2. We extracted the parameters to train the data and test the proposed machine

learning-based model.

3. The pre-processing of the data was done to make the data usable for ML-based

classifiers.

4. We also made use of data visualizations to provide a better understanding to the

readers regarding the variables that were considered for the study.

5. Next, we proposed an LSTM (long short-term memory) recurrent deep-learning

model for classifying network traffic. In the first step, each packet was trans-

formed into a sequence of n-grams. Then, the n-grams were consumed to create

a dictionary where the n-grams were mapped to integer identifiers. Then, the

Word2Vec technique was employed to generate word embeddings from the n-

grams. These word embeddings assisted in the creation of feature vectors for the

LSTM RNet classifier to accurately classify the traffic.

6. We also applied machine learning-based algorithms to train the model for classi-

fying IoT traffic.

7. Then, the evaluation of the performance of the proposed technique with ML-

based methods was done using a confusion matrix, accuracy score, F1 score,

precision, and sensitivity score.

Figure 1. Machine learning-based model for classifying traffic



Classification of traffic over collaborative IoT/cloud platforms. . . 373

3.1. Dataset parameters considered for ML-based classifiers

The parameters that were considered for this study are shown in Table 1.

Table 1
Attributes considered for training dataset

Field Title Description

Source IP Add Source IP of flow

Traffic-Type Depicts whether traffic is Tor or NonTor

Source Port No. Source port number

Dest IP Add Destination IP of packet

Dest Port No. Destination port number of packet

Protocol No. Transport layer protocol number identifier (i.e., TCP = 6, UDP = 17).

Packet Id Header information of packet

Flow Duration Duration of flow

Flow Bytes Number of bytes per second in flow

Flow Packets Number of packets per second in flow

Flow Mean IAT Mean value of inter-arrival time (IAT) of flow (bi-directional)

Flow Std Dev IAT Standard deviation of IAT of flow (bi-directional)

Flow Max IAT Maximum value of IAT of flow (bi-directional)

Flow Min IAT Minimum value of IAT of flow (bi-directional)

Fwd Mean IAT Mean of IAT in forward direction

Fwd Std IAT Standard inter-arrival time in forward direction

Fwd Max IAT Maximum value of IAT in forward direction

Fwd Min IAT Minimum value of IAT in forward direction

Bwd Mean IAT Mean of IAT in backward direction

Bwd Std IAT Standard inter-arrival time in backward direction

Bwd Max IAT Maximum IAT in backward direction

Bwd Min IAT Minimum IAT in backward direction

Active Mean Mean time of active flow before flow becomes idle

Active Std Standard deviation time of active flow before flow becomes idle

Active Max Maximum time of active flow before flow becomes idle

Active Min Minimum time flow was active before becoming idle

Idle Mean Mean time of active flow before flow becomes idle

Idle Std Standard deviation time flow was idle before becoming active

Idle Max Maximum time flow was idle before becoming active

Idle Min Minimum time flow was idle before becoming active

3.2. Classification of network traffic over IoT/cloud environment

This subsection gives detailed information about our proposed classification system.

We have proposed an LSTM RNet-based deep classifier for classifying network traffic

into three classes: i.e., Tor-based benign traffic, NonTor-based benign traffic, and

NonTor-based malicious traffic. We have made a comparison of the LSTM RNet

method with a multi-variate SVM (support vector machine) and hybrid random forest

classifier.
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LSTM RNet

The recurrent network (RNet) organizes hidden state vectors hd
t in a 2D matrix with

time step index t ranging from t = 1 . . . T , and d = 1 . . . D is the depth. The bottom

row of vectors h0
t = at at a depth of zero carries input vector at, and each vector

in the uppermost hD
t row is used to forecast an output vector ot. The rest of the

intermittent vectors hd
t are calculated with a recurrence formula that is based on hd

t

and hd−1
t . Each output ot at time stamp t through hidden vectors becomes a function

of all of the input vectors up to t{a1, . . . , at}. The mathematical modulation of

recurrence
{
hd
t , . . . , h

d−1
t → hd

t

}
changes precisely from model to model.

RNet is comprised of three parameter matrices (P,W, V ) with activation func-

tions, where P represents the input hidden matrix, W represents the hidden-hidden

matrix, and R represents the hidden-output matrix. ht represents the hidden states,

at represents the input vector (as shown in Eq. 1), and ô is an output vector (as shown

in Eq. 2). The tangent hyperbolic function is represented by tanh(·) in RNet. γ(·) is
an output transformation function that can be selected for any kind of task or target

data. This feature enables RNet to model anything without any constraints.

ht = tanh (Pat +Wht−1) (1)

ô = γ(V ht) (2)

We present an LSTM-based RNet approach for traffic classification that uses

packet information in the flow. The proposed classification mechanism separates each

incoming packet into malicious and benign traffic. The packets are considered in the

CBOR (concise binary object representation) format. CBOR is a kind of binary data

serialization format that is loosely based on JSON. CBOR permits the transmission of

data objects that contain name-value pairs in a concise manner. Tor-based networks

use Onion routers with embedded security software and protocols to detect and deflect

malicious traffic; however, when traffic moves from a source to a destination, it may

go through Tor as well as NonTor networks. Hence, classifying the traffic is vital for

maintaining the integrity of the data. Tor transmits IoT traffic through an overlay-

based network that is comprised of more than 7,000 relays to conceal the location of

the sender and hide the information from anonymous users who perform traffic anal-

yses or network surveillance. NonTor traffic may contain malicious traffic along with

normal traffic. Hence, this research work focuses on classifying the traffic into three

categories (Tor-Normal, NT [NonTor]-Normal, and NT [NonTor]-Malicious) without

much pre-processing done to the packets.

To attain this goal, the following steps have been considered:

1. All packets are transformed into n-grams.

2. A dictionary is generated to add the words and then the n-grams are transformed

into numerical or integer identifiers.

3. The vectors of the integer vectors are prepared and passed to an embedding layer

of LSTM RNet.
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4. The Word2Vec method is utilized for embedding the layer where the n-gram

embeddings are aggregated using the CBOW (common bag of words) model of

Word2Vec.

5. Next, the aggregated n-gram embeddings are utilized to create feature vectors.

6. Finally, the feature vectors derived from the embeddings assist in accurately

classifying the traffic.

The order of the columns in each packet assists in resembling the grammar rules

that are conclusive in constructing sentence patterns for NT-Malicious and Tor- or

NonTor-based benign traffic. The Word2Vec-based approach can considerably accel-

erate the classification of IoT traffic, as the characteristics of the packets can ulti-

mately divulge whether the flow contains malicious or benign traffic. After applying

the Wor2Vec technique, the vector encodes the words using the CBOW model. The

CBOW model considers each word as an input and attempts to forecast the word

that corresponds to the input context. The input is encoded as a vector of size V .

The hidden layer is comprised of N neurons, and the output is a V -length vector,

represented as softargmax values.

The pre-processing of the data is necessary to make the data appropriate for

the classification algorithms. The parsing of the data packet is performed, and then

a word translation is done. The converted dataset of translated words is represented in

the form of integer numbers. The converted dataset is the segregated into two parts;

i.e., training and testing (at a ratio of 7:3). Out of the available data,seventy percent

data is used for training and remaining data is used for testing purposes. The first

thing in LSTM RNet is to make a decision about which information is to be removed

from the cell state. The next thing is to decide which information is to be stored in

the cell state. A relu layer generates a vector of newer candidate values (ĉt), which

can be added to the existing state. Input gates it determine the value of new cell

states ĉt to be concatenated with the existing cell states. Finally, a decision must be

made regarding the desired output. The output classes will be based on the filtered

version.

The training stage begins with the training data and executing the LSTM RNet

three-layered model. The dropout rate can also be flexibly adjusted (this was tuned

to 0.3 in our case study). The loss function uses categorical cross entropy. We made

use of an Adam optimizer to enhance the learning process of our training model.

A Softargmax-based dense output layer (also known as Softmax) is added to the

model. Finally, the proposed model was tested on the testing dataset, and the efficacy

of the model was judged on the basis of the accuracy score, recall score, F1-score,

precision, and loss. The proposed algorithm is presented in Table 2. Our proposed

LSTM RNet model was implemented using Keras, and the output was produced by

Softargmax/Softmax.

The outcome/result is a powerful predictive-modeling algorithm. The evaluation

of the proposed algorithm is represented using a confusion matrix (as shown in Fig. 2)

and performance matrix (Tab. 3).
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Table 2
Traffic-classification algorithm for IoT/cloud platforms

Algorithm 1: Classification algorithm by LSTM RNet
Input: Sequential supply of data packets from flow
Output: classification of packets
1: begin
2: n− grams = Each packet is transformed into sequence of n− grams
3: n-gram-translation = null; # where n-grams are mapped to integer identifiers
4: dictionary = array () # Feed integer identifiers into index array
5: while true do
6: Parsing of packets is performed
7: Each byte of packet data is parsed as sequence of n-grams
8: for n = 1; n < wordcount; n++ do
9: if word is available in dictionary dictionary (words[n]), then

10: index = dictionary (words[n]) # Fetching index of words
11: else
12: dictionary[] = words[n] ; # Adding new word to dictionary
13: index = dictionary (words[n])
14: end if
15: Concatenate (wordtranslation,index)
16: end for
17: Embeddings () # Word2Vec technique is employed to generate embeddings from n-grams
18: Feature vectors () # Embeddings are used with integer vectors to form feature-vectors
19: end while
20: Distribute training and testing data a ratio of 7:3
21: Train and validate model
22: Feature vector supplies packet data in deep-learning understandable format
23: Input Feature vector to LSTM RNet and use relu function (alternative of tanh)
24: Dropout
25: Feedfwd to second layer of LSTM RNet
26: Dropout
27: Feedforward to third layer of LSTM RNet
28: Dropout
29: Formulate input for small-batch (say, 100 packets)
30: Adam optimizer is applied for fast learning of model;
31: Use Softargmax function for output of model
32: Apply categorical cross-entropy as loss function ;
33: for (epoch = 1; epoch < 300; epoch++) do
34: Evaluate loss and evaluate accuracy
35: end for
36: end

Figure 2. Confusion matrix for LSTM-RNet classifier
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The following are the observations from Figure 2:

• In the testing dataset, there were a total of 2,638 records with target variable

‘Tor-Normal’, of these, 2,599 were correctly classified, and 39 were misclassified.

• In the testing dataset, there were a total of 1,993 records with target variable

‘NT-Normal’, of these, 1,852 records were correctly classified, and the remaining

141 were misclassified.

• The testing dataset contained 738 records with ‘NT-Malicious’; 655 of these were

recognized correctly, and 83 were classified incorrectly.

MV-SVM Classifier

The first algorithm that we applied for traffic classification is a multi-variate (MV)

support vector machine (SVM) [7]. SVM is a a supervised ML classifier [8]. In MV-

SVM, each data item is referred to as a point in n-dimensional space with a value of

each feature. Then, the classification is performed by finding the hyper-plane that

is able to effectively differentiate the classes. Multi-class SVMs were implemented

in our research work by combining several binary SVMs. Our objective was to test

the robustness of various kind of kernels for the multi-class SVM classifier and to

find a plane that had the maximum margin from the hyper-plane. Several kernels

(namely, linear, rbf, poly, and sigmoid) were tried; the accuracy obtained by the

linear kernel was 81%, the poly kernel was 71%, the rbf kernel was 83%, and the

sigmoid kernel was 79%. On the basis of each kernel, a hyper-plane is decided. The

support vectors impact the orientation as well as the position of the hyper-plane;

basically, they represent data points that are nearer to the hyper-plane. In our case

study, the multi-class SVM classifies the data into three classes. The assessment of

MV-SVM is made using a confusion matrix (as depicted in Fig. 3) as well as other

performance matrices (as depicted in Table 3).

Figure 3. Confusion matrix for MV-SVM classifier
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The observations from the confusion matrix (Fig. 3) are as follows:

• The testing dataset contained 2,638 records as ‘Tor-Normal’, of these, 50 records

were misclassified as NT-Normal, and 44 records were misclassified as NT-

Malicious.

• There were a total of 1,993 ‘NT-Normal’ records; 1,773 records were classified

accurately, whereas 220 records were misclassified.

• Out of the 738 ‘NT-Malicious’ records, 438 were predicted correctly, 168 were

misclassified as NT-Normal, and 132 were misclassified as NT-Malicious.

Random forest-based classifier

RF is one of the most powerful ML classifiers; it is an ensembling algorithm that is

used for classification as well as prediction [6]. The classifier uses bootstrap aggre-

gation and is a powerful statistical technique for estimating a quantity from a given

dataset. It attempts to deploy similar learners on small samples and then takes a

mean or aggregated value of all of the results. An ensemble method in the RF classi-

fier aggregates the predictions from multiple ML algorithms all together for making

more-accurate predictions. Combining the predictions from diverse algorithms works

better if the outcome from the sub-models are weakly correlated or uncorrelated. In

our research work, we created random sub-samples of the dataset; then, we ascer-

tained the mean of each sub-sample. Next, we aggregated the collected means and

projected the result as a predicted mean for the data. During the formation of the

decision trees, the evaluation of the error function was done for a variable at each split

point. These drops in error were averaged across all of the decision trees. The greater

the drop when a variable was chosen, the greater the importance. The individual

decision trees were grown deep, and the trees were not pruned for better efficiency.

The only parameters we considered during the classification using the RF classifier

was the number of trees to include for the sub-samples. The RF classifier worked well

on our problem statement to classify IoT traffic. The performance of the RF classifier

was represented using the confusion matrix (as depicted in Fig. 4) as well as in the

evaluation matrix (as shown in Table 3).

Figure 4. Confusion matrix for random-forest classifier
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The observations from the confusion matrix (Fig. 4) are as follows:

• Out of the 2,638 ‘Tor-Normal’ records in the testing dataset, 2,548 were classified

correctly, 51 were misclassified as NT-Normal, and 39 were misclassified as NT-

-Malicious.

• Out of the 1,993 ‘NT-Normal’ records, 1,852 were correctly classified, and the

remaining 141 records were misclassified.

• Out of the 738 ‘NT-Malicious’ records in the testing dataset, 655 records were

correctly classified, and the remaining 83 were classified incorrectly.

4. Results and discussion

We used three different methods for classifying the traffic on an IoT/cloud collabora-

tive environment to segregate the abnormal traffic from the benign traffic. A perfor-

mance evaluation of the ML and DL algorithms is shown in Table 3.

Table 3
Matrix presenting performance of ML-based classifiers

Algorithms
Training

Accuracy

Test

Accuracy

F1

Score
Precision Sensitivity

SVM

Classifier
73.08% 72.57% 82.08% 92% 0.75

Random

Forest
83.19% 82.96% 84.17% 94.11% 0.97

LSTM RNet

Classifier
96.8% 96.70% 98.02% 97.45% 0.98

The results presented in Table 3 reveal that the LSTM RNet-based classifier

produces the most accurate results; the RF-based classifier is second to the LSTM

RNet approach in accurately classifying the traffic on an IoT/cloud collaborative

environment. An accurate classification over the Tor- and NonTor-based IoT envi-

ronments is required to provide uninterrupted services to IoT users. The data in an

IoT/cloud-based collaborative environment is huge; deflecting the unwanted traffic at

the earliest stages is very important for the network’s health. Normal traffic is also

categorized as Tor and NonTor traffic. Generally, Tor-based traffic is considered to

be secured traffic because it uses Onion routers with embedded protocols and soft-

ware to provide safety for normal data. NonTor traffic is comprised of both normal

and abnormal (or malicious) traffic. Hence, we classified the traffic into three classes:

Tor-Normal, NT-Normal, and NT-Malicious. Tor-based traffic is generally assigned

a higher priority than NonTor traffic, but the priorities can be defined and changed

as per the user’s needs. The existing traffic-classification techniques are insufficient to

satisfy the on-demand needs of IoT users by categorizing the traffic accurately. The

ML- and DL-based techniques are exploited to categorize the traffic at early stages,
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which eventually enhances the transmission rate and throughput. It also enhances

the security of the data by deflecting the unwanted data. The proposed ML- and

DL-based techniques reduce the network latency during transmission of data (as de-

picted in Fig. 5).

Figure 5. Average latency achieved by ML- and DL-based models

The readings were interpreted iteratively after each 200 seconds to ascertain the

network’s latency. High network latency becomes problematic, as IoT traffic begins

to grow during peak hours. The latency issue is significant to consider while designing

any model, as commercial businesses are connected to cloud servers. Normal users

also exploit cloud servers for diverse applications, and delays in responses from cloud

servers can hamper one’s business; also, they hamper the quality of services to IoT

users. Hence, our motive is to classify the traffic and deflect the malicious traffic

after its early identification to improve the latency rate. Malicious traffic is blocked

as soon as it is identified using our proposed mechanism. We are focused on traffic

classification and are not going deeper on the deflection of malicious traffic, as this is

beyond the scope of the paper. The timely segregation of traffic can certainly reduce

network congestion and also assist in forwarding normal traffic to its intended nodes.

Our proposed techniques also improves the throughput of a network. When

malicious traffic is identified and blocked from traveling further through the channels,

it eventually decreases the bandwidth consumption of the channels and improves the

transmission rate of the IoT data (as shown in Fig. 6). It also improves network

latency and throughput (as presented in Fig. 7).
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Figure 6. Transmission rate achieved by ML- and DL-based models

Figure 7. Throughput achieved by ML- and DL-based models

5. Conclusion

The growth in sensor based data and quick response requirements of the collabora-

tive platforms of IoT and cloud have created a demand for high-speed transmission
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of network traffic. However, IoT/cloud-based technologies are attempting to improve

user services tremendously, but deep LSTM RNet- and ML-based techniques are to

be employed to meet the high computational needs of users over IoT/cloud collabo-

rative platforms. Network traffic has been classified into three classes: Tor-Normal,

NT-Normal, and NT-Malicious. The motive behind the classification of traffic is to

segregate normal traffic from malicious traffic so that the malicious traffic can be

blocked at its earliest occurrence to reduce congestion on a channel and assure that

the normal traffic is forwarded to the intended nodes. Hence, an idea has been pro-

posed to utilize LSTM RNet, which is capable of extracting packet information and

identifying traffic accurately in a quick manner. In future work, we will research

mechanisms that deal with malicious data and channelize normal traffic according to

the priorities of the traffic defined by the underlying protocols.
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